US2982360A - Protection of steel oil and/or gas well tubing - Google Patents

Protection of steel oil and/or gas well tubing Download PDF

Info

Publication number
US2982360A
US2982360A US615494A US61549456A US2982360A US 2982360 A US2982360 A US 2982360A US 615494 A US615494 A US 615494A US 61549456 A US61549456 A US 61549456A US 2982360 A US2982360 A US 2982360A
Authority
US
United States
Prior art keywords
steel
hydrogen
tubing
metal
liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US615494A
Inventor
Byron B Morton
Rice Rutledge St John
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huntington Alloys Corp
Original Assignee
International Nickel Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Nickel Co Inc filed Critical International Nickel Co Inc
Priority to US615494A priority Critical patent/US2982360A/en
Application granted granted Critical
Publication of US2982360A publication Critical patent/US2982360A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S166/00Wells
    • Y10S166/902Wells for inhibiting corrosion or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49805Shaping by direct application of fluent pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49908Joining by deforming
    • Y10T29/49938Radially expanding part in cavity, aperture, or hollow body
    • Y10T29/4994Radially expanding internal tube

Definitions

  • the present invention relates to steel oil and/orgas tubing and, more particularly, to theprotection .of steel art, serious problems and diffic'ultieshave heretofore x existed with respect towthe utilization of steel oiland/or gas well tubing which, while in service, is prone to failure caused by a mechanism involving hydrogen and/ or stress.- corrosion cracking.
  • Hydrogen cracking or embrittlement can be' generally considered a spontaneous failure of metal as the result of atomichydrogen acting within interstitial voids :in the metal, i.e.,..discontinuities in the atomic structure of the metal, in the presence of some minimum stress.
  • Stress-corrosion cracking has been defined as including any combined effect of stress and corrosion on the behavior of metals.
  • Either type of failure may be generically categorized as a, type of brittle failure, ,the mechanism of. which can be considered as encompassing two stages. In the first stage, a crack or pit is developed in the metal and is continued by high stresses -and/or corrosion until the crack or pitcrack reaches a critical length with respect to the stresses acting normal to the length thereof. In the second stage, the crack is continued beyond the critical length until failure occurs.
  • hydrogen sulphide in the fluids of sour wells reacts with the metal tubing whereby hydrogen is liberated in atomic form and then penetrates the metal. The process is facilitated .when a poisonous catalyst is formed, e.g., ferrous sulphide.
  • the catalyst acts in a manner to encourage entrance or permeation of released atomic hydrogen into the metal. This is to say, a source of atomic hydrogen is catalytically directed into the metal.
  • Another example of the manner in which hydrogen is introduced into wells is through well known acidizing procedures. The acid coming into contact with the steel tubing reacts therewith with the evolution of atomic hydrogen.
  • Conditions for the inducement of steel tubing to stresscorrosion cracking occur in a variety of ways. For example, internal stresses in the tubing metal resulting from improper heat treatment or cold work leave the metal in a condition susceptible to stress-corrosion cracking.
  • Patented May 2, 1961 Pit cracking or stress-corrosion in certain metals until failure fluids, cause pitting. cracking, continues occurs.
  • the mechanism of failure by cracking as referred to hereinabove is particularly pronounced, peculiarly enough, in steel tubing of high mechanical strength, e.g., steels having yield strengths of 80,000 p.s.i. (pounds per square inch) and up, and even more so in cold-worked high strength steels.
  • yield strengths 80,000 p.s.i. (pounds per square inch) and up, and even more so in cold-worked high strength steels.
  • hydrogen cracking particularly, experience has indicated that the minimum stress involved, in cracking as referred to hereinabove, apparently varies with the overall strength of the metal, the higher the strength of the metal the lower the minimum'of residual stress to bring about hydrogen cracking.
  • Such high strength steels are generally used in commerical practice and are considered necessary for the purpose of resisting or counter-acting the effect of high tensile stresses, including both external and internal stresses, acting upon or within the metal.
  • External stresses are generally the natural result of the use to which thesteel tubing is subjected during service whereas internal stresses primarily result from cold-working or other operations to which the steel is subjected prior to or in'use.
  • plastic liners soften at well temperatures, e.g., 230 F. to 250 F., to such a detrimental degree that they pull loose and ball up even to the extent of stopping fluid flow.
  • Another object of the invention is to prevent failure of steel oil and/or gas well tubing in deep, sour, condensate wells caused by hydrogen and/ or stress-corrosion cracking.
  • the invention also contemplates providing a metal liner in combination with steel oil and/ or gas well tubing such that the steel tubing will not be subject to hydrogen and stress-corrosion cracking and will therefore be rendered capable of exhibiting a longer service life than when no such liner is used.
  • the invention further contemplates protecting high strength, cold-worked steel oil and/or gas well tubing and more particularly, such steel tubing used in deep, sour wells of high pressures and temperatures from failure normally caused by hydrogen and stress-corrosion crack ing.
  • Figures 1 and 2 represent longitudinal sectional views and.
  • Figure 3 an end view of Figure 1 showing the lined steel oil and/or gas well tubular structure provided in accordance with the present invention.
  • the interfacial zone between the tube and liner is shown on a greatly enlarged scale for purposes of illustration.
  • the present invention contemplates protecting steel oil and/or gas tubing and particularly high strength, cold-worked oil and/or gas well tubing utilized in deep, sour Wells from failure caused or induced by hydrogen and/or stress-corrosion cracking by providing within the steel tubing, but in unbonded association therewith, a metal liner pervious to atomic hydrogen penetration, the metal liner being in mechanical contact with the steel tubing to form an interfacial zone therewith.
  • the outer surface of the protective liner be unbonded with respect to the inner surface of the steel tubing, i.e., the metallic liner is mechanically expanded or otherwise closely fitted to the inside diameter of the steel tubing throughout its entire length such that there is no metallic path for atomic hydrogen to pass into the steel tubing.
  • the metallic liner is mechanically expanded or otherwise closely fitted to the inside diameter of the steel tubing throughout its entire length such that there is no metallic path for atomic hydrogen to pass into the steel tubing.
  • This feature of an interfacial zone in combination with the perviousness of the metal liner permits atomic hydrogen, which may be evolved from a reaction such as, for example, a reaction occurring between the liner and hydrogen sulfide, to preferentially reform into molecular hydrogen on the outside surface of the liner.
  • atomic hydrogen is substantially inert to the steel tubing at the temperatures within the wells. If the metal liner and steel tubing were in bonded form, e.g., clad or plated form wherein substantial diffusion occurs between the metal receiving a deposit and the deposited metal, permeation of the liner by atomic hydrogen would continue directly into the steel tubing and thus create the conditions which lead to cracking.
  • the liner can be conveniently inserted within the steel tubing by procedures well known to those skilled in the art. For example, the liner can be expanded against the inner surface of the steel tubing using hydrostatic pressure.
  • the nickel-copper alloys contain about 63% to nickel and about 25% to 30% copper. Small amounts of other elements including up to 2% iron, up to 2% manganese, up to 4% aluminum, up to 1% silicon and up to 0.3% carbon are contemplated within the scope of these alloys.
  • Such liners in addition to protecting steel tubing from hydrogen and/or stress-corrosion cracking failure, have a lower tensile modulus and higher thermal expansivity than steel and, as a result thereof, an excellent and desirable tight and permanent mechanical grip of the liner by the tubing is assured when expanded into place hydrostatically, when supporting a load in a well, and when heated by earth temperatures.
  • such liners are extremely corrosion-resistant to various corrosive media of well fluids, e.g., hydrogen sulfide of sour wells. It is also a preferred embodiment of the present invention where temperatures in excess of 500 F.
  • nickel-chromium-iron alloys containing nickel in amounts greater than about 50%, e.g., to chromium from about 10% to 35%, e.g., 12% to 15%, with iron being essentially the balance, e.g., 5% to 9% or 13%.
  • Such alloys exhibit the desirable characteristic of affording substantial resistance to sulfur attack at well temperatures greater than 500 F. and are highly resistant to stress-corrosion attack normally attributable to the effect of chloride ions.
  • FIG. 2 there is shown a tubular structure comprised of an oil well steel tube 1 in mechanical contact, i.e., unbonded association, with a pervious metal liner 2.
  • Reference numeral 3 indicates the interfacial zone existing between the steel tube and metal liner. This interfacial zone is shown on a greatly enlarged scale in Figures 1 and 3 for purposes of illustration.
  • oil well steel tube 1 and metal liner 2 are engaged in mechanical contact such that there is formed therebetween a continuous void, i.e., an interfacial zone.
  • the present invention provides special metal liners for the protection of steel oil and/or gas tubing from failure normally caused or induced by hydrogen and/or stress-corrosion cracking.
  • the fact that the metal liners are in mechanical contact such that an interfacial zone is established therebetween provides a system for obviating or substantially preventing atomic hydrogen contact with the steel tubing.
  • the establishment of an interfacial zone provides for the selective and preferential formation of molecular hydrogen on the outside surface of the metal liner. Hydrogen which heretofore contacted the steel tubing in destructive atomic or nascent state now, in accordance with the invention, contacts the tubing in harmless molecular form.
  • the invention provides for the protection of high strength, cold-worked steel oil and/or gas well tubing employed in deep, sour wells from hydrogen and/or stress-corrosion cracking.
  • the metal liners described hereinbefore easily Withstand the high temperatures and pressures of deep wells.
  • cold-worked steels of high strength e.g., 80,000 psi
  • alloying elements e.g., 0.75% to 1% chromium, 0.08% to 0.1% molybdenum, 0.5% to 1.25% manganese and 0.75% to 1.25 nickel
  • no sacrifice in mechanical strength thereof is incurred as in the case of using low strength steels, e.g., steels having a yield strength of about 40,000 p.s.i.
  • the voids present in the cold-workedsteel and which would have hitherto normally served as accumulators for atomic hydrogen no longer present a hazardous condition.
  • maximum protection is coupled with maximum strength.
  • the invention provides a new bi-metallic oil and/or gas well tubular structure having high overall strength and being comprised of an outer shell of coldworked and/or high strength steel and an inner shell in mechanical contact therewith and being comprised of the liner materials in accordance with the invention.
  • an improved oil and/or gas well tubular. structure capable of use under relatively high pressures and temperatures in deep, sour wells and adapted to resist failure caused or induced by provide for the selective and preferential formation of molecular hydrogen on the outside surface of said liner while in service, whereby detrimental atomic hydrogen contact with said steel shell is prevented.
  • metal liner is comprised of a nickel-copper alloy containing about 63% to nickel and about 25% to 30% copper.
  • abi-metallic oil and/ or gas welltubular structure adapted to resist failure caused or induced by hydrogen and/or stress-corrosion cracking while in service, said tubular structure being comprised of an outer shell formed of a steel possessing a yield strength of at least about 80,000 pounds per square inch and an inner metal liner pervious to atomic hydrogen penetration, said liner being comprised of an alloy containing at least 50% nickel, from about 10% to about 35% chromium, and the balance essentially iron, said shell and liner being in mechanical contact such that there existsan' interfacial zone therebetween and to thereby provide for the preferential formation of molecular hydrogen on the outside surface of said liner while in service, whereby detrimental atomic hydrogen contact with said steel tubing is prevented a 4.
  • the metal liner is comprised of an alloy containing about to nickel, about 12% to 15% chromium, and the balance essentially iron.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat Treatment Of Articles (AREA)

Description

May 2,1961 B. B. MORTON ET-AL 2,982,360
PROTECTION OF STEEL OIL AND/OR GAS WELL TUBING Filed 001;. 12, 1956 FIG! FIG.2
5; BYRONBENSON MORTON RUTLEDGE ST JOHN RICE INVENTOR'S BYQLQMSQQQ ATTORNEY Unite Patent Promotion OF STEEL OIL Ann/oRcXs YWELL'IIUBING Byron B. Morton, Elizabeth, N.J.,-a.1 Rutledge st. John Rice, Houston, Tex., assignors to The International Nickel Company, Inc.', New York, N.Y., a corporation ofDelaware Filed 0ct.1 2, *1956,;,Ser. :No. 615,494
4 Claims. (Cl. ire- 242) The present invention relates to steel oil and/orgas tubing and, more particularly, to theprotection .of steel art, serious problems and diffic'ultieshave heretofore x existed with respect towthe utilization of steel oiland/or gas well tubing which, while in service, is prone to failure caused by a mechanism involving hydrogen and/ or stress.- corrosion cracking. Hydrogen cracking or embrittlement can be' generally considered a spontaneous failure of metal as the result of atomichydrogen acting within interstitial voids :in the metal, i.e.,..discontinuities in the atomic structure of the metal, in the presence of some minimum stress. Stress-corrosion cracking has been defined as including any combined effect of stress and corrosion on the behavior of metals. Either type of failure may be generically categorized as a, type of brittle failure, ,the mechanism of. which can be considered as encompassing two stages. Inthe first stage, a crack or pit is developed in the metal and is continued by high stresses -and/or corrosion until the crack or pitcrack reaches a critical length with respect to the stresses acting normal to the length thereof. In the second stage, the crack is continued beyond the critical length until failure occurs.
The problems and difficulties have become particular- .ly acute anent deep, sour oil and/or gas wells. In such wells, hydrogen is activated in a manner whenceit comes into intimate contact with thesteel tubing. The hydrogen in atomic or nascent form penetrates the voids present in the metal and subsequently, because of its native activity, forms molecular hydrogen and thus causes an expansion in the volume of hydrogen in the void. This expansion, so caused, exerts a pressure of ever increasing proportion whereby the formation and lengtheningof cracks occur until pressure-causes complete fracture. The atomic hydrogen may be activated in several ways. For example, hydrogen sulphide in the fluids of sour wells reacts with the metal tubing whereby hydrogen is liberated in atomic form and then penetrates the metal. The process is facilitated .when a poisonous catalyst is formed, e.g., ferrous sulphide. The catalyst acts in a manner to encourage entrance or permeation of released atomic hydrogen into the metal. This is to say, a source of atomic hydrogen is catalytically directed into the metal. Another example of the manner in which hydrogen is introduced into wells is through well known acidizing procedures. The acid coming into contact with the steel tubing reacts therewith with the evolution of atomic hydrogen.
Conditions for the inducement of steel tubing to stresscorrosion cracking occur in a variety of ways. For example, internal stresses in the tubing metal resulting from improper heat treatment or cold work leave the metal in a condition susceptible to stress-corrosion cracking.
Patented May 2, 1961 Pit cracking or stress-corrosion in certain metals until failure fluids, cause pitting. cracking, continues occurs.
The mechanism of failure by cracking as referred to hereinabove is particularly pronounced, peculiarly enough, in steel tubing of high mechanical strength, e.g., steels having yield strengths of 80,000 p.s.i. (pounds per square inch) and up, and even more so in cold-worked high strength steels. With respect to hydrogen cracking particularly, experience has indicated that the minimum stress involved, in cracking as referred to hereinabove, apparently varies with the overall strength of the metal, the higher the strength of the metal the lower the minimum'of residual stress to bring about hydrogen cracking. Such high strength steels are generally used in commerical practice and are considered necessary for the purpose of resisting or counter-acting the effect of high tensile stresses, including both external and internal stresses, acting upon or within the metal. External stresses are generally the natural result of the use to which thesteel tubing is subjected during service whereas internal stresses primarily result from cold-working or other operations to which the steel is subjected prior to or in'use.
Endeavors directed to the use of low strength steels, e.g., yield strength of about 40,000 to 50,000 p.s.i., have not been entirely satisfactory. Such low strength steel tubing is somewhat susceptible to hydrogen and stresscorrosion cracking and there is a significant and undesirable sacrifice in mechanical strength, particularly in wells where high pressures and temperatures are encountered. Moreover, such steels are susceptible to formation of blisters which by rupturing can destroy portions or segments of the tube wall. It also has been proposed to subject both high strength and low strength steels to heatjtreatment to stress relieve the same, i.e., reduce internal stress caused by cold working. It is considered that such treatment involving relieving internal stress,
substantially reduces the number or size of the voids in the metal. However, it has been found that quenching processes employed after heat treatment set up a degree of internalstress. Moreover, it has been found generally necessary in practice that since the tubing must be straight in order to meet drift diameter requirements, cold-working procedures must be employed at various portions thereof to accomplish the same. Thus, additional internal stresses are set up and the voids in the metal are ever present and become larger at least with'respect to size. Furthermore, improper heat treatments can, as mentioned hereinbefore, be conducive to stress-corrosion cracking.
It has also been proposed heretofore to use plastic liners in steel oil well tubing for the protection thereof but'it has been found that plastic liners soften at well temperatures, e.g., 230 F. to 250 F., to such a detrimental degree that they pull loose and ball up even to the extent of stopping fluid flow. Some artisans have expressed the view that when voids occur in plastic liners the steel tubing cracks more readily than if the steel tubing were left completely exposed.
It might be well said that the problem is intensified and magnified in deep, sour wells where extremely high pressures and high temperatures, e.g., 15,000 p.s.i and about 350 F. prevail. Although many attempts were made to overcome the foregoing difficulties and other disadvantages, none, as far as we are aware, was entirely successful when carried into practice commercially on an industrial scale.
It has now been discovered that hydrogen and stresscorrosion cracking in steel tubing and particularly oil and/or gas well cold-worked steel tubing of high mechanical strength can be substantially minimized or re duced to a negligible extent by the use of special metal liners capable of protecting the steel from atomic hydrogen.
It is an object of the present invention to protect steel tubing from. hydrogen and/or stress-corrosion cracking.
Another object of the invention is to prevent failure of steel oil and/or gas well tubing in deep, sour, condensate wells caused by hydrogen and/ or stress-corrosion cracking.
The invention also contemplates providing a metal liner in combination with steel oil and/ or gas well tubing such that the steel tubing will not be subject to hydrogen and stress-corrosion cracking and will therefore be rendered capable of exhibiting a longer service life than when no such liner is used.
It is a further object of the invention to provide a metal liner capable of rendering atomic hydrogen into a form inert to steel oil and/ or gas well tubing.
The invention further contemplates protecting high strength, cold-worked steel oil and/or gas well tubing and more particularly, such steel tubing used in deep, sour wells of high pressures and temperatures from failure normally caused by hydrogen and stress-corrosion crack ing.
Other objects and advantages of the present invention will become more apparent from the description taken into conjunction with the accompanying drawing in which:
Figures 1 and 2 represent longitudinal sectional views and. Figure 3 an end view of Figure 1 showing the lined steel oil and/or gas well tubular structure provided in accordance with the present invention. In Figures 1 and 3 the interfacial zone between the tube and liner is shown on a greatly enlarged scale for purposes of illustration.
Generally speaking, the present invention contemplates protecting steel oil and/or gas tubing and particularly high strength, cold-worked oil and/or gas well tubing utilized in deep, sour Wells from failure caused or induced by hydrogen and/or stress-corrosion cracking by providing within the steel tubing, but in unbonded association therewith, a metal liner pervious to atomic hydrogen penetration, the metal liner being in mechanical contact with the steel tubing to form an interfacial zone therewith. It is important in accordance with the principles of the present invention that the outer surface of the protective liner be unbonded with respect to the inner surface of the steel tubing, i.e., the metallic liner is mechanically expanded or otherwise closely fitted to the inside diameter of the steel tubing throughout its entire length such that there is no metallic path for atomic hydrogen to pass into the steel tubing. Thus, there is a continuous void, i.e., interfacial zone, existing between the metal liner and steel tube. This feature of an interfacial zone in combination with the perviousness of the metal liner permits atomic hydrogen, which may be evolved from a reaction such as, for example, a reaction occurring between the liner and hydrogen sulfide, to preferentially reform into molecular hydrogen on the outside surface of the liner. In its molecular state hydrogen is substantially inert to the steel tubing at the temperatures within the wells. If the metal liner and steel tubing were in bonded form, e.g., clad or plated form wherein substantial diffusion occurs between the metal receiving a deposit and the deposited metal, permeation of the liner by atomic hydrogen would continue directly into the steel tubing and thus create the conditions which lead to cracking. The liner can be conveniently inserted within the steel tubing by procedures well known to those skilled in the art. For example, the liner can be expanded against the inner surface of the steel tubing using hydrostatic pressure.
In carrying the present invention into practice, it is preferred to employ metal liners containing metal from the group consisting of nickel, copper, and alloys "there- 4 of. Preferably, the nickel-copper alloys contain about 63% to nickel and about 25% to 30% copper. Small amounts of other elements including up to 2% iron, up to 2% manganese, up to 4% aluminum, up to 1% silicon and up to 0.3% carbon are contemplated within the scope of these alloys. Such liners, in addition to protecting steel tubing from hydrogen and/or stress-corrosion cracking failure, have a lower tensile modulus and higher thermal expansivity than steel and, as a result thereof, an excellent and desirable tight and permanent mechanical grip of the liner by the tubing is assured when expanded into place hydrostatically, when supporting a load in a well, and when heated by earth temperatures. Moreover, such liners are extremely corrosion-resistant to various corrosive media of well fluids, e.g., hydrogen sulfide of sour wells. It is also a preferred embodiment of the present invention where temperatures in excess of 500 F. and destructive sulfur are encountered in wells to employ metal liners pervious to atomic hydrogen and comprised of nickel-chromium-iron alloys containing nickel in amounts greater than about 50%, e.g., to chromium from about 10% to 35%, e.g., 12% to 15%, with iron being essentially the balance, e.g., 5% to 9% or 13%. Such alloys exhibit the desirable characteristic of affording substantial resistance to sulfur attack at well temperatures greater than 500 F. and are highly resistant to stress-corrosion attack normally attributable to the effect of chloride ions.
Turning to a discussion of the drawing and particularly Figure 2, there is shown a tubular structure comprised of an oil well steel tube 1 in mechanical contact, i.e., unbonded association, with a pervious metal liner 2. Reference numeral 3 indicates the interfacial zone existing between the steel tube and metal liner. This interfacial zone is shown on a greatly enlarged scale in Figures 1 and 3 for purposes of illustration. Thus, it will be understood that oil well steel tube 1 and metal liner 2 are engaged in mechanical contact such that there is formed therebetween a continuous void, i.e., an interfacial zone.
It is to be observed that the present invention provides special metal liners for the protection of steel oil and/or gas tubing from failure normally caused or induced by hydrogen and/or stress-corrosion cracking. The fact that the metal liners are in mechanical contact such that an interfacial zone is established therebetween provides a system for obviating or substantially preventing atomic hydrogen contact with the steel tubing. The establishment of an interfacial zone provides for the selective and preferential formation of molecular hydrogen on the outside surface of the metal liner. Hydrogen which heretofore contacted the steel tubing in destructive atomic or nascent state now, in accordance with the invention, contacts the tubing in harmless molecular form.
Furthermore, the invention provides for the protection of high strength, cold-worked steel oil and/or gas well tubing employed in deep, sour wells from hydrogen and/or stress-corrosion cracking. The metal liners described hereinbefore easily Withstand the high temperatures and pressures of deep wells. It is to be noted that since cold-worked steels of high strength, e.g., 80,000 psi, and containing small amounts of alloying elements, e.g., 0.75% to 1% chromium, 0.08% to 0.1% molybdenum, 0.5% to 1.25% manganese and 0.75% to 1.25 nickel, can be safely employed in oil and/or gas wells in accordance with the invention, no sacrifice in mechanical strength thereof is incurred as in the case of using low strength steels, e.g., steels having a yield strength of about 40,000 p.s.i. The voids present in the cold-workedsteel and which would have hitherto normally served as accumulators for atomic hydrogen no longer present a hazardous condition. Thus, maximum protection is coupled with maximum strength.
Moreover, the invention provides a new bi-metallic oil and/or gas well tubular structure having high overall strength and being comprised of an outer shell of coldworked and/or high strength steel and an inner shell in mechanical contact therewith and being comprised of the liner materials in accordance with the invention.
It is to be noted that the present invention is not to be confused with the more protection of steel tubing from general corrosive effects, for example, gradual corroding of metal through the formation of steel compounds which eventually become loose from the steel tubing and flake oif. Such corrosive activity which can be considered as general corrosion, although it is prevented by the present invention, is quite distinct from the problem of preventing hydrogen and/ or stress-corrosion or cracking failure.
Although the present invention has been described in conjunction with preferred embodiments, it is to be understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention, as those skilled in the art will readily understand. Such modifications and variations are considered to be within the purview and scope of the invention and appended claims.
We claim: i
1. As a new article of manufacture, an improved oil and/or gas well tubular. structure capable of use under relatively high pressures and temperatures in deep, sour wells and adapted to resist failure caused or induced by provide for the selective and preferential formation of molecular hydrogen on the outside surface of said liner while in service, whereby detrimental atomic hydrogen contact with said steel shell is prevented.
2. The article of manufacture as described in claim 1 wherein the metal liner is comprised of a nickel-copper alloy containing about 63% to nickel and about 25% to 30% copper.
3. As a new article of manufacture, abi-metallic oil and/ or gas welltubular structure adapted to resist failure caused or induced by hydrogen and/or stress-corrosion cracking while in service, said tubular structure being comprised of an outer shell formed of a steel possessing a yield strength of at least about 80,000 pounds per square inch and an inner metal liner pervious to atomic hydrogen penetration, said liner being comprised of an alloy containing at least 50% nickel, from about 10% to about 35% chromium, and the balance essentially iron, said shell and liner being in mechanical contact such that there existsan' interfacial zone therebetween and to thereby provide for the preferential formation of molecular hydrogen on the outside surface of said liner while in service, whereby detrimental atomic hydrogen contact with said steel tubing is prevented a 4. The article of manufacture as described in claim 3 wherein the metal liner is comprised of an alloy containing about to nickel, about 12% to 15% chromium, and the balance essentially iron.
. References Cited in the file of this patent UNITED STATES PATENTS 714,903 Hinds Dec. 2, 1902 734,286 Thomson July 21, 1903 798,056 Nicholson Aug. 22, 1905 942,184 Persons Dec. 7, 1909 1,403,194 Ramage Jan. 10, 1922 1,835,426 Pier Dec. 8, 1931 1,872,011 Russell Aug. 16, 1932 1,890,436 Krauch et al. Dec. 6, 1932 1,949,109 Pier et al. Feb. 27, 1934 1,969,422 Pier Aug. 7, 1934 2,070,795 Liuaker Feb. 16, 1937 2,386,747 Ris Oct. 16,
2,516,689 France et al. July 25, 1950 Richardson Oct. 14, 1952
US615494A 1956-10-12 1956-10-12 Protection of steel oil and/or gas well tubing Expired - Lifetime US2982360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US615494A US2982360A (en) 1956-10-12 1956-10-12 Protection of steel oil and/or gas well tubing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US615494A US2982360A (en) 1956-10-12 1956-10-12 Protection of steel oil and/or gas well tubing

Publications (1)

Publication Number Publication Date
US2982360A true US2982360A (en) 1961-05-02

Family

ID=24465626

Family Applications (1)

Application Number Title Priority Date Filing Date
US615494A Expired - Lifetime US2982360A (en) 1956-10-12 1956-10-12 Protection of steel oil and/or gas well tubing

Country Status (1)

Country Link
US (1) US2982360A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1290388B (en) * 1963-09-30 1969-03-06 Calumet & Hecla Corp Process for the production of composite pipes with internal ribs
US3461918A (en) * 1966-08-29 1969-08-19 Phillips Petroleum Co Corrosion protection
US3891394A (en) * 1974-04-10 1975-06-24 Love Oil Company Inc Crystal generator to inhibit scale formation and corrosion in fluid handling systems
US3986553A (en) * 1974-01-08 1976-10-19 New Zealand Inventions Development Authority Fluid sampling vessel
US4045591A (en) * 1974-07-19 1977-08-30 Rodco, Inc. Method of treating sucker rod
US4057108A (en) * 1976-11-19 1977-11-08 Shell Oil Company Completing wells in deep reservoirs containing fluids that are hot and corrosive
US4184517A (en) * 1978-06-05 1980-01-22 Donald J. Lewis Locked lined pipe and method for making same
US4198740A (en) * 1978-07-24 1980-04-22 The United States Of America As Represented By The United States Department Of Energy Method for forming or bonding a liner
US4359811A (en) * 1980-08-20 1982-11-23 The Halcon Sd Group, Inc. Method of coating or lining metals
US4741386A (en) * 1985-07-17 1988-05-03 Vertech Treatment Systems, Inc. Fluid treatment apparatus
US4759407A (en) * 1986-08-04 1988-07-26 Mitchell Supply, Inc. Inverted working barrel and seat and method of manufacturing the same
US4871024A (en) * 1988-08-01 1989-10-03 Baker Performance Chemicals Inc. Fluid for treatment of a subterranean well for enhancement of production
US4997040A (en) * 1989-10-17 1991-03-05 Baker Hughes Incorporated Corrosion inhibition using mercury intensifiers
WO2004013462A1 (en) 2002-08-05 2004-02-12 Intelliserv Inc An expandable metal liner for downhole components
US20040104797A1 (en) * 2000-07-19 2004-06-03 Hall David R. Downhole data transmission system
US20040113808A1 (en) * 2002-12-10 2004-06-17 Hall David R. Signal connection for a downhole tool string
US20040145492A1 (en) * 2000-07-19 2004-07-29 Hall David R. Data Transmission Element for Downhole Drilling Components
US20040150533A1 (en) * 2003-02-04 2004-08-05 Hall David R. Downhole tool adapted for telemetry
US20040150532A1 (en) * 2003-01-31 2004-08-05 Hall David R. Method and apparatus for transmitting and receiving data to and from a downhole tool
US20040164838A1 (en) * 2000-07-19 2004-08-26 Hall David R. Element for Use in an Inductive Coupler for Downhole Drilling Components
US20040164833A1 (en) * 2000-07-19 2004-08-26 Hall David R. Inductive Coupler for Downhole Components and Method for Making Same
US20040219831A1 (en) * 2003-01-31 2004-11-04 Hall David R. Data transmission system for a downhole component
US20040221995A1 (en) * 2003-05-06 2004-11-11 Hall David R. Loaded transducer for downhole drilling components
US20040244964A1 (en) * 2003-06-09 2004-12-09 Hall David R. Electrical transmission line diametrical retention mechanism
US20040246142A1 (en) * 2003-06-03 2004-12-09 Hall David R. Transducer for downhole drilling components
US20050001736A1 (en) * 2003-07-02 2005-01-06 Hall David R. Clamp to retain an electrical transmission line in a passageway
US20050001738A1 (en) * 2003-07-02 2005-01-06 Hall David R. Transmission element for downhole drilling components
US20050001735A1 (en) * 2003-07-02 2005-01-06 Hall David R. Link module for a downhole drilling network
US20050045339A1 (en) * 2003-09-02 2005-03-03 Hall David R. Drilling jar for use in a downhole network
US20050046590A1 (en) * 2003-09-02 2005-03-03 Hall David R. Polished downhole transducer having improved signal coupling
US20050067159A1 (en) * 2003-09-25 2005-03-31 Hall David R. Load-Resistant Coaxial Transmission Line
US20050074998A1 (en) * 2003-10-02 2005-04-07 Hall David R. Tool Joints Adapted for Electrical Transmission
US20050074988A1 (en) * 2003-05-06 2005-04-07 Hall David R. Improved electrical contact for downhole drilling networks
US20050082092A1 (en) * 2002-08-05 2005-04-21 Hall David R. Apparatus in a Drill String
US6888473B1 (en) 2000-07-20 2005-05-03 Intelliserv, Inc. Repeatable reference for positioning sensors and transducers in drill pipe
US20050095827A1 (en) * 2003-11-05 2005-05-05 Hall David R. An internal coaxial cable electrical connector for use in downhole tools
US20050092499A1 (en) * 2003-10-31 2005-05-05 Hall David R. Improved drill string transmission line
US20050093296A1 (en) * 2003-10-31 2005-05-05 Hall David R. An Upset Downhole Component
US20050115717A1 (en) * 2003-11-29 2005-06-02 Hall David R. Improved Downhole Tool Liner
US20050118848A1 (en) * 2003-11-28 2005-06-02 Hall David R. Seal for coaxial cable in downhole tools
US20050173128A1 (en) * 2004-02-10 2005-08-11 Hall David R. Apparatus and Method for Routing a Transmission Line through a Downhole Tool
US20050212530A1 (en) * 2004-03-24 2005-09-29 Hall David R Method and Apparatus for Testing Electromagnetic Connectivity in a Drill String
US20050285751A1 (en) * 2004-06-28 2005-12-29 Hall David R Downhole Drilling Network Using Burst Modulation Techniques
US20060021210A1 (en) * 2002-09-18 2006-02-02 Zifferer L R Corrugated conduit and method of expanding to form a lined tubular member
US7105098B1 (en) 2002-06-06 2006-09-12 Sandia Corporation Method to control artifacts of microstructural fabrication
US20070022800A1 (en) * 2005-08-01 2007-02-01 Zifferer L R Method and apparatus for forming a lined conduit
US20070169929A1 (en) * 2003-12-31 2007-07-26 Hall David R Apparatus and method for bonding a transmission line to a downhole tool

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US714903A (en) * 1898-02-17 1902-12-02 Robert Lewis Process of lining pipes.
US734286A (en) * 1901-07-27 1903-07-21 George Thomson Metallic ingot or casting.
US798056A (en) * 1904-06-10 1905-08-22 Nat Tube Co Compound pipe or tube.
US942184A (en) * 1908-10-14 1909-12-07 James Otis Persons Method of lining pipes.
US1403194A (en) * 1921-01-28 1922-01-10 Frank F Beall Producting of low-boiling-point saturated hydrocarbons from heavy hydrocarbon oils
US1835426A (en) * 1927-10-27 1931-12-08 Standard Ig Co Destructive hydrogenation of carbonaceous materials
US1872011A (en) * 1928-07-02 1932-08-16 Standard Ig Co Improved process for treating hydrocarbons
US1890436A (en) * 1926-02-06 1932-12-06 Standard Ig Co Conversion of solid fuels and products derived therefrom or other materials into valuable liquids
US1949109A (en) * 1929-06-27 1934-02-27 Standard Ig Co Reaction with hydrogen and in apparatus therefor
US1969422A (en) * 1929-12-03 1934-08-07 Standard Ig Co Treatment of coals, tars, mineral oils, and the like
US2070795A (en) * 1934-11-28 1937-02-16 Frederick W Linaker Boiler cleaner tube
US2386747A (en) * 1944-01-27 1945-10-16 Griscom Russell Co Bimetal tube
US2516689A (en) * 1947-09-13 1950-07-25 Scovill Manufacturing Co Bimetal tubing with ferruled ends
US2613958A (en) * 1947-03-05 1952-10-14 Brockway Company Coupling for double-walled pipes

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US714903A (en) * 1898-02-17 1902-12-02 Robert Lewis Process of lining pipes.
US734286A (en) * 1901-07-27 1903-07-21 George Thomson Metallic ingot or casting.
US798056A (en) * 1904-06-10 1905-08-22 Nat Tube Co Compound pipe or tube.
US942184A (en) * 1908-10-14 1909-12-07 James Otis Persons Method of lining pipes.
US1403194A (en) * 1921-01-28 1922-01-10 Frank F Beall Producting of low-boiling-point saturated hydrocarbons from heavy hydrocarbon oils
US1890436A (en) * 1926-02-06 1932-12-06 Standard Ig Co Conversion of solid fuels and products derived therefrom or other materials into valuable liquids
US1835426A (en) * 1927-10-27 1931-12-08 Standard Ig Co Destructive hydrogenation of carbonaceous materials
US1872011A (en) * 1928-07-02 1932-08-16 Standard Ig Co Improved process for treating hydrocarbons
US1949109A (en) * 1929-06-27 1934-02-27 Standard Ig Co Reaction with hydrogen and in apparatus therefor
US1969422A (en) * 1929-12-03 1934-08-07 Standard Ig Co Treatment of coals, tars, mineral oils, and the like
US2070795A (en) * 1934-11-28 1937-02-16 Frederick W Linaker Boiler cleaner tube
US2386747A (en) * 1944-01-27 1945-10-16 Griscom Russell Co Bimetal tube
US2613958A (en) * 1947-03-05 1952-10-14 Brockway Company Coupling for double-walled pipes
US2516689A (en) * 1947-09-13 1950-07-25 Scovill Manufacturing Co Bimetal tubing with ferruled ends

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1290388B (en) * 1963-09-30 1969-03-06 Calumet & Hecla Corp Process for the production of composite pipes with internal ribs
US3461918A (en) * 1966-08-29 1969-08-19 Phillips Petroleum Co Corrosion protection
US3986553A (en) * 1974-01-08 1976-10-19 New Zealand Inventions Development Authority Fluid sampling vessel
US3891394A (en) * 1974-04-10 1975-06-24 Love Oil Company Inc Crystal generator to inhibit scale formation and corrosion in fluid handling systems
US4045591A (en) * 1974-07-19 1977-08-30 Rodco, Inc. Method of treating sucker rod
US4057108A (en) * 1976-11-19 1977-11-08 Shell Oil Company Completing wells in deep reservoirs containing fluids that are hot and corrosive
US4184517A (en) * 1978-06-05 1980-01-22 Donald J. Lewis Locked lined pipe and method for making same
US4198740A (en) * 1978-07-24 1980-04-22 The United States Of America As Represented By The United States Department Of Energy Method for forming or bonding a liner
US4359811A (en) * 1980-08-20 1982-11-23 The Halcon Sd Group, Inc. Method of coating or lining metals
US4741386A (en) * 1985-07-17 1988-05-03 Vertech Treatment Systems, Inc. Fluid treatment apparatus
US4759407A (en) * 1986-08-04 1988-07-26 Mitchell Supply, Inc. Inverted working barrel and seat and method of manufacturing the same
US4871024A (en) * 1988-08-01 1989-10-03 Baker Performance Chemicals Inc. Fluid for treatment of a subterranean well for enhancement of production
US4997040A (en) * 1989-10-17 1991-03-05 Baker Hughes Incorporated Corrosion inhibition using mercury intensifiers
US7064676B2 (en) 2000-07-19 2006-06-20 Intelliserv, Inc. Downhole data transmission system
US7040003B2 (en) 2000-07-19 2006-05-09 Intelliserv, Inc. Inductive coupler for downhole components and method for making same
US6992554B2 (en) 2000-07-19 2006-01-31 Intelliserv, Inc. Data transmission element for downhole drilling components
US20040145492A1 (en) * 2000-07-19 2004-07-29 Hall David R. Data Transmission Element for Downhole Drilling Components
US20040164838A1 (en) * 2000-07-19 2004-08-26 Hall David R. Element for Use in an Inductive Coupler for Downhole Drilling Components
US20040164833A1 (en) * 2000-07-19 2004-08-26 Hall David R. Inductive Coupler for Downhole Components and Method for Making Same
US7098767B2 (en) 2000-07-19 2006-08-29 Intelliserv, Inc. Element for use in an inductive coupler for downhole drilling components
US20040104797A1 (en) * 2000-07-19 2004-06-03 Hall David R. Downhole data transmission system
US6888473B1 (en) 2000-07-20 2005-05-03 Intelliserv, Inc. Repeatable reference for positioning sensors and transducers in drill pipe
US7105098B1 (en) 2002-06-06 2006-09-12 Sandia Corporation Method to control artifacts of microstructural fabrication
US20050082092A1 (en) * 2002-08-05 2005-04-21 Hall David R. Apparatus in a Drill String
WO2004013462A1 (en) 2002-08-05 2004-02-12 Intelliserv Inc An expandable metal liner for downhole components
US7261154B2 (en) 2002-08-05 2007-08-28 Intelliserv, Inc. Conformable apparatus in a drill string
US7243717B2 (en) 2002-08-05 2007-07-17 Intelliserv, Inc. Apparatus in a drill string
US6799632B2 (en) 2002-08-05 2004-10-05 Intelliserv, Inc. Expandable metal liner for downhole components
US20050039912A1 (en) * 2002-08-05 2005-02-24 Hall David R. Conformable Apparatus in a Drill String
US7926160B2 (en) 2002-09-18 2011-04-19 Packless Industries Method of forming a lined tubular member
US8434207B2 (en) 2002-09-18 2013-05-07 Packless Industries Corrugated conduit and method of expanding to form a lined tubular member
US20060021210A1 (en) * 2002-09-18 2006-02-02 Zifferer L R Corrugated conduit and method of expanding to form a lined tubular member
US7098802B2 (en) 2002-12-10 2006-08-29 Intelliserv, Inc. Signal connection for a downhole tool string
US20040113808A1 (en) * 2002-12-10 2004-06-17 Hall David R. Signal connection for a downhole tool string
US7190280B2 (en) 2003-01-31 2007-03-13 Intelliserv, Inc. Method and apparatus for transmitting and receiving data to and from a downhole tool
US6830467B2 (en) 2003-01-31 2004-12-14 Intelliserv, Inc. Electrical transmission line diametrical retainer
US20040219831A1 (en) * 2003-01-31 2004-11-04 Hall David R. Data transmission system for a downhole component
US20040150532A1 (en) * 2003-01-31 2004-08-05 Hall David R. Method and apparatus for transmitting and receiving data to and from a downhole tool
US7852232B2 (en) 2003-02-04 2010-12-14 Intelliserv, Inc. Downhole tool adapted for telemetry
US20040150533A1 (en) * 2003-02-04 2004-08-05 Hall David R. Downhole tool adapted for telemetry
US6929493B2 (en) 2003-05-06 2005-08-16 Intelliserv, Inc. Electrical contact for downhole drilling networks
US6913093B2 (en) 2003-05-06 2005-07-05 Intelliserv, Inc. Loaded transducer for downhole drilling components
US20040221995A1 (en) * 2003-05-06 2004-11-11 Hall David R. Loaded transducer for downhole drilling components
US20050074988A1 (en) * 2003-05-06 2005-04-07 Hall David R. Improved electrical contact for downhole drilling networks
US20040246142A1 (en) * 2003-06-03 2004-12-09 Hall David R. Transducer for downhole drilling components
US7053788B2 (en) 2003-06-03 2006-05-30 Intelliserv, Inc. Transducer for downhole drilling components
US20040244964A1 (en) * 2003-06-09 2004-12-09 Hall David R. Electrical transmission line diametrical retention mechanism
US6981546B2 (en) 2003-06-09 2006-01-03 Intelliserv, Inc. Electrical transmission line diametrical retention mechanism
US20050001736A1 (en) * 2003-07-02 2005-01-06 Hall David R. Clamp to retain an electrical transmission line in a passageway
US20050001738A1 (en) * 2003-07-02 2005-01-06 Hall David R. Transmission element for downhole drilling components
US7224288B2 (en) 2003-07-02 2007-05-29 Intelliserv, Inc. Link module for a downhole drilling network
US20050001735A1 (en) * 2003-07-02 2005-01-06 Hall David R. Link module for a downhole drilling network
US20050045339A1 (en) * 2003-09-02 2005-03-03 Hall David R. Drilling jar for use in a downhole network
US6991035B2 (en) 2003-09-02 2006-01-31 Intelliserv, Inc. Drilling jar for use in a downhole network
US20050046590A1 (en) * 2003-09-02 2005-03-03 Hall David R. Polished downhole transducer having improved signal coupling
US20050067159A1 (en) * 2003-09-25 2005-03-31 Hall David R. Load-Resistant Coaxial Transmission Line
US6982384B2 (en) 2003-09-25 2006-01-03 Intelliserv, Inc. Load-resistant coaxial transmission line
US20050074998A1 (en) * 2003-10-02 2005-04-07 Hall David R. Tool Joints Adapted for Electrical Transmission
US7017667B2 (en) 2003-10-31 2006-03-28 Intelliserv, Inc. Drill string transmission line
US20050092499A1 (en) * 2003-10-31 2005-05-05 Hall David R. Improved drill string transmission line
US20050093296A1 (en) * 2003-10-31 2005-05-05 Hall David R. An Upset Downhole Component
US20050095827A1 (en) * 2003-11-05 2005-05-05 Hall David R. An internal coaxial cable electrical connector for use in downhole tools
US6968611B2 (en) 2003-11-05 2005-11-29 Intelliserv, Inc. Internal coaxial cable electrical connector for use in downhole tools
US6945802B2 (en) 2003-11-28 2005-09-20 Intelliserv, Inc. Seal for coaxial cable in downhole tools
US20050118848A1 (en) * 2003-11-28 2005-06-02 Hall David R. Seal for coaxial cable in downhole tools
US20050115717A1 (en) * 2003-11-29 2005-06-02 Hall David R. Improved Downhole Tool Liner
US20070169929A1 (en) * 2003-12-31 2007-07-26 Hall David R Apparatus and method for bonding a transmission line to a downhole tool
US7291303B2 (en) 2003-12-31 2007-11-06 Intelliserv, Inc. Method for bonding a transmission line to a downhole tool
US7069999B2 (en) 2004-02-10 2006-07-04 Intelliserv, Inc. Apparatus and method for routing a transmission line through a downhole tool
US20050173128A1 (en) * 2004-02-10 2005-08-11 Hall David R. Apparatus and Method for Routing a Transmission Line through a Downhole Tool
US20050212530A1 (en) * 2004-03-24 2005-09-29 Hall David R Method and Apparatus for Testing Electromagnetic Connectivity in a Drill String
US20050285751A1 (en) * 2004-06-28 2005-12-29 Hall David R Downhole Drilling Network Using Burst Modulation Techniques
US7200070B2 (en) 2004-06-28 2007-04-03 Intelliserv, Inc. Downhole drilling network using burst modulation techniques
US20100229996A1 (en) * 2005-08-01 2010-09-16 Packless Metal Hose, Inc. Method and apparatus for forming a lined conduit
US7694402B2 (en) 2005-08-01 2010-04-13 Packless Metal Hose, Inc. Method for forming a lined conduit
US20070022800A1 (en) * 2005-08-01 2007-02-01 Zifferer L R Method and apparatus for forming a lined conduit

Similar Documents

Publication Publication Date Title
US2982360A (en) Protection of steel oil and/or gas well tubing
US4444731A (en) Tube for thermal cracking or reforming hydrocarbon
NO770224L (en) PROCEDURES FOR PRODUCING OBJECTS THAT ARE RESISTANT TO SURGAS
US1883662A (en) Method of removing liners from pressure vessels
US4971753A (en) Nuclear fuel element, and method of forming same
Sedriks Stress-corrosion cracking of stainless steels
NO176328B (en) Steel with high strength and spheridized structure
Nuttall et al. An assessment of materials for nuclear fuel immobilization containers
Yau Stress-corrosion cracking of zirconium alloys
US7976774B2 (en) Composite sparger
JPS6138789A (en) Portal structure and manufacture thereof
JPS58193350A (en) High strength pipe available under acidic circumstances
US2042427A (en) Apparatus for use at low temperatures
Aberle et al. High performance corrosion resistant stainless steels and nickel alloys for oil & gas applications
Fraser et al. Resistance of Tubular Materials to Sulphide-Corrosion Cracking
Eadie et al. Fatigue initiation and crack closure of low alloy steels in sour brine environments
Brown Failure of Steam-Water Heat Exchangers
Johnson et al. Hydrogen embrittlement of austenitic stainless steel weld metal with special consideration given to the effects of sigma phase
JPS61284558A (en) Production of ni alloy having excellent resistance to hydrogen cracking
Coulter et al. Stress corrosion cracking of oil field tubing in aqueous hydrochloric acid
Kodali et al. Failure mechanisms of Alloy 800H in steam reformer furnace pigtails
Ihrig High temperature corrosion of metals under alternate carburization and oxidation
LOGAN et al. Embrittlement of High Strength AISI 4340 Steel in Boiling NaCl Solution
AU2004322947B2 (en) Composite sparger
BE561562A (en)