NO743908L - - Google Patents

Info

Publication number
NO743908L
NO743908L NO743908A NO743908A NO743908L NO 743908 L NO743908 L NO 743908L NO 743908 A NO743908 A NO 743908A NO 743908 A NO743908 A NO 743908A NO 743908 L NO743908 L NO 743908L
Authority
NO
Norway
Prior art keywords
zinc
aqueous solution
solution
phosphoric acid
acid
Prior art date
Application number
NO743908A
Other languages
Norwegian (no)
Inventor
H Reinhardt
H D Ottertun
Original Assignee
Svenska Rayon Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE7314841A external-priority patent/SE375328B/xx
Application filed by Svenska Rayon Ab filed Critical Svenska Rayon Ab
Publication of NO743908L publication Critical patent/NO743908L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/262Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds using alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3842Phosphinic acid, e.g. H2P(O)(OH)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3844Phosphonic acid, e.g. H2P(O)(OH)2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/385Thiophosphoric acids, or esters thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Water Treatments (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Fremgangsmåte ved fjerning av sink fra en vannopplosning. Process for removing zinc from an aqueous solution.

Foreliggende oppfinnelse vedrorer en fremgangsmåte for å fjerne sinkfra en vandig opplosning, spesielt sinkholdige vann-opplosninger av den type som erholdes som avfallsvann eller en fortynnet prosessopplosning ved fremstilling av rayon. En hensikt med oppfinnelsen er å fjerne sink fra en vandig sinkopp-losning,. slik at denne med hensyn til gjenværende sink kan anvendes på nytt i prosessen eller utslippes til en resipient. En ytterligere hensikt med oppfinnelsen er ved fremstilling av rayon å fjerne sink fra den vandige opplesning, slik at opplosningen igjen kan anvendes i prosessen. The present invention relates to a method for removing zinc from an aqueous solution, in particular zinc-containing aqueous solutions of the type obtained as waste water or a diluted process solution in the manufacture of rayon. One purpose of the invention is to remove zinc from an aqueous zinc solution. so that this, with regard to remaining zinc, can be used again in the process or discharged to a recipient. A further purpose of the invention is to remove zinc from the aqueous solution when producing rayon, so that the solution can again be used in the process.

Ved fremstilling av rayon i henhold til viskoseprosessen, fremstilles forst en såkalt viskose. Denne fremstilles fra cellulose som behandles med alkali til å gi alkalicellulose, som deretter modnes og behandles med karbondisulfid og opploses deretter i en fortynnet natriumhydroksyd-opplosning. Etter ytterligere modning, filtrering, fjernelse av opploste gasser etc, er viskosen klar for spinning. Dette utfores ved å innsproyte viskosen, bestående i det vesentlige av cellulose-xantogenat, gjennom åpninger og inn i et spinnebad, som er en vandig opplosning inneholdende i det vesentlige natriumsulfat, svovelsyre og sinksulfat. Når cellulose-xantogenatet kommer i kontakt med spinnebadet, regeneres cellulose. Under spinneprosessen danner cellulosen vanligvis tråder eller bånd som deretter underkastes en strekkeprosess i den hensikt å orientere cellulosemolekylene i tråden eller båndets lengderetning, for derved å oppnå den onskede styrke. Under strekkeprosessen må cellulosen ikke være fullstendig regenerert. I den hensikt å regulere regenere-rings-hastigheten, holdes eksempelvis en viss sinkkonsentrasjon i spinnebadet. Sinkionene utover en forsinkende effekt på regene-reringen. Til nå har det ikke vært funnet noen okonomisk metode for gjenvinning av sink fra meget fortynnede spinnebad eller sink-inneholdende vaskevann. When producing rayon according to the viscose process, a so-called viscose is first produced. This is made from cellulose which is treated with alkali to give alkali cellulose, which is then matured and treated with carbon disulphide and then dissolved in a dilute sodium hydroxide solution. After further maturation, filtration, removal of dissolved gases etc, the viscose is ready for spinning. This is done by injecting the viscose, consisting essentially of cellulose xanthogenate, through openings and into a spinning bath, which is an aqueous solution containing essentially sodium sulphate, sulfuric acid and zinc sulphate. When the cellulose xanthogenate comes into contact with the spinning bath, cellulose is regenerated. During the spinning process, the cellulose usually forms threads or ribbons which are then subjected to a stretching process with the aim of orienting the cellulose molecules in the longitudinal direction of the thread or ribbon, thereby achieving the desired strength. During the stretching process, the cellulose must not be completely regenerated. In order to regulate the regeneration rate, for example, a certain zinc concentration is kept in the spinning bath. The zinc ions beyond a delaying effect on the regeneration. Until now, no economical method has been found for the recovery of zinc from very dilute spinning baths or zinc-containing wash water.

Det sinkholdige vann fra rayonfremstillingen kan ha varierende sammensetning. For å muliggjore behandlingen ved fremgangsmåten i henhold til foreliggende oppfinnelse, er det å anbefale at den sinkholdige opplosning inneholder en mengde fri svovelsyre som er mindre enn 3o g/l, et totalt innhold av sulfationer på lo - loo g/l og et sinkinnhold i området o,ool - lo g/l. Innholdet av natriumioner i den vandige opplosning er uten betydning. Hvis den vandige opplosning har en annen sammensetning, er det å anbefale at sammensetningen justeres til det som ovenfor er vist, eksempelvis ved fortynning eller noytralisering. The zinc-containing water from rayon production can have a varying composition. In order to enable the treatment by the method according to the present invention, it is recommended that the zinc-containing solution contains an amount of free sulfuric acid that is less than 3o g/l, a total content of sulfate ions of loo - loo g/l and a zinc content of the range o,ool - lo g/l. The content of sodium ions in the aqueous solution is of no importance. If the aqueous solution has a different composition, it is recommended that the composition be adjusted to what is shown above, for example by dilution or neutralisation.

Fremgangsmåten i henhold til foreliggende oppfinnelse er kjenne-tegnet ved at den vandige opplosning behandles i et ekstraksjonstrinn med en organisk opplosning inneholdende en alkylfosforsyre, hvorved sink og alkylfosforsyren danner en kjemisk forbindelse, The method according to the present invention is characterized by the fact that the aqueous solution is treated in an extraction step with an organic solution containing an alkylphosphoric acid, whereby zinc and the alkylphosphoric acid form a chemical compound,

som er mer opploslig i den organiske opplosning enn i den vandige which is more soluble in the organic solution than in the aqueous solution

opplosning og.således ekstraheres fra den vandige opplosning, hvoretter den organiske opplosning inneholdende sink, behandles i et strippetrinn med en vandig opplosning med en slik sammensetning at den kjemiske forbindelse spaltes og sink overfores til den vandige opplosning, hvoretter den for sink befridde organiske opplosning returneres for fornyet ekstraksjon, enten direkte eller etterat visse deler av denne er befridd for urenheter. solution and is thus extracted from the aqueous solution, after which the organic solution containing zinc is treated in a stripping step with an aqueous solution with such a composition that the chemical compound is split and zinc is transferred to the aqueous solution, after which the zinc-free organic solution is returned for renewed extraction, either directly or after certain parts of it have been freed from impurities.

Alkylfosforsyren kan eksempelvis være en monoalkylfosforsyreThe alkyl phosphoric acid can, for example, be a monoalkyl phosphoric acid

med den generelle formelwith the general formula

eller en dialkylfosforsyre med den generelle formel or a dialkyl phosphoric acid of the general formula

Den organiske gruppe R (i-dialkylfosforsyren kan gruppene være like eller forskjellige) omfatter en forgrenet eller uforgrenet hydrokarbongruppe, passende inneholdende minst 5 karbonatomer, slik at alkylfosforsyren blir ubetydelig opploselig i vann. The organic group R (i-dialkyl phosphoric acid, the groups may be the same or different) comprises a branched or unbranched hydrocarbon group, suitably containing at least 5 carbon atoms, so that the alkyl phosphoric acid becomes negligibly soluble in water.

Av opploslighetshensyn bor substituenter med hydrofil natur For reasons of solubility, substituents with a hydrophilic nature reside

unngås i R-gruppens hydrokarbonkjede. I foreliggende beskrivelse er de sure organofosforforbindelsene (1) - (5) generelt betegnet som alkyl eller dialkylfosforsyre. Mer presist bor forbindelsene (1) omtales som monoalkylfosforsyrer, forbindelsene (2) som monoalkylfosfonsyrer, forbindelsene (3) som dialkylfosforsyrer, forbindelsene (4) som alkylalkylfosfonsyrer og forbindelsene (5) som dialkylfosfinsyrer. Nyttige forbindelser av typen (3) er di-(2-etylheksoksy)-fosforsyre, di-.(3, 5, 5-trimetylheksoksy)-fosforsyre, is avoided in the R group's hydrocarbon chain. In the present description, the acidic organophosphorus compounds (1) - (5) are generally designated as alkyl or dialkyl phosphoric acid. More precisely, the compounds (1) should be referred to as monoalkylphosphoric acids, the compounds (2) as monoalkylphosphonic acids, the compounds (3) as dialkylphosphoric acids, the compounds (4) as alkylalkylphosphonic acids and the compounds (5) as dialkylphosphinic acids. Useful compounds of type (3) are di-(2-ethylhexoxy)-phosphoric acid, di-(3, 5, 5-trimethylhexoxy)-phosphoric acid,

di-(cykloheksoksy)-fosforsyre,di-(cyclohexoxy)phosphoric acid,

di-(fenoksy)-fosforsyre, fenoksy-(2-etylheksokys)-fosforsyre, di-(phenoxy)-phosphoric acid, phenoxy-(2-ethylhexoxy)phosphoric acid,

fenoksy-propoksy-fosforsyre og phenoxy-propoxy-phosphoric acid and

fenoksy-cykloheksoksy-fosforsyre. r phenoxy-cyclohexoxy-phosphoric acid. r

—Nyttige" forbindelser avtypen (4) er "Useful" compounds of the type (4) are

(2-etylheksoksy) - (2-etylheksyl)-f osf onsyre, (2-ethylhexoxy)-(2-ethylhexyl)-phosphonic acid,

(2-etylheksoksy)-fenyl-fosfonsyre, (2-ethylhexoxy)-phenyl-phosphonic acid,

(n-butoksy)-fenyl-fosfonsyre, (n-butoxy)-phenyl-phosphonic acid,

fenoksy-cykloheksyl-fosfonsyre,phenoxy-cyclohexyl-phosphonic acid,

fenoksy-fenyl-fosfonsyre, phenoxy-phenyl-phosphonic acid,

cyckloheksoksy-cykloheksyl-fosfonsyre, og cyclohexoxy-cyclohexyl-phosphonic acid, and

metylisobutoksy-(n-oktyl)-fosfonsyre.methyl isobutoxy-(n-octyl)-phosphonic acid.

Nyttige forbindelser av typen (5) er di- (2-etylheksyl)-f osf insyre, Useful compounds of type (5) are di-(2-ethylhexyl)-phosphinic acid,

di- (cykloheksyl)-f osf insyre,di-(cyclohexyl)-phosphonic acid,

di-(fenyl)-fosfinsyre,di-(phenyl)-phosphinic acid,

di-(n-butyl)-fosfinsyre, di-(n-butyl)-phosphinic acid,

di-(n-okstyl)-fosfinsyre,di-(n-oxytyl)-phosphinic acid,

fenyl-cykloheksyl-fosfinsyre, and phenyl-cyclohexyl-phosphinic acid, and

(3,5,5-trimetylheksyl)-(n-butyl)-fosfinsyre.(3,5,5-trimethylhexyl)-(n-butyl)-phosphinic acid.

Det er foretrukket å anvende di-(2-etylheksyl)-fosforsyre, di-oktyl-fosforsyre, di-lauryl-fosforsyre eller butyl-heksyl-fosforsyre. For ekstraksjon av sink fra et brukt spinnebad, It is preferred to use di-(2-ethylhexyl)-phosphoric acid, di-octyl-phosphoric acid, di-lauryl-phosphoric acid or butyl-hexyl-phosphoric acid. For the extraction of zinc from a used spinning bath,

er det foretrukket å anvende di-(2-etylheksyl)-fosforsyre. it is preferred to use di-(2-ethylhexyl)-phosphoric acid.

Alkylfosforsyren kan anvendes i konsentrert form hvis deri har passende fysikalske egenskaper ved driftstemperaturen. Imidlertid er det foretrukket å anvende den fortynnet i et med vann The alkyl phosphoric acid can be used in concentrated form if it has suitable physical properties at the operating temperature. However, it is preferred to use it diluted in water

- ikke-blandbart organisk opplosningsmiddel, hvori alkylfosforsyren bor være meget lett opploselig. Et alifatisk eller aromatisk hydrokarbon som er ikke-viskost ved driftstemperaturen, kan anvendes som fortynningsmiddel, såsom en petroleumfraksjon, som fra sikkerhetssynspunkter bor ha et meget hoyt flammepunkt, en aromatisk hydrokarbon, såsom benzen eller en klorert hydrokarbon, såsom karbontetraklorid. Det er foretrukket å anvende en væske bestående av 6o - 99 vekt-% fortynningsmiddel og - immiscible organic solvent, in which the alkyl phosphoric acid must be very easily soluble. An aliphatic or aromatic hydrocarbon which is non-viscous at the operating temperature can be used as a diluent, such as a petroleum fraction, which from a safety point of view should have a very high flash point, an aromatic hydrocarbon such as benzene or a chlorinated hydrocarbon such as carbon tetrachloride. It is preferred to use a liquid consisting of 60 - 99% by weight diluent and

I 1 - 4o vekt-% ålkylfosforsyre. For rensing av en sinkholdig vannopplosning erholdt ved fremstilling av rayon, er det foretrukket å anvende en væske bestående av 7o - 80vekt-% parafin og 2o 3o vekt-% di-(2-etylheksyl)fosforsyre. In 1 - 40% by weight of alkyl phosphoric acid. For cleaning a zinc-containing water solution obtained in the manufacture of rayon, it is preferred to use a liquid consisting of 70-80% by weight paraffin and 20-30% by weight di-(2-ethylhexyl) phosphoric acid.

)/ )/

( (

Etter ekstraksjonsprosessen, bringes den organiske opplosningAfter the extraction process, the organic solution is brought

i kontakt, i en strippe- eller vaske-operasjon, men en vandig opplosning for å overfore sinken fra den organiske opplosningen til den vandige opplosning. Dette kan utfores på flere måter. For å fjerne sink'fra et viskosespinnebad, er det foretrukket in contact, in a stripping or washing operation, but an aqueous solution to transfer the zinc from the organic solution to the aqueous solution. This can be done in several ways. To remove zinc from a viscose spinning bath, it is preferred

å bringe den organiske opplosning i kontakt med en vandig, sterk opplosning av svovelsyre, fortrinnsvis inneholdende svovelsyre i en mengde på loo - l.ooo g/l. Sink kan også vaskes ut i strippetrinnet ved hjelp av en alkalisk,vandig opplosning, passende natriumhydroksyd, hvorved sink danner sinkkationer i den alkaliske opplosning. En annen mulighet er å vaske ut sinket ved hjelp av en ammoniakkinnholdende vandig opplosning, hvorved sink danner sinkammoniumioner.Sinken kan også vaskes ut av den organiske opplosning ved hjelp av en i det vesentlige noytral vandig opplosning, eksempelvis en kalsiumkloridopplosning. bringing the organic solution into contact with an aqueous, strong solution of sulfuric acid, preferably containing sulfuric acid in an amount of loo - l.ooo g/l. Zinc can also be washed out in the stripping step using an alkaline, aqueous solution, suitable sodium hydroxide, whereby zinc forms zinc cations in the alkaline solution. Another possibility is to wash out the zinc using an ammonia-containing aqueous solution, whereby zinc forms zinc ammonium ions. The zinc can also be washed out of the organic solution using an essentially neutral aqueous solution, for example a calcium chloride solution.

Hvis det skal behandles en vandig opplosning, som i tillegg til sink inneholder jern i vesentlige mengder, er det onskelig å fjerne sink og jern fra den organiske opplosning i., selektive ...<y>asketrinn, slik at jern skilles fra sinken. Dette oppnås i henhold til oppfinnelsen ved å vaske den organiske opplosning . med en vandig svovelsyreopplosning i to trinn. Det forste trinnet omfatter en vasking med en opplosning som inneholder fri svovelsyre i en mengde på 5o - 2oo g/l, hvilket forer til at sink overfores fullstendig til vaskeopplosningen. Det andre trinn omfatter vasking med en opplosning inneholdende fri svovelsyre i en mengde på 5oo - l.ooo g/l, hvilket forer til at . jernet overfores fullstendig til vaskeopplosningen. Slnk-sulfat fraskilles fortrinnsvis fra vaskeopplosningen fra det forste trinn ved krystallisering og opplosningen fores deretter tilbake til vaskeprossen. Jernsulfat fraskilles fortrinnsvis fra vaskeopplosningen fra det andre trinn på den samme måte. If an aqueous solution is to be treated, which, in addition to zinc, contains iron in significant quantities, it is desirable to remove zinc and iron from the organic solution in selective ...<y>ash steps, so that iron is separated from the zinc. This is achieved according to the invention by washing the organic solution. with an aqueous sulfuric acid solution in two steps. The first step comprises a washing with a solution containing free sulfuric acid in an amount of 5o - 2oo g/l, which results in zinc being completely transferred to the washing solution. The second step comprises washing with a solution containing free sulfuric acid in an amount of 5oo - 1.ooo g/l, which leads to . the iron is completely transferred to the washing solution. Slnk sulfate is preferably separated from the washing solution from the first stage by crystallization and the solution is then fed back to the washing vat. Iron sulfate is preferably separated from the washing solution from the second step in the same way.

i in

! I det etterfølgende vil oppfinnelsen forklares ytterligere under henvisning til de vedlagte tegninger. Fig. 1 viser skjematisk et anlegg for rensing av en sinkholdig vandig opplosning erholdt ved fremstilling av rayon. Fig. 2 er et McCabe-Thiele-diagram og viser likevektsinnholdene av sink i ! In what follows, the invention will be further explained with reference to the attached drawings. Fig. 1 schematically shows a plant for cleaning a zinc-containing aqueous solution obtained during the manufacture of rayon. Fig. 2 is a McCabe-Thiele diagram and shows the equilibrium contents of zinc i

en væske-blanding, i hvilken den organiske fase er di--(2-etylheksyl)fosforsyre i parafin og vannfasen er en vandig opplosning erholdt ved fremstilling av rayon. Figurene 3-5 viser hvorledes fordelingen av sink mellom de to faser er avhengig av temperaturen, se fig. 3, av innholdet av di-(2-etylheksyl)fosforsyre i den organiske fase, se fig. 4, og av innholdet av svovelsyre i den vandige fase, se fig. 5. a liquid mixture in which the organic phase is di-(2-ethylhexyl)phosphoric acid in paraffin and the aqueous phase is an aqueous solution obtained in the manufacture of rayon. Figures 3-5 show how the distribution of zinc between the two phases depends on the temperature, see fig. 3, of the content of di-(2-ethylhexyl)phosphoric acid in the organic phase, see fig. 4, and of the content of sulfuric acid in the aqueous phase, see fig. 5.

Fig. 6 viser et anlegg for fjerning av sink fra en opplosning som også inneholder jern. Fig. 6 shows a plant for removing zinc from a solution which also contains iron.

Anlegget i henhold til fig. 1 omfatter 4 apparater 1-4The plant according to fig. 1 includes 4 appliances 1-4

for kontakt mellom og separasjon av en organisk opplosning og en vandig opplosning. Apparatene er av blande-felle typen og omfatter, se apparat 1, et blandekammer 5, hvori de to væskefaser blandes ved hjelp av en roreanordning 6, og et separasjonskammer 7, 8, hvori de to væskefaser kan skilles som folge av deres forskjellige spesifikke vekter,idet den lettere for contact between and separation of an organic solution and an aqueous solution. The devices are of the mixing-trap type and comprise, see device 1, a mixing chamber 5, in which the two liquid phases are mixed by means of a stirring device 6, and a separation chamber 7, 8, in which the two liquid phases can be separated as a result of their different specific weights , as the lighter

fasen (generelt den organiske fase) samles i den ovre del 7 , og den tyngre fase samles i den nedre del 8. the phase (generally the organic phase) is collected in the upper part 7, and the heavier phase is collected in the lower part 8.

De to forste apparater 1 og 2 danner en to-trinns ekstraksjons-seksjon, hvori den sinkholdige vandige opplosning befris for sink ved hjelp av motstromsekstraksjon med en opplosning av di-(2-etylheksyl)fosforsyre i parafin. Det tredje apparatet 3 danner strippetrinnet, hvori sinken i den organiske opplosning overfores til en sterk svovelsyre-opplosning. Det fjerde ^-apparat 4 danner et vasketrinn, hvori en delstrom av den organiske opplosning kontinuerlig vaskes med alkali. .Anlegget virker på folgende måte: Den sinkholdige opplosning fra rayon-fremstillingen fores gjennom en rorledning 9 til blandekammeret i det andre apparatet 2 og blandes med den organiske opplosning fra skillekammeret i det forste apparat 1. The first two devices 1 and 2 form a two-stage extraction section, in which the zinc-containing aqueous solution is freed from zinc by means of countercurrent extraction with a solution of di-(2-ethylhexyl)phosphoric acid in paraffin. The third apparatus 3 forms the stripping step, in which the zinc in the organic solution is transferred to a strong sulfuric acid solution. The fourth apparatus 4 forms a washing step, in which a partial stream of the organic solution is continuously washed with alkali. The plant works in the following way: The zinc-containing solution from the rayon production is fed through a pipe line 9 to the mixing chamber in the second device 2 and mixed with the organic solution from the separation chamber in the first device 1.

i De to væskefaser får atskille seg i separasjonskammeret i det andre apparatet 2. Vannfasen fores via rorledningen lo til blandekammeret i det forste apparat 1, hvor det blandes med en organisk opplosning som er tilfort gjennom rorledningen 11 i The two liquid phases are allowed to separate in the separation chamber in the second apparatus 2. The water phase is fed via the pipe line lo to the mixing chamber in the first apparatus 1, where it is mixed with an organic solution that is supplied through the pipe line 11

fra strippetrinnet 3. Etter separasjon i skillekammeret 7,8, from the stripping step 3. After separation in the separation chamber 7,8,

fores den organiske fase til blandekammeret i det andre apparat 2, mens vannfasen, som nå er praktisk talt fri for sink, trekkes ut gjennom rorledningen 12. the organic phase is fed to the mixing chamber in the second apparatus 2, while the water phase, which is now practically free of zinc, is drawn out through the rudder line 12.

Den organiske opplpsning,som nå inneholder sink fra det andre skillekammer av apparatet 2, fores gjennom en rorledning 13 til blandekammeret i det tredje apparat 3, hvori det blandes med en sterk svovelsyreopplosning tilfort gjennom rorledningen 14. Av praktiske hensyn kan svovelsyreopplosningen være konsentrert svovelsyre fortynnet med spinnebadet. Etter separasjon fores den vandige opplosning ut via rorledningen 15 og inneholder nå sink i form av sinksulfat. Om onsket, kan noe av den vandige opplosning inneholdende sinksulfat, fores- tilbake til blandekammeret gjennom rorledningen 16. Den organiske opplosning, fra hvilken sink er fjernet, trekkes ut gjennom rorledningen 17 og mesteparten av opplosningen fores gjennom rorledningen The organic solution, which now contains zinc from the second separation chamber of the apparatus 2, is fed through a pipeline 13 to the mixing chamber in the third apparatus 3, where it is mixed with a strong sulfuric acid solution added through the pipeline 14. For practical reasons, the sulfuric acid solution can be concentrated sulfuric acid diluted with the spinning bath. After separation, the aqueous solution is fed out via the rudder line 15 and now contains zinc in the form of zinc sulphate. If desired, some of the aqueous solution containing zinc sulphate can be fed back to the mixing chamber through the rudder line 16. The organic solution, from which zinc has been removed, is withdrawn through the rudder line 17 and most of the solution is fed through the rudder line

11 til ekstraksjonsapparatet 1. En liten del av den organiske 11 to the extraction apparatus 1. A small part of the organic

opplosning fores til apparatet 4, hvori det vaskes med en sterkt alkalisk opplosning tilfort gjennom rorledningen 18. Etter separasjon, trekkes den alkaliske opplosning ut via rorledningen 19, mens den organiske oppJosning fores tilbake til hovedstrømmen solution is fed to the device 4, in which it is washed with a strongly alkaline solution supplied through pipe line 18. After separation, the alkaline solution is drawn out via pipe line 19, while the organic solution is fed back to the main stream

i rorledningen 11. En del av.den utforte alkaliske opplosning, kan resirkuleres til blandekammeret gjennom rorledningen 33. in the rudder line 11. Part of the extracted alkaline solution can be recycled to the mixing chamber through the rudder line 33.

Et anlegg i henhold til fig. 1 innbefatter to ekstraksjonstrinn 1,2 i ekstraksjons-seksjonen. I visse tilfeller kan ett trinn være tilstrekkelig, mens i andre tilfeller kan tre eller flere trinn være nodvendig. Antall nodvendige trinn kan utledes fra McCabe-Thiele-diagrammet vist i fig. 2, hvori abcissen representerer sinkinnholdet i den vandige opplosning og ordinaten representerer sinkinnholdet i den organiske opplosning i like-vekt med det tilsvarende sinkinnhold i vannet.. I diagrammet i henhold til fig.2 er sinkinnholdene uttrykt i gram sink pr. liter opplosning. Linjen 2o er likevektskurven. Linjen 21 er A plant according to fig. 1 includes two extraction steps 1,2 in the extraction section. In certain cases one step may be sufficient, while in other cases three or more steps may be necessary. The number of steps required can be deduced from the McCabe-Thiele diagram shown in Fig. 2, in which the abscissa represents the zinc content in the aqueous solution and the ordinate represents the zinc content in the organic solution in equilibrium with the corresponding zinc content in the water. In the diagram according to fig.2, the zinc contents are expressed in grams of zinc per liter of solution. The line 2o is the equilibrium curve. Line 21 is

I IN

jen arbeidslinje, hvis helning svarer til forholdet H/L, dvs. forholdet mellom strommen av den tyngre fase, dvs. den vandige opplosning, og strommen av den lettere fase, dvs. den organiske opplosning. I fig. 2 er H/L = o,5. Det er foretrukket at den organiske opplosning danner en kontinuerlig fase i blandingen, hvilket som regel er tilfelle når strømningsforholdet H/L i jen working line, whose slope corresponds to the ratio H/L, i.e. the ratio between the flow of the heavier phase, i.e. the aqueous solution, and the flow of the lighter phase, i.e. the organic solution. In fig. 2 is H/L = o.5. It is preferred that the organic solution forms a continuous phase in the mixture, which is usually the case when the flow ratio H/L in

blandekammeret er mindre enn 1. Sinkinnholdet i vannopplosningen som innfores er representert ved punktet 22 i fig. 2. Linjene 22 - 23 (vertikal), 23 - 24 (horisontal), 24 - 25 (vertikal) the mixing chamber is less than 1. The zinc content of the water solution that is introduced is represented by point 22 in fig. 2. Lines 22 - 23 (vertical), 23 - 24 (horizontal), 24 - 25 (vertical)

og dens forlengelse til punktet 26 er innforte. Punktet 26 representerer sinkinnholdet i vannfasen, som fores ut etter et ekstraksjonstrinn. På samme måte kan sinkinnholdet etter to ekstraksjonstrinn erholdes ved hjelp av linjene 25 - 27 og 27 - 28. and its extension to point 26 is included. Point 26 represents the zinc content in the water phase, which is fed out after an extraction step. In the same way, the zinc content after two extraction steps can be obtained using lines 25 - 27 and 27 - 28.

Ekstraksjonen kan utfores ved normal temperatur, men en for-okelse av temperaturen opptil 6o°C er foretrukket. Ekstraksjonen er temperatur-avhengjg slik som vist-i kurve 3o i fig..3. Abscissen representerer temperaturen i °C og ordinaten representerer fordelingen, D, av sink mellom de to faser, dvs. forholdet mellom sinkinnholdet i den organiske opplosning og sinkinnholdet i den vandige opplosning. Det kan sees at D-verdien stiger The extraction can be carried out at normal temperature, but an increase in temperature up to 6o°C is preferred. The extraction is temperature-dependent as shown in curve 3o in fig..3. The abscissa represents the temperature in °C and the ordinate represents the distribution, D, of zinc between the two phases, i.e. the ratio between the zinc content in the organic solution and the zinc content in the aqueous solution. It can be seen that the D value rises

med stigende temperatur, dvs. at storre sinkmengder gjenfinnes i den organiske opplosning.. with rising temperature, i.e. that larger amounts of zinc are found in the organic solution.

D-verdien er._også avhengig av alkylf osf orsyre i den organiske opplosning. Kurven 31 i fig. 4 viser hvorledes D-verdien The D value is also dependent on alkyl phosphoric acid in the organic solution. The curve 31 in fig. 4 shows how the D value

stiger med stigende innhold av di-(2-etylheksyl)-fosforsyre. increases with increasing content of di-(2-ethylhexyl)-phosphoric acid.

Teoretisk skulle den laveste nodvendige alkylfosforsyre være ekvivalent med sinkmengden i vannopplosningen, og det bor bemerkes at den dannede sinkforbindelse best stoikometrisk av sink og alkylfosforsyre i forholdet 1:2. Theoretically, the lowest required alkylphosphoric acid should be equivalent to the amount of zinc in the water solution, and it should be noted that the formed zinc compound is best stoichiometrically of zinc and alkylphosphoric acid in the ratio 1:2.

Ekstraksjonen er også avhengig av svovelsyreinnholdet i vannopplosningen. Kurven 32 i fig. viser denne avhengighet for ekstraksjon av sink med di-(2-etylheksyl)-fosforsyre i parafin. Abscissen representerer svovelsyreinnholdet i g/l og ordinaten representerer D-verdien. Et foroket svovelsyreinnhold resulterer i en avtagende D-verdi. I den hensikt å oppnå et rimelig antall The extraction is also dependent on the sulfuric acid content of the water solution. The curve 32 in fig. shows this dependence for the extraction of zinc with di-(2-ethylhexyl)-phosphoric acid in paraffin. The abscissa represents the sulfuric acid content in g/l and the ordinate represents the D value. An increased sulfuric acid content results in a decreasing D value. In order to achieve a reasonable number

1 jekstraksjonstrinn ved 35 oC,er det foretrukket å arbeide med1 jet extraction step at 35 oC is preferred to work with

en vannopplosning inneholdende mindre enn lo g svovelsyre pr. liter. a water solution containing less than log sulfuric acid per litres.

Som en folge av ekstraksjonen i apparatene 1 og 2, er nestenAs a consequence of the extraction in apparatuses 1 and 2, is almost

all sinken i den sinkholdige vannopplosning, fra rayon-fremstillingen, overfort til en organisk opplosning, hvori sinken forefinnes i form av en forbindelse av sink og alkylfosforsyre. Sinken gjenvinnes fra den organiske opplosning i strippetrinnet 3 ved vasking med en sterkt sur opplosning. Svovelsyre er foretrukket ved denne vasking, da det dannede sinksulfat kan fores direkte tilbake til rayonspinnebadet. Svovelsyreopplosningen bor fortrinnsvis inneholde loo - l.ooo gram svovelsyre pr.liter opplosning, eksempelvis en konsentrasjon på 8oo g/l. Dethoye syreinnholdet resulterer i en spaltning av sinkforbindelsen, hvilket forer til en meget lav D-verdi og således overfores mesteparten av sinken til svovelsyreopplosningen. På grunn av den meget lave D-verdien, er det mulig å arbeide med en meget liten svovelsyrestrom og således oppnå et meget hoyt sinkinnhold. For eksempel fra et sinkinnhold på o,2 g/l i den opp-rinnelige vannopplosning, kan det erholdes 15 g/l sink i svovelsyreopplosningen. Med en liten svovelsyrestrom kan det være vanskelig å blande syren omhyggelig med den organiske opplosning. I dette tilfellet kan en del av syre-opplosningen fra skillekammeret få resirkulere gjennom rorledningen 16. all the zinc in the zinc-containing aqueous solution, from the rayon manufacture, transferred to an organic solution, in which the zinc is present in the form of a compound of zinc and alkyl phosphoric acid. The zinc is recovered from the organic solution in the stripping step 3 by washing with a strongly acidic solution. Sulfuric acid is preferred for this washing, as the zinc sulphate formed can be fed directly back to the rayon spinning bath. The sulfuric acid solution should preferably contain loo - l.ooo grams of sulfuric acid per liter of solution, for example a concentration of 8oo g/l. The high acid content results in a splitting of the zinc compound, which leads to a very low D value and thus most of the zinc is transferred to the sulfuric acid solution. Due to the very low D value, it is possible to work with a very small flow of sulfuric acid and thus achieve a very high zinc content. For example, from a zinc content of 0.2 g/l in the soluble water solution, 15 g/l zinc can be obtained in the sulfuric acid solution. With a small flow of sulfuric acid, it can be difficult to mix the acid carefully with the organic solution. In this case, part of the acid solution from the separation chamber can be allowed to recirculate through the rudder line 16.

Som nevnt ovenfor, kan den sure sinksulfatopplosning, erholdtAs mentioned above, the acidic zinc sulfate solution can be obtained

fra strippetrinnet 3, returneres direkte til -spinnebadet. Alternativt kan sinksulfaten utvinnes fra opplosningen, passende ved avkjolning av opplosningen. Et hoyt svovelsyreinnhold ned-setter opplosligheten av sinksulfat og fremmer således krystallisasjonen.Et svovelsyreinnhold på ca. 6oo g/l er foretrukket. Med et sinkinnhold på 8o g/l oppnås utkrystallisering av sinksulfat ved avkjoling til ca. lo°C, resp;; sinkmetall kan gjenvinnes fra opplosningen ved elektrolyse. I dette tilfellet blir et svovelsyreinnhold på ca. 2oo g/l foretrukket for å mulig- from the stripping step 3, is returned directly to the spinning bath. Alternatively, the zinc sulfate can be recovered from the solution, suitably by cooling the solution. A high sulfuric acid content reduces the solubility of zinc sulphate and thus promotes crystallization. A sulfuric acid content of approx. 6oo g/l is preferred. With a zinc content of 8o g/l, crystallization of zinc sulphate is achieved by cooling to approx. lo°C, resp;; zinc metal can be recovered from the solution by electrolysis. In this case, a sulfuric acid content of approx. 2oo g/l preferred to enable

c gjore et sinkinnhold opptil 12o g/l. c make a zinc content up to 12o g/l.

I Inneholdet av visse forurensninger kan gradvis tilta i den organiske, opplosning som sirkulerer i prosessen. Disse kan være metaller forskjellige fra sink, eksempelvis jern eller sure hydrolyseprodukter som folge av spaltning av alkylfosfor-. syren. Det er funnet at innholdet av slike forurensinger kan holdes på et akseptabelt nivå ved vasking, satsvis eller I The content of certain pollutants can gradually increase in the organic solution that circulates in the process. These can be metals other than zinc, for example iron or acid hydrolysis products as a result of splitting alkylphosphorus. the acid. It has been found that the content of such contaminants can be kept at an acceptable level by washing, in batches or

Jcontinuerlig, av en viss mengde av den organiske opplosning Jcontinuously, of a certain amount of the organic solution

med en en vandig alkalisk opplosning, eksempelvis en opplos-—-ning av natriumhydroksyd, fortrinnsvis ved en konsentrasjon på loo - 3oo g/l. NaOH. I anlegget i henhold til fig. 1 utfores with an aqueous alkaline solution, for example a solution of sodium hydroxide, preferably at a concentration of 100 - 300 g/l. NaOH. In the plant according to fig. 1 is carried out

denne vasking kontinuerlig i apparatet 4. Kun en liten delthis washing continuously in the appliance 4. Only a small part

av strommen av den organiske opplosning, eksempelvis l/loo of the flow of the organic solution, for example l/loo

-'—-JL/l.ooo fores til apparatet 4, som derfor kan være betydelig mindre enn apparatene 1-3. Under det alkaliske vasketrinn omdannes alkylfosforsyren til den tilsvarende natriumsalt. Når den organiske opplosning fores tilbake til ekstraksjonstrinnet 1, 2, vil dette natriumsalt noytralisere noe av svovelsyren i den vandige opplosning, som tilfores ekstraksjonstrinnet. Det er således mulig å regulere syreinnholdet i ekstrak-ts jonstrinnet 1, 2 til en viss grad ved hjelp av strommen av organisk opplosning til vasketrinnet 4. Det alkaliske vasketrinn er også nyttig av en annen grunn. Det har vist seg vanskelig å fullstendig fraskille den vandige fase, inneholdende svovelsyre, fra den organiske fase i strippetrinnet 3. Hvis -'—-JL/l.ooo is fed to the device 4, which can therefore be considerably smaller than the devices 1-3. During the alkaline washing step, the alkyl phosphoric acid is converted to the corresponding sodium salt. When the organic solution is fed back to the extraction stage 1, 2, this sodium salt will neutralize some of the sulfuric acid in the aqueous solution, which is fed to the extraction stage. It is thus possible to regulate the acid content in the extraction step 1, 2 to a certain extent by means of the flow of organic solution to the washing step 4. The alkaline washing step is also useful for another reason. It has proven difficult to completely separate the aqueous phase, containing sulfuric acid, from the organic phase in stripping step 3. If

denne lille mengde meget sterk svovelsyre i form av små dråper this small amount of very strong sulfuric acid in the form of small drops

—i den organiske opplosning får nå ekstraksjonstrinnet 1,2, vil innholdet av svovelsyre i dette trinn oke, hvilket forer til —if the organic solution now receives the extraction step 1.2, the content of sulfuric acid in this step will increase, which leads to

dårligere ekstraksjon. Imidlertid kan svovelsyren nøytraliseres ved passende regulering av den alkaliske vaskeprosess. poorer extraction. However, the sulfuric acid can be neutralized by appropriate regulation of the alkaline washing process.

Når det anvendes alkylfosforsyre opplost i parafin, er det funnet at natriumsaltet som dannes av alkylfosforsyren under det alkaliske vasketrinn, har en lavere opploslighet i parafin enn selve syren. Natriumsaltet kan derfor presipiteres i grense-sjiktet mellom den organiske fase og vannfasen under den alkaliske vaskeprosess. Dette kan unngås ved å oke opplosligheten for natriumsaltet i parafin ved tilsetning av en alifatisk alkohol, som i det vesentlige er uopploselig i vann, fortrinnsvis en med minst 8 karbonatomer i den alifatiske kjede. En passende When alkylphosphoric acid dissolved in paraffin is used, it has been found that the sodium salt formed by the alkylphosphoric acid during the alkaline washing step has a lower solubility in paraffin than the acid itself. The sodium salt can therefore be precipitated in the boundary layer between the organic phase and the water phase during the alkaline washing process. This can be avoided by increasing the solubility of the sodium salt in paraffin by adding an aliphatic alcohol, which is essentially insoluble in water, preferably one with at least 8 carbon atoms in the aliphatic chain. A fitting

i tilsetning er o,1 - o,5 ganger mengden av alkylfosforsyren.in addition is o.1 - o.5 times the amount of the alkyl phosphoric acid.

For eksempel tilsetning av 5 vekt-% dodekanol har vist seg meget effektiv når alkylfosforsyreinnholdet utgjor 25 vekt-% di- (2-etylheksyl >-f osf or syre opplost i parafin. For example, the addition of 5% by weight of dodecanol has proven to be very effective when the alkyl phosphoric acid content is 25% by weight of di-(2-ethylhexyl >-phosphoric acid dissolved in paraffin).

Anlegget vist i fig. 6 inneholder 3 apparater 61 - 63,i hvilke en vandig opplosning bringes i kontakt med en organisk opplosning, idet de to opplosninger i det vesentlige ikke er blandbare med hverandre og som således danner to faser. Apparatene er av den kjente blande-felle type og omfatter et blandekammer 64,hvori de to væskefaser blandes ved hjelp av en roreanordning 78, samt et skillekammer 65, 66, hvori de to faser får skille seg som folge av deres forskjellige spesifikke vekter. The plant shown in fig. 6 contains 3 devices 61 - 63, in which an aqueous solution is brought into contact with an organic solution, the two solutions being essentially immiscible with each other and thus forming two phases. The devices are of the known mixing-trap type and comprise a mixing chamber 64, in which the two liquid phases are mixed by means of a stirring device 78, as well as a separation chamber 65, 66, in which the two phases are allowed to separate as a result of their different specific weights.

Det forste apparat 61 mottar en sur sulfatopplosning via rorledningen 67. Opplosningen inneholder sink og jern. Den kan eksempelvis være en opplosning erholdt ved utlutning av jern-innholdende sinkmalm med svovelsyre. Opplosningen blandes i kammeret 64 med en opplosning av en dialkylfosforsyre i parafin, tilfort gjennom rorledningen 68. De to faser ,skilles i kammer 5,6. Den tyngre fase, dvs. den vandige fase, er praktisk talt fri. for sink og jern og trekkes av gjennom rorledningen 69. Den lettere fase, dvs. den organiske fase, fores gjennom en rorledning 7o til et blandekammer i apparatet 62, hvori den blandes med .en vandig opplosning av svovelsyre, tilfort gjennom rorledningen 73. Den vandige opplosning inneholder fri svovelsyre i en mengde på 5o -2oo g/l, fortrinnsvis 8o - 12o g/l. Sink, men ikke jern, trekkes ut av svovelsyreopplosningen. Denne opplosning skilles nå fra den organiske fase og fores gjennom rorledningen 71 til et krystalliserings-apparat 72, hvori en del sinksulfat fraskilles ved utkrystallisering på-kjent måte. Modervæsken fores tilbake til vaske - apparatet 72 gjennom en rorledning 73. Den onskede svovelsyre-konsentrasjon bibeholdes ved tilsetning av svovelsyre for eller etter utkrystalliserings-prosessen. The first apparatus 61 receives an acidic sulphate solution via the rudder line 67. The solution contains zinc and iron. It can, for example, be a solution obtained by leaching iron-containing zinc ore with sulfuric acid. The solution is mixed in chamber 64 with a solution of a dialkyl phosphoric acid in paraffin, supplied through pipe line 68. The two phases are separated in chambers 5,6. The heavier phase, i.e. the aqueous phase, is practically free. for zinc and iron and is drawn off through pipe line 69. The lighter phase, i.e. the organic phase, is fed through pipe line 70 to a mixing chamber in apparatus 62, where it is mixed with an aqueous solution of sulfuric acid, supplied through pipe line 73. aqueous solution contains free sulfuric acid in an amount of 5o - 2oo g/l, preferably 8o - 12o g/l. Zinc, but not iron, is extracted from the sulfuric acid solution. This solution is now separated from the organic phase and fed through the rudder line 71 to a crystallization apparatus 72, in which part of the zinc sulfate is separated by crystallization in a known manner. The mother liquor is fed back to the washing apparatus 72 through a pipe line 73. The desired sulfuric acid concentration is maintained by adding sulfuric acid before or after the crystallization process.

Den organiske fase fra apparatet 62 fores gjennom en rorledning 74 til blandekammeret i apparatet 63, hvori det. blandes med en vandig opplosning av svovelsyre, tilfort gjennom rorledningen 77. The organic phase from the apparatus 62 is fed through a pipe line 74 to the mixing chamber in the apparatus 63, in which. mixed with an aqueous solution of sulfuric acid, supplied through the rudder line 77.

Svovelsyreopplosningen inneholder fri svovelsyre i en mengdeThe sulfuric acid solution contains a quantity of free sulfuric acid

på 5oo - l.ooo g/l, fortrinnsvis 800g/l. Jerninnholdet i den organiske fase taes opp av svovelsyreopplosningen, som skilles fra den organiske fase og fores gjennom rorledningen 75 til et utkrystalliserings-apparat 76,i hvilket en del av jernsulfatet utskilles ved.utkrystallisering på kjent måte. Modervæsken fores tilbake til vaskeapparatet 63 gjennom rorledningen 77. of 5oo - l.ooo g/l, preferably 800g/l. The iron content in the organic phase is taken up by the sulfuric acid solution, which is separated from the organic phase and fed through pipe line 75 to a crystallization apparatus 76, in which part of the iron sulfate is separated by crystallization in a known manner. The mother liquid is fed back to the washing device 63 through the rudder line 77.

Den onskede svovelsyre-konsentrasjon bibeholdes ved tilsetning av svovelsyre for eller etter utkrystalliserings-prosessen. The desired sulfuric acid concentration is maintained by adding sulfuric acid before or after the crystallization process.

Den organiske opplosning som således selektivt er befridd for sink og jern, fores tilbake fra vaskeapparatet 63 gjennom rorledningen 68 til apparatet 61 til fornyet anvendelse i ekstraksjonsprosessen. The organic solution, which is thus selectively freed of zinc and iron, is fed back from the washing apparatus 63 through the pipe line 68 to the apparatus 61 for renewed use in the extraction process.

EKSEMPELEXAMPLE

I et anlegg av den type som illustrert i fig. 1 omfattet apparatene 1-3 hver et blandekammer på 12 m 3 og et skillekammer In a plant of the type illustrated in fig. 1, the devices 1-3 each comprised a mixing chamber of 12 m 3 and a separation chamber

- på loo m 3 . Apparatet 4 omfattet et blandekammer på o 15o 1 og et skillekammer på 2 m 3. En sinkinnholdende, vandig opplosning - on loo m 3 . Apparatus 4 comprised a mixing chamber of o 15o 1 and a separation chamber of 2 m 3. A zinc-containing, aqueous solution

ble erholdt fra en rayonfiber-produksjon i en mengde på 2 m 3/min. was obtained from a rayon fiber production in a quantity of 2 m 3 /min.

Denne vandige opplosning ble fortynnet med vann til det dobbelte volum. Den sinkholdige, vandige opplosning ble derfor fort til ekstraksjon i en mengde på 4 m 3/min. Denne opplosning inneholdt o,15 g/l tinn og 4,2 g/l fri svovelsyre. En organisk opplosning ble sirkulert i-anlegget i en mengde på 8 m 3/min. Opplosningen besto av 7o vekt-% parafin, 25 vekt-% di-(2-etylheksyl)-f osf orsyre og 5 vekt-% dodekanol. Væskenes temperaturer var 35°C. This aqueous solution was diluted with water to double the volume. The zinc-containing, aqueous solution was therefore quickly extracted in a quantity of 4 m 3 /min. This solution contained 0.15 g/l of tin and 4.2 g/l of free sulfuric acid. An organic solution was circulated in the plant in a quantity of 8 m 3 /min. The solution consisted of 70% by weight paraffin, 25% by weight di-(2-ethylhexyl)-phosphoric acid and 5% by weight dodecanol. The temperatures of the liquids were 35°C.

I ekstraksjonstrinnene ble sinkinnholdet av vannopplosningen redusert fra o,15 g/l til mindre enn o,oo2^g/l. Den organiske opplosning fra ekstraksjonen inneholdt sink i en mengde på ca. o,o75 g/l. Denne opplosning ble vasket i et strippetrinn med en vandig opplosning inneholdende 800g/l svovelsyre, tilfort i en mengde på 4o l/min. For å oppnå et gunstig faseforhold i blande-kammeret ble ca..3 m 3/min. svovelsyreopplosning re-sirkulert gjennom rorledningen 16. Svovelsyreopplosningen, som ble fort ut fra strippetrinnet, inneholdt 15 g/l sink. Denne opplosning ble fort tilbake til rayonfremstillings-prosessen. In the extraction steps, the zinc content of the water solution was reduced from o.15 g/l to less than o.oo2^g/l. The organic solution from the extraction contained zinc in an amount of approx. o.o75 g/l. This solution was washed in a stripping step with an aqueous solution containing 800 g/l sulfuric acid, added at a rate of 40 l/min. In order to achieve a favorable phase relationship in the mixing chamber, approx..3 m 3/min. sulfuric acid solution re-circulated through the rudder line 16. The sulfuric acid solution, which was precipitated from the stripping step, contained 15 g/l zinc. This solution was quickly returned to the rayon manufacturing process.

!Alternativt kan den sterkt sure vandige opplosning inneholdende sinksulfat resirkuleres til strippetrinnet etterat en viss mengde av sinken er fjernet i form av sinksulfat ved utkrystallisering etter avkjolning. Av den organiske opplosning fra strippetrinnet ble 80l/min. fort til en alkalisk vaskeprosess, til hvilken også ble tilfort en opplosning av 2oo g/l NaOH i vann i en mengde på 12 l/min. Den alkaliske opplosning ble sirkulert gjennom rorledningen 33 i en mengde på 36 l/min. !Alternatively, the strongly acidic aqueous solution containing zinc sulphate can be recycled to the stripping step after a certain amount of zinc has been removed in the form of zinc sulphate by crystallization after cooling. Of the organic solution from the stripping step, 80l/min. quickly to an alkaline washing process, to which a solution of 2oo g/l NaOH in water was also added in a quantity of 12 l/min. The alkaline solution was circulated through the rudder line 33 in a quantity of 36 l/min.

Claims (3)

1. Fremgangsmåte ved fjerning av sink fra en vandig opplosning, karakterisert ved at den vandige opplosning behandles i en ekstraksjonssone med en organisk opplosning inneholdende en alkylfosforsyre, hvorved sink og alkylfosforsyren danner en kjemisk forbindelse som er mere opploslig i et organisk opplosningsmiddel og således ekstraheres fra den vandige opplosning, hvoretter den organiske opplosning inneholdende sink i en strippesone bringes i kontakt med en vandig opplosning således at den kjemiske forbindelse spaltes og sink overfores til den vandige opplosning, hvoretter den for sink befridde, organiske opplosning fores tilbake for fornyet ekstraksjon, enten direkte eller etterat en viss mengde derav er befridd for urenheter. 1. Method for removing zinc from an aqueous solution, characterized in that the aqueous solution is treated in an extraction zone with an organic solution containing an alkyl phosphoric acid, whereby zinc and the alkyl phosphoric acid form a chemical compound that is more soluble in an organic solvent and is thus extracted from the aqueous solution, after which the organic solution containing zinc in a stripping zone is brought into contact with an aqueous solution so that the chemical compound is split and zinc is transferred to the aqueous solution, after which the zinc-free organic solution is fed back for renewed extraction, either directly or after a certain amount of it has been freed from impurities. 2. Fremgangsmåte ifolge krav 1, karakterisert ved at alkylfosforsyren en dialkylfosforsyre med den generelle formel2. Method according to claim 1, characterized in that the alkylphosphoric acid is a dialkylphosphoric acid with the general formula I hvori R er en forgrenet eller uforgrenet hydrokarbon gruppe med minst 5 karbonatomer. In which R is a branched or unbranched hydrocarbon group with at least 5 carbon atoms. 3. Fremgangsmåte ifolge krav 2, karakterisert ved at det som dialkylfosforsyre anvendes di-(2-etylheksyl)-fosforsyre. i 4. ""Fremgangsmåte ifolge"krav 2, karakterisert ved at det som dialkylfosforsyre anvendes di-oktyl-fosforsyre. 5. Fremgangsmåte ifolge krav 2, karakterisert ved at det som dialkylfosforsyre anvendes di-lauryl-fosforsyre. 6. Fremgangsmåte ifolge krav 2, karakterisert ved at det som dialkylfosforsyre anvendes butyl-heksyl-fosforsyre. 7. Fremgangsmåte ifolge krav 1, karakterisert v e d at. alkylfosforsyren fortynnes med et fortynningsmiddel som er lite opploselig i vann. 8. Fremgangsmåte ifolge krav 7, ka"rakterisert ved at det som fortynningsmiddel anvendes en alifatisk eller aromatisk hydrokarbon eller en blanding derav, f.eks. en petroleumfraksjon med et kokepunkt-intervall tilsvarende parafin. 9. Fremgangsmåte ifolge krav 1, karakterisert ved at det anvendes en vandig opplosning med en pH-verdi på mindre enn 6. 10 . Fremgangsmåte ifolge krav 9, karakterisert ved at den vandige opplosning tilsettes svovelsyre i en mengde på mindre enn 3o. g/l. 11. Fremgangsmåte ifolge krav 1, karakterisert ved at den organiske opplosning inneholdende sink vaskes med en sterkt alkalisk opplosning, fortrinnsvis inneholdende 5o - 5oo g/l NaOH, hvorved sink overfores til den alkaliske vandige opplosning. 12. Fr emgangsmåte ifolge krav. 1, karakterisert , ved at den organiske opplosning inneholdende sink vaskes med en sterk sur vandig opplosning, hvorved sink overfores til den sure, vandige opplosning. 13. Fremgangsmåte ifolge krav 12, karakterisert ved at det anvendes en sur vandig opplosning inneholdende svovelsyre i en mengde på loo - l.ooo g/l opplosning. 14. Fremgangsmåte ifolge krav 13, karakterisert ved at den sterkt sure vandige opplosning inneholdende sink avkjoles for utkrystallisering av sinksulfat som skilles fra opplosningen.. - 15. Fremgangsmåte ifolge krav 14, karakterisert ved at strippingen utfores med en vandig opplosning inneholdende ca. 6oo g/l svovelsyre og slik at den sure vandige opplosning vil inneholde ca. 8o g/l sink, hvoretter opplosningen avkjoles ;for utkrystallisering av sinksulfat. 16. Fremgangsmåte ifolge krav 14, karakterisert ved at modervaesken fra krystallisasjonen fores tilbake for vasking av den organiske opplosning inneholdende sink. 17. Fremgangsmåte ifolge kravene 1 eller 12, karakterisert ved at ,.en delstrom av den organiske opplosning vaskes med en alkalisk vandig opplosning for fjernelse av metallforurensninger og sure hydrolyse-produkter. 18. Fremgangsmåte ifolge krav 17, karakterisert ved at det anvendes en organisk opplosning inneholdende en alifatisk alkohol som er lite opploselig i vann, fortrinnsvis i en mengde på o,l - o,5 ganger mengden av alkylfosforsyren. 19. Fremgangsmåte ifolge krav 1, karakterisert ved at temperaturen holdes i området lo - 6o°C. 20 . Fremgangsmåte ifolge krav 1 for fjerning av sink og jern fra en vandig opplosning, karakterisert ved at den vandige opplosning bringes i kontakt med en organisk opplosning inneholdende en alkylfosforsyre, hvorved sink og jern absorberes i den organiske opplosning, hvoretter denne i en forste vaskeoperasjon bringes i kontakt med den vandige opplosning inneholdende svovelsyre i en mengde på 5o - 2oo g/l, hvilket forer til at sink men ikke jern absorberes i den vandige opplosning og at den således behandlede organiske opplosning i en andre vaskeoperasjon bringes i kontakt med den vandige opplosning inneholdende svovelsyre i en mengde på 5oo - l.ooo g/l, hvilket forer til at jern absorberes av den vandige opplosning, hvoretter den organiske opplosning fores tilbake til ekstraksjonstrinnet. 21. Fremgangsmåte ifolge krav 2o, karakterisert ved at sinksulfat fjernes fra den vandige, svovelsyreinne-holdende opplosning, fra den forste operasjon, ved krystallisasjon, hvoretter modervæsken fores tilbake til den forste vaske-operas jon. 22. Fremgangsmåte ifolge krav 2o,. karakterisert ved at jernsulfat fjernes fra den vandige, svovelsyreholdige opplosning fra den andre vaskeoperasjon, ved krystallisasjon, hvoretter modervæsken fores tilbake til den andre vaskeoperasjon. f3. Process according to claim 2, characterized in that di-(2-ethylhexyl) phosphoric acid is used as dialkyl phosphoric acid. in 4. "Procedure according to" claim 2, characterized in that di-octyl phosphoric acid is used as dialkyl phosphoric acid. 5. Method according to claim 2, characterized in that di-lauryl phosphoric acid is used as dialkyl phosphoric acid. 6. Process according to claim 2, characterized in that butyl-hexyl-phosphoric acid is used as dialkyl phosphoric acid. 7. Procedure according to claim 1, characterized by the alkyl phosphoric acid is diluted with a diluent that is poorly soluble in water. 8. Method according to claim 7, characterized in that an aliphatic or aromatic hydrocarbon or a mixture thereof, e.g. a petroleum fraction with a boiling point interval similar to kerosene. 9. Method according to claim 1, characterized in that an aqueous solution with a pH value of less than 6 is used. 10 . Method according to claim 9, characterized in that sulfuric acid is added to the aqueous solution in an amount of less than 3o. g/l. 11. Method according to claim 1, characterized in that the organic solution containing zinc is washed with a strongly alkaline solution, preferably containing 5o - 5oo g/l NaOH, whereby zinc is transferred to the alkaline aqueous solution. 12. Procedure according to requirements. 1, characterized in that the organic solution containing zinc is washed with a strongly acidic aqueous solution, whereby zinc is transferred to the acidic, aqueous solution. 13. Method according to claim 12, characterized in that an acidic aqueous solution containing sulfuric acid is used in an amount of loo - l.ooo g/l solution. 14. Method according to claim 13, characterized in that the strongly acidic aqueous solution containing zinc is cooled for crystallization of zinc sulphate which is separated from the solution.. - 15. Method according to claim 14, characterized in that the stripping is carried out with an aqueous solution containing approx. 6oo g/l sulfuric acid and so that the acidic aqueous solution will contain approx. 8o g/l zinc, after which the solution is cooled; for crystallization of zinc sulphate. 16. Method according to claim 14, characterized in that the mother liquor from the crystallization is fed back for washing the organic solution containing zinc. 17. Method according to claims 1 or 12, characterized in that a partial stream of the organic solution is washed with an alkaline aqueous solution to remove metal contaminants and acidic hydrolysis products. 18. Method according to claim 17, characterized in that an organic solution is used containing an aliphatic alcohol which is poorly soluble in water, preferably in an amount of 0.1 - 0.5 times the amount of the alkyl phosphoric acid. 19. Method according to claim 1, characterized in that the temperature is kept in the range lo - 6o°C. 20 . Method according to claim 1 for the removal of zinc and iron from an aqueous solution, characterized in that the aqueous solution is brought into contact with an organic solution containing an alkylphosphoric acid, whereby zinc and iron are absorbed in the organic solution, after which this is brought in a first washing operation contact with the aqueous solution containing sulfuric acid in an amount of 5o - 2oo g/l, which leads to zinc but not iron being absorbed in the aqueous solution and the organic solution thus treated in a second washing operation being brought into contact with the aqueous solution containing sulfuric acid in an amount of 5oo - 1.ooo g/l, which causes iron to be absorbed by the aqueous solution, after which the organic solution is fed back to the extraction step. 21. Method according to claim 2o, characterized in that zinc sulfate is removed from the aqueous, sulfuric acid-containing solution, from the first operation, by crystallization, after which the mother liquor is fed back to the first washing operation. 22. Procedure according to claim 2o,. characterized in that iron sulfate is removed from the aqueous, sulfuric acid-containing solution from the second washing operation, by crystallization, after which the mother liquor is fed back to the second washing operation. f
NO743908A 1973-10-31 1974-10-30 NO743908L (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE7314841A SE375328B (en) 1973-10-31 1973-10-31
SE7401085 1974-01-28

Publications (1)

Publication Number Publication Date
NO743908L true NO743908L (en) 1975-05-26

Family

ID=26656415

Family Applications (1)

Application Number Title Priority Date Filing Date
NO743908A NO743908L (en) 1973-10-31 1974-10-30

Country Status (10)

Country Link
JP (1) JPS5074567A (en)
DD (1) DD116212A1 (en)
DE (1) DE2449279A1 (en)
ES (1) ES431306A1 (en)
FI (1) FI313774A (en)
FR (1) FR2249838B1 (en)
GB (1) GB1486322A (en)
IT (1) IT1032103B (en)
NL (1) NL7414188A (en)
NO (1) NO743908L (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053552A (en) * 1976-03-15 1977-10-11 General Mills Chemicals Co. Solvent extraction of zinc from sulfite-bisulfite solution
LU81601A1 (en) * 1979-08-13 1981-03-24 Metallurgie Hoboken PROCESS FOR SEPARATING TRIVALENT IRON FROM AN AQUEOUS CHLORIDE SOLUTION
US4956154A (en) * 1988-03-09 1990-09-11 Unc Reclamation Selective removal of chromium, nickel, cobalt, copper and lead cations from aqueous effluent solutions
AT392803B (en) * 1989-02-24 1991-06-25 Prior Eng Ag METHOD FOR SEPARATING AND RECOVERING SOLVED, FALLABLE METALS, IN PARTICULAR HEAVY METALS, FROM AQUEOUS SOLUTIONS
DE4204892A1 (en) * 1992-02-19 1993-08-26 Wiegel Verwaltung Gmbh & Co Iron and zinc salts sepn. from acid etching soln. - by using organic extn. agent to remove zinc salt and sulphate ion producing agent to convert salt into insol. zinc sulphate, for pure prods.

Also Published As

Publication number Publication date
DD116212A1 (en) 1975-11-12
IT1032103B (en) 1979-05-30
DE2449279A1 (en) 1975-05-07
ES431306A1 (en) 1976-11-16
FR2249838A1 (en) 1975-05-30
GB1486322A (en) 1977-09-21
FI313774A (en) 1975-05-01
FR2249838B1 (en) 1978-06-09
JPS5074567A (en) 1975-06-19
NL7414188A (en) 1975-05-02

Similar Documents

Publication Publication Date Title
NO743908L (en)
US1247782A (en) Process whereby neutral oils can be profitably recovered from their &#34;foots&#34; or soap-stock.
DE2154105C3 (en) Process for removing anionic surface-active compounds from wastewater
US1901383A (en) Process for recovering the oil-soluble sulphonic compounds formed in the acid refining of mineral oils
US2397077A (en) Refining of mineral oils
US2136608A (en) Process for the recovery of naphthenic acids
DE2109970A1 (en) Process and device for the continuous dearsenation of polyphosphoric acid
US2157315A (en) Process of removing ash-forming constituents from a residual petroleum oil
US2976310A (en) Multiple step continuous contacting of immiscible substances
EP0580915B1 (en) Process for the elimination of build-up contaminants in an organic stream for production of pure phosphoric acid
US2190590A (en) Process of refining glyceride oils
US2214037A (en) Purification of oil soluble sulphonate
US3911087A (en) Selective solvent extraction of sulfate impurities from phosphoric acid
CH379496A (en) Process for the production of hydroperoxides from dialkylated aromatics
US2640851A (en) Recovery of calcium magnesium aconitate from molasses
US2035589A (en) Process for refining vegetable and animal oils and fats
US2551496A (en) Process for refining cottonseed oil
DE886741C (en) Continuous process for the production of chlorine dioxide
JPS59203724A (en) Prevention of coloring of by-produced ammonium sulphate produced from coke oven gas
US2266036A (en) Method of treating oils and product
AT93888B (en) Process for the separation of lead from sulfidic lead-zinc ores.
NO124933B (en)
BE821640A (en) PROCESS FOR THE SEPARATION OF ZINC
DE696868C (en) Process for the production of formic acid
DE662090C (en) Process for the continuous cold decomposition of crude carnallite on potassium chloride and mother liquor containing chloromagnesium