NO347489B1 - Method for improving the degree of reduction in melting of ferroalloys - Google Patents

Method for improving the degree of reduction in melting of ferroalloys Download PDF

Info

Publication number
NO347489B1
NO347489B1 NO20140016A NO20140016A NO347489B1 NO 347489 B1 NO347489 B1 NO 347489B1 NO 20140016 A NO20140016 A NO 20140016A NO 20140016 A NO20140016 A NO 20140016A NO 347489 B1 NO347489 B1 NO 347489B1
Authority
NO
Norway
Prior art keywords
nickel
fed
raw material
melting furnace
containing raw
Prior art date
Application number
NO20140016A
Other languages
Norwegian (no)
Other versions
NO20140016A1 (en
Inventor
Helge Krogerus
Tuomo Mäkelä
Pekka Niemelä
Original Assignee
Outokumpu Oy
Metso Outotec Finland Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Oy, Metso Outotec Finland Oy filed Critical Outokumpu Oy
Publication of NO20140016A1 publication Critical patent/NO20140016A1/en
Publication of NO347489B1 publication Critical patent/NO347489B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5264Manufacture of alloyed steels including ferro-alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

FREMGANGSMÅTE FOR Å FORBEDRE REDUKSJONSGRADEN I SMELTING AV FERROLEGERING PROCEDURE FOR IMPROVING THE DEGREE OF REDUCTION IN MELTING OF FERRO ALLOYS

Denne oppfinnelsen vedrører en fremgangsmåte for å forbedre reduksjonsgraden til metallbestanddeler i et materiale som skal behandles ved smelting av ferrolegering, som ferrokromegnet til fremstilling av rustfritt stål. Ifølge fremgangsmåten mates nikkelholdig materiale inn i ferrolegeringen. This invention relates to a method for improving the degree of reduction of metal constituents in a material to be processed by melting ferroalloy, such as ferrochrome suitable for the production of stainless steel. According to the method, nickel-containing material is fed into the ferroalloy.

En fremgangsmåte er kjent fra patentpublikasjonen WO 2010/092234 hvori nikkelmalm og/eller nikkelkonsentrat eller et mellomprodukt utfelt fra løsninger av nikkelmalm og/eller nikkelkonsentrat agglomereres under prosessen med fremstilling av ferrokrom, slik at det først fremstilles fra nikkelholdig materiale sammen med jernholdig kromittkonsentrat og bindemiddelpellets, og tørkingen og kalsineringen av nikkelholdig materiale utføres fordelaktig innen ett-trinns varmebehandling av pellets, sintring. Med varmebehandling av pellets styrkes gjenstanden, slik at de varmebehandlede gjenstandene er transporterbare når dette er ønskelig, hovedsakelig hele mellom separate prosesstrinn. Om nødvendig kan pelletene forvarmes før sintring. Varmebehandlede gjenstander kan transporteres når dette er ønskelig, hovedsakelig hele mellom separate prosesstrinn. Varmebehandlede gjenstander kan når det er ønskelig gis mindre størrelse, når gjenstander transporteres mellom separate prosesstrinn eller prosessenheter. Sintrede og dermed styrkede pellets anvendes som materiale i en smelteprosess utført under reduserende betingelser, i hvilket tilfelle det mottas som et smelteprodukt av nikkelholdig ferrolegering, ferrokromnikkel. A method is known from the patent publication WO 2010/092234 in which nickel ore and/or nickel concentrate or an intermediate product precipitated from solutions of nickel ore and/or nickel concentrate is agglomerated during the process of producing ferrochrome, so that it is first produced from nickel-containing material together with iron-containing chromite concentrate and binder pellets , and the drying and calcination of nickel-containing material is advantageously carried out within one-stage heat treatment of pellets, sintering. With heat treatment of pellets, the object is strengthened, so that the heat-treated objects can be transported when this is desired, mainly whole between separate process steps. If necessary, the pellets can be preheated before sintering. Heat-treated objects can be transported when this is desired, mainly whole between separate process steps. Heat-treated objects can, when desired, be given a smaller size, when objects are transported between separate process steps or process units. Sintered and thus strengthened pellets are used as material in a melting process carried out under reducing conditions, in which case it is received as a melting product of a nickel-containing ferroalloy, ferrochrome nickel.

Ovennevnte patentpublikasjon WO 2010/092234 vedrører følgelig hovedsakelig fremstillingen av nikkelholdige pellets ved hjelp av sintring. I stedet er smeltebetingelser for de sintrede pelletene ikke nøyaktig beskrevet. I beskrivelsen av energieffektivitet nevnes det imidlertid at nikkel inneholdt i pellets katalyserer kromreduksjon i pellets og minsker følgelig det spesifikke forbruket, fortrinnsvis karbon, av reduksjonsmiddelet i ferrolegeringsfremstillingen. The above-mentioned patent publication WO 2010/092234 therefore mainly relates to the production of nickel-containing pellets by means of sintering. Instead, melting conditions for the sintered pellets are not precisely described. In the description of energy efficiency, however, it is mentioned that nickel contained in pellets catalyzes chromium reduction in pellets and consequently reduces the specific consumption, preferably carbon, of the reducing agent in ferroalloy production.

Det observeres nå på overraskende vis at nikkel inneholdt i pellets ikke bare katalyserer reduksjonen av krom i kromittpellet, men nikkelinnholdet i matematerialet av en ovn anvendt til smelting av kromitt forbedrer i smelteprosessen reduksjonen av alle essensielle metallbestanddeler, jern, krom og nikkel, inneholdt i matingen av smelteovnen. Formålet med den foreliggende oppfinnelsen er å benytte dette overraskende funnet og å oppnå en mer effektiv fremgangsmåte enn tidligere for å øke reduksjonsgraden i prosessen med smelting av kromittmateriale, i hvilken fremgangsmåte reduksjonen av metallbestanddeler i kromitt under smeltingen forbedres ved å legere inn i materialet som skal inngå i smeltingen av nikkelholdig materiale og samtidig oppnå en forlegering, ferrokromnikkel, egnet til fremstilling av rustfritt stål. De grunnleggende trekkene er listet opp i de medfølgende kravene. It is now surprisingly observed that nickel contained in pellets not only catalyzes the reduction of chromium in the chromite pellet, but the nickel content of the feed material of a furnace used for smelting chromite improves in the smelting process the reduction of all essential metal constituents, iron, chromium and nickel, contained in the feed of the melting furnace. The purpose of the present invention is to use this surprising discovery and to achieve a more efficient method than previously for increasing the degree of reduction in the process of melting chromite material, in which method the reduction of metal constituents in chromite during melting is improved by alloying into the material to be include in the melting of nickel-containing material and at the same time obtain a pre-alloy, ferrochromic nickel, suitable for the production of stainless steel. The basic features are listed in the accompanying requirements.

Foreliggende oppfinnelse tilveiebringer således en fremgangsmåte for å forbedre reduksjonsgraden til metallbestanddeler i et kromittkonsentrat under smelting av ferrolegering egnet for fremstilling av rustfritt stål, der kromittkonsentratet mates inn i en smelteovn sammen med nikkelholdig råmateriale, kjennetegner ved at det mates inn 5-25 vekt-% av det nikkelholdige råmaterialet, av den totale mengden av materialet som skal mates inn i smelteovnen, og at mengden av nikkelholdig råmateriale reguleres for å regulere reduksjonsgraden for metallbestanddeler i ferrolegeringen slik at det ved hjelp av mengden nikkelholdig råmateriale oppnås en ønsket reduksjonsgrad for metallbestanddelene i smelteprosessen for kromittmateriale, slik at det under smeltingen reduseres minst 2,6 % av krom og minst 37,4 % jern inneholdt i kromittkonsentratet. The present invention thus provides a method for improving the degree of reduction of metal constituents in a chromite concentrate during melting of ferroalloy suitable for the production of stainless steel, where the chromite concentrate is fed into a melting furnace together with nickel-containing raw material, characterized by the fact that 5-25% by weight is fed of the nickel-containing raw material, of the total amount of the material to be fed into the melting furnace, and that the amount of nickel-containing raw material is regulated in order to regulate the degree of reduction of metal constituents in the ferroalloy so that with the help of the amount of nickel-containing raw material, a desired degree of reduction of the metal constituents in the smelting process is achieved for chromite material, so that during melting at least 2.6% of chromium and at least 37.4% of iron contained in the chromite concentrate is reduced.

Ifølge oppfinnelsen legeres det inn i råmaterialet, som kromitt, som skal smeltes i ferrolegeringsfremstillingen før det smeltende nikkelholdige materialet, i hvilket tilfelle nikkelinnholdet forbedrer reduksjonen av metallkomponentinnhold i matematerialet samtidig når selve det nikkelholdige materialet fås til å reduseres som en metallisk bestanddel i ferrolegeringen. Ifølge oppfinnelsen, ved hjelp av nikkelmengden som skal tilsettes til ferrolegeringen, kan reduksjonsgraden til metallbestanddeler i ferrolegeringen fordelaktig reduseres samtidig som det oppnås en ferrolegering som inneholder det ønskede nikkelinnholdet, som ferrokromnikkellegeringer som har ulikt nikkelinnhold. Ferrokromnikkellegeringer som inneholder ønsket nikkelinnhold kan for eksempel anvendes til fremstilling av forskjellige typer rustfritt stål, som austenittisk eller duplex rustfritt stål. According to the invention, it is alloyed into the raw material, such as chromite, which is to be melted in the ferroalloy production before the melting nickel-containing material, in which case the nickel content improves the reduction of metal component content in the feed material at the same time when the nickel-containing material itself is reduced as a metallic component in the ferroalloy. According to the invention, by means of the amount of nickel to be added to the ferroalloy, the degree of reduction of metal constituents in the ferroalloy can advantageously be reduced at the same time as a ferroalloy containing the desired nickel content is obtained, such as ferrochrome nickel alloys that have different nickel content. Ferrochrome-nickel alloys containing the desired nickel content can, for example, be used to produce different types of stainless steel, such as austenitic or duplex stainless steel.

I fremgangsmåten ifølge oppfinnelsen kan det som nikkelholdig råmateriale anvendes minst delvis nikkeloksid, minst delvis nikkelmalm/eller nikkelkonsentrat eller minst delvis et nikkelholdig mellomprodukt oppnådd ved hjelp av utluting og/eller utfelling av nikkelmalmer og/eller nikkelkonsentrater. Det nikkelholdige råmaterialet mates inn i en smelteprosess sammen med ferrokrområmateriale. Før det nikkelholdige råmaterialet mates inn i en smelteovn forbehandles det enten slik at sintrede pellets dannes fra det nikkelholdige materialet sammen med ferrokrområmaterialet, eller slik at det nikkelholdige råmaterialet forbehandles adskilt fra krompelletene. Det er også mulig å utføre forbehandlingen av det nikkelholdige råmaterialet slik at én del av det nikkelholdige råmaterialet som skal mates inn i smelteovnen forbehandles sammen med kromittpellet og en del av det nikkelholdige råmaterialet forbehandles separat fra kromittpellet. Takket være ulike forbehandlinger kan det nikkelholdige råmaterialet som skal mates inn i smelteovnen og fremme reduksjonen av ulike metallbestanddeler, for eksempel være delvis nikkelholdig hydroksidmellomprodukt, delvis sulfidisk eller laterittisk nikkelkonsentrat. In the method according to the invention, at least partially nickel oxide, at least partially nickel ore/or nickel concentrate or at least partially a nickel-containing intermediate product obtained by leaching and/or precipitation of nickel ores and/or nickel concentrates can be used as nickel-containing raw material. The nickel-containing raw material is fed into a smelting process together with ferrochrome raw material. Before the nickel-containing raw material is fed into a melting furnace, it is either pre-treated so that sintered pellets are formed from the nickel-containing material together with the ferrochrome raw material, or so that the nickel-containing raw material is pre-treated separately from the chromium pellets. It is also possible to carry out the pre-treatment of the nickel-containing raw material so that one part of the nickel-containing raw material to be fed into the melting furnace is pre-treated together with the chromite pellet and a part of the nickel-containing raw material is pre-treated separately from the chromite pellet. Thanks to various pre-treatments, the nickel-containing raw material that is to be fed into the melting furnace and promote the reduction of various metal constituents can, for example, be partially nickel-containing hydroxide intermediate product, partially sulphidic or lateritic nickel concentrate.

Det nikkelholdige råmaterialet som skal anvendes i fremgangsmåten ifølge oppfinnelsen, er fortrinnsvis et nikkelholdig hydroksidmellomprodukt fra gruver eller andre hydrometallurgiske prosesser, hvilket mellomprodukt utfelles fra løsninger av laterittiske og/eller sulfidiske nikkelmalmer og/eller nikkelholdige konsentrater av sulfidiske malmer. Denne typen nikkelholdig hydroksidmellomprodukt er for eksempel et nikkelholdig mellomprodukt fra trykkutluting, atmosfæreutluting eller haugutvasking ("heap leaching") av laterittiske eller sulfidiske nikkelmalmer eller nikkelkonsentrater så vel som et nikkelholdig utfelt produkt av løsemiddelekstraksjonsløsninger, strippeløsninger (eng.: stripping solution) eller raffineringsløsninger mottatt fra løsemiddelekstraksjonsprosesser eller ioneutvekslingsprosesser av nikkelholdige materialer. I fremgangsmåten ifølge oppfinnelsen kan det som råmateriale også anvendes karbonat- eller sulfatnikkelmaterialer. Ytterligere er et sulfidisk nikkelkonsentrat i seg selv og et hydrometallurgisk utfelt nikkelsulfidmellomprodukt egnet for det nikkelholdige råmaterialet ifølge fremgangsmåten. The nickel-containing raw material to be used in the method according to the invention is preferably a nickel-containing hydroxide intermediate product from mines or other hydrometallurgical processes, which intermediate product is precipitated from solutions of lateritic and/or sulphidic nickel ores and/or nickel-containing concentrates of sulphidic ores. This type of nickel-containing hydroxide intermediate product is, for example, a nickel-containing intermediate product from pressure leaching, atmospheric leaching or heap leaching ("heap leaching") of lateritic or sulphidic nickel ores or nickel concentrates as well as a nickel-containing precipitated product of solvent extraction solutions, stripping solutions or refining solutions received from solvent extraction processes or ion exchange processes of nickel-containing materials. In the method according to the invention, carbonate or sulphate nickel materials can also be used as raw material. Furthermore, a sulphidic nickel concentrate in itself and a hydrometallurgically precipitated nickel sulphide intermediate product are suitable for the nickel-containing raw material according to the method.

Ifølge oppfinnelsen justeres mengden av det nikkelholdige materialet som skal mates inn i en smelteovn, i området 5–25 vekt-%, foretrukket 10–20 vekt-%, av den totale massen av det forbehandlede materialet som skal mates inn i smelteovnen. Når mengden av det nikkelholdige som skal mates inn i smelteovnen, justeres, vurderes oppnåelsen av de energiøkonomisk gunstige reduksjonsbetingelsene og/eller fremstillingen av en forlegering, ferrokromnikkel, egnet for fremstillingen av gunstig rustfritt stål i hvert tilfelle. Ved å anvende en liten tilsetning av nikkelholdig råmateriale holdes reduksjonsgraden lav, i hvilket tilfelle det skapes en ferrolegering med lavt nikkelinnhold, ferrokromnikkel. Denne typen ferrolegering med lavt nikkelinnhold er en gunstig forlegering, særlig til fremstilling av duplex rustfrie stålkvaliteter. Ved å anvende større tilsetning av nikkelholdig råmateriale øker reduksjonsgraden, og i tillegg er nikkelinnholdet i smelteproduktet høyere. Denne typen ferrokromnikkel med et større nikkelinnhold er gunstig til anvendelse i fremstillingen av austenistiske rustfrie stålkvaliteter som har et høyt nikkelinnhold. According to the invention, the amount of the nickel-containing material to be fed into a melting furnace is adjusted in the range of 5-25% by weight, preferably 10-20% by weight, of the total mass of the pre-treated material to be fed into the melting furnace. When the amount of the nickel-containing material to be fed into the melting furnace is adjusted, the achievement of the energy-economically favorable reduction conditions and/or the production of a pre-alloy, ferrochromic nickel, suitable for the production of favorable stainless steel is assessed in each case. By using a small addition of nickel-containing raw material, the degree of reduction is kept low, in which case a ferroalloy with a low nickel content, ferrochrome nickel, is created. This type of ferroalloy with a low nickel content is a favorable prealloy, especially for the production of duplex stainless steel grades. By using a greater addition of nickel-containing raw material, the degree of reduction increases, and in addition, the nickel content in the melt product is higher. This type of ferrochromic nickel with a higher nickel content is favorable for use in the production of austenitic stainless steel grades that have a high nickel content.

I forbehandlingen av nikkelholdig råmateriale som skal mates inn i en smelteovn i henhold til fremgangsmåten ifølge oppfinnelsen, vurderes fordelaktig sammensetningen og mikrostrukturen til nikkelråmaterialet. Dersom det nikkelholdige råmaterialet for eksempel er et nikkelholdig mellomprodukt fra gruver eller andre hydrometallurgiske prosesser utfelt fra løsninger av nikkelholdige løsninger, hvilket mellomprodukt krever at det utføres som forbehandling blant annet kalsinering ved en høyere temperatur, forbehandlingen av det nikkelholdige råmaterialet utføres sammen med produksjonen av krompellet og sintring av pellets. I stedet, dersom det nikkelholdige råmaterialet ifølge fremgangsmåten ifølge oppfinnelsen er materiale, som for eksempel nikkeloksid, nikkelmalm og/eller nikkelkonsentrat, som ikke i tillegg til mulig tørking krever annen nødvendig forbehandling ved høyere temperatur, er det mulig å mate det nikkelholdige råmaterialet inn i en smelteovn med matingen av kromittpellet. Det nikkelholdige råmaterialets mikrostruktur og sammensetning kan også være slik at det er fordelaktig å forbehandle råmaterialet separat fra kromittpelleteringen og å mate det nikkelholdige råmaterialet inn i sintring av kromittpellet før innmating i smelteovnen. In the pre-treatment of nickel-containing raw material to be fed into a melting furnace according to the method according to the invention, the composition and microstructure of the nickel raw material is advantageously assessed. If the nickel-containing raw material is, for example, a nickel-containing intermediate product from mines or other hydrometallurgical processes precipitated from solutions of nickel-containing solutions, which intermediate product requires that it be carried out as pre-treatment including calcination at a higher temperature, the pre-treatment of the nickel-containing raw material is carried out together with the production of the chrome pellet and sintering of pellets. Instead, if the nickel-containing raw material according to the method according to the invention is material, such as nickel oxide, nickel ore and/or nickel concentrate, which, in addition to possible drying, does not require other necessary pretreatment at a higher temperature, it is possible to feed the nickel-containing raw material into a melting furnace with the feed of the chromite pellet. The microstructure and composition of the nickel-containing raw material can also be such that it is advantageous to pre-treat the raw material separately from the chromite pelleting and to feed the nickel-containing raw material into the sintering of the chromite pellet before feeding it into the melting furnace.

I fremgangsmåten ifølge oppfinnelsen anvendes det fordelaktig en smelteovn som er tilveiebrakt med et forvarmingsutstyr, slik at matematerialet som går inn i smelteovnen, føres gjennom forvarmingsustyret inn i smelteovnen. Ifølge oppfinnelsen føres det forvarmede nikkelholdige råmaterialet også inn i forvarmingsustyret hvori nikkelinnholdet vil komme sist i kontakt med annet materiale som skal mates inn i smelteovnen. I smelteovnen smeltes nikkelinnholdet sammen med kromittpellet til ferrokromnikkel som har en ønsket sammensetning, hvilket ferrokromnikkel kan anvendes i henhold til dets sammensetning fordelaktig for eksempel i fremstilling av austenittisk eller duplex rustfritt stål. In the method according to the invention, a melting furnace is advantageously used which is provided with preheating equipment, so that the feed material that enters the melting furnace is fed through the preheating equipment into the melting furnace. According to the invention, the preheated nickel-containing raw material is also fed into the preheating equipment, in which the nickel content will come last in contact with other material to be fed into the melting furnace. In the melting furnace, the nickel content is melted together with the chromite pellet to form ferrochromic nickel which has a desired composition, which ferrochromic nickel can be used advantageously according to its composition, for example in the production of austenitic or duplex stainless steel.

Når smelting av det nikkelholdige råmaterialet ifølge oppfinnelsen utføres fordelaktig i en lukket neddykket lysbueovn, kan karbonmonoksidgasser generert i reduksjonen og smeltingen anvendes på den ene siden for eksempel i sintringen av kromittpellet og i annen mulig forbehandling og forvarming, på den andre siden for eksempel i ulike trinn av produksjonsbanen til rustfritt stål fremstilt fra smelteproduktet, ferrokromnikkel. When melting of the nickel-containing raw material according to the invention is carried out advantageously in a closed submerged arc furnace, carbon monoxide gases generated in the reduction and melting can be used on the one hand, for example, in the sintering of the chromite pellet and in other possible pretreatment and preheating, on the other hand, for example, in various stage of the stainless steel production line produced from the molten product, ferrochromic nickel.

Fremgangsmåten ifølge oppfinnelsen er beskrevet mer detaljert ved hjelp av det medfølgende eksempelet. The method according to the invention is described in more detail using the accompanying example.

Eksempel Example

Fra et kromittkonsentrat inneholdende jern og krom og et mellomprodukt inneholdende nikkel ble det dannet en blanding, til hvilken blanding det ble tilsatt som bindemiddel 1,2 vekt-% bentonitt og 3 vekt-% slaggdannende materiale, flussmiddel, enten kalkstein eller wollastonitt. I tabell 1 angis innholdet av krom, jern, nikkel, karbon og svovel som vekt-% i blandinger, til hvilke det ble tilsatt 10 vekt-% (Test 1) og 20 vekt-% (Test 2) nikkelhydroksid. Ytterligere, i tabell 1 har det som referansemateriale (REF) en blanding, til hvilken blanding nikkelhydroksid ikke ble tilsatt. From a chromite concentrate containing iron and chromium and an intermediate product containing nickel, a mixture was formed, to which mixture 1.2 wt% bentonite and 3 wt% slag-forming material, flux, either limestone or wollastonite, were added as a binder. Table 1 shows the content of chromium, iron, nickel, carbon and sulfur as % by weight in mixtures to which 10% by weight (Test 1) and 20% by weight (Test 2) of nickel hydroxide were added. Furthermore, in Table 1 it has as reference material (REF) a mixture, to which mixture nickel hydroxide was not added.

Tabell 1 Table 1

Blandingene inneholdende et bindemiddel og som representerer hvert materiale i tabell 1, ble pelletert og sintret. En del sintret pellets ble matet representativt inn i en smelteovn med en slaggdanner og et reduksjonsmiddel. The mixtures containing a binder and representing each material in Table 1 were pelleted and sintered. A number of sintered pellets were fed representatively into a melting furnace with a slag former and a reducing agent.

Materialene ifølge tabell 1 ble smeltet, og i tabell 2 presenteres innholdet av krom, jern, nikkel, karbon og silikon i de aktuelle smelteproduktene og ytterligere oppsamlingen av metallbestanddelene krom, jern og nikkel i smelteproduktet. Karboninnholdet er sammensatt i henhold til sammensetningen og metallegeringens likevekt. Matingsbatchen har så mye karbon at karbon også er nok til reduksjon av silikon i smelteproduktet. Matingslegeringen har silikonoksid i råmateriale og i produksjonsbulktilførsel. The materials according to table 1 were melted, and table 2 presents the content of chromium, iron, nickel, carbon and silicon in the melting products in question and the further collection of the metal components chromium, iron and nickel in the melting product. The carbon content is composed according to the composition and the equilibrium of the metal alloy. The feed batch has so much carbon that carbon is also enough to reduce silicone in the melt product. The feed alloy has silicon oxide in raw material and in production bulk supply.

Tabell 2 Table 2

For én del av sintret pellets ble det i laboratorieskala foretatt termogravimetriske målinger for å overvåke reduksjonsgraden av metallbestanddelene krom, jern og nikkel i pellets under betingelsene som representerer smelteprosessen i ulike temperaturområder med maksimumstemperatur på 1550 <o>C. I tabell 3 angis resultatene av de termogravimetriske målingene for reduksjonsgraden til krom (Crmet/Crtot), jern (Femet/Fetot) og nikkel (Nimet/Nitot) ved temperaturer på 1400 <o>C og 1550 <o>C. For one part of sintered pellets, thermogravimetric measurements were carried out on a laboratory scale to monitor the degree of reduction of the metal components chromium, iron and nickel in pellets under the conditions that represent the melting process in different temperature ranges with a maximum temperature of 1550 <o>C. Table 3 shows the results of the thermogravimetric measurements for the degree of reduction of chromium (Crmet/Crtot), iron (Femet/Fetot) and nickel (Nimet/Nitot) at temperatures of 1400 <o>C and 1550 <o>C.

Tabell 3 Table 3

Tilsetningen av det nikkelholdige råmaterialet til pellets øker reduksjonsgraden til krom og jern ved temperaturer på 1550 <o>C vesentlig, krom mer enn 15 % og jern mer enn 70 % samtidig når reduksjonsgraden til nikkel øker til nær 100 % med nikkelinnholdet i Test 2. Økningen i reduksjonsgraden for alle metallbestanddeler, krom, jern og nikkel i sintret pellets ved hjelp av tilsetning av et nikkelholdig råmateriale minsker samtidig behovet for koks anvendt som reduksjonsmiddel ved oppnåelsen av reduksjonsbetingelsene til smelteprosessen. The addition of the nickel-containing raw material to pellets increases the degree of reduction to chromium and iron at temperatures of 1550 <o>C significantly, chromium more than 15% and iron more than 70% at the same time when the degree of reduction to nickel increases to close to 100% with the nickel content in Test 2. The increase in the degree of reduction for all metal constituents, chromium, iron and nickel in sintered pellets by means of the addition of a nickel-containing raw material simultaneously reduces the need for coke used as a reducing agent when achieving the reduction conditions for the smelting process.

Claims (14)

PATENTKRAVPATENT CLAIMS 1.1. Fremgangsmåte for å forbedre reduksjonsgraden til metallbestanddeler i et kromittkonsentrat under smelting av ferrolegering egnet for fremstilling av rustfritt stål, der kromittkonsentratet mates inn i en smelteovn sammen med nikkelholdig råmateriale, karakterisert ved at det mates inn 5-25 vekt-% av det nikkelholdige råmaterialet, av den totale mengden av materialet som skal mates inn i smelteovnen, og at mengden av nikkelholdig råmateriale reguleres for å regulere reduksjonsgraden for metallbestanddeler i ferrolegeringen slik at det ved hjelp av mengden nikkelholdig råmateriale oppnås en ønsket reduksjonsgrad for metallbestanddelene i smelteprosessen for kromittmateriale, slik at det under smeltingen reduseres minst 2,6 % av krom og minst 37,4 % jern inneholdt i kromittkonsentratet.Process for improving the degree of reduction of metal constituents in a chromite concentrate during melting of ferroalloy suitable for the production of stainless steel, where the chromite concentrate is fed into a melting furnace together with nickel-containing raw material, characterized in that 5-25% by weight of the nickel-containing raw material is fed, of the total amount of the material to be fed into the melting furnace, and that the amount of nickel-containing raw material is regulated in order to regulate the degree of reduction of metal constituents in the ferroalloy so that with the help of the amount of nickel-containing raw material a desired degree of reduction is achieved for the metal constituents in the smelting process for chromite material, so that during the smelting, at least 2.6% of the chromium and at least 37.4% of the iron contained in the chromite concentrate are reduced. 2.2. Fremgangsmåten ifølge krav 1, karakterisert ved at det mates inn 10-20 vekt-% av det nikkelholdige råmaterialet, av den totale mengden av materialet som skal mates inn i smelteovnen.The method according to claim 1, characterized in that 10-20% by weight of the nickel-containing raw material is fed in, of the total quantity of the material to be fed into the melting furnace. 3.3. Fremgangsmåte ifølge hvilke som helst av de foregående kravene, karakterisert ved at minst én del av det nikkelholdige råmaterialet mates inn i smelteovnen i pellets fremstilt fra kromittkonsentratet og minst én del av det nikkelholdige råmaterialet.Method according to any of the preceding claims, characterized in that at least one part of the nickel-containing raw material is fed into the melting furnace in pellets produced from the chromite concentrate and at least one part of the nickel-containing raw material. 4.4. Fremgangsmåte ifølge hvilke som helst av de foregående kravene, karakterisert ved at minst én del av det nikkelholdige råmaterialet forbehandles separat fra kromkonsentratpelletene før innmating i smelteovnen.Method according to any of the preceding claims, characterized in that at least one part of the nickel-containing raw material is pre-treated separately from the chrome concentrate pellets before feeding into the melting furnace. 5. 5. Fremgangsmåte ifølge hvilke som helst av de foregående kravene, karakterisert ved at det mates inn i smelteovnen som nikkelholdig råmateriale minst delvis nikkeloksid.Method according to any of the preceding claims, characterized in that at least partially nickel oxide is fed into the melting furnace as nickel-containing raw material. 6.6. Fremgangsmåte ifølge hvilke som helst av de foregående kravene, karakterisert ved at det mates inn i smelteovnen som nikkelholdig råmateriale minst delvis nikkelmalm og/eller nikkelkonsentrat.Method according to any of the preceding claims, characterized in that at least partially nickel ore and/or nickel concentrate is fed into the smelting furnace as nickel-containing raw material. 7.7. Fremgangsmåte ifølge hvilke som helst av de foregående kravene, karakterisert ved at det mates inn i smelteovnen som nikkelholdig råmateriale minst delvis et nikkelholdig mellomprodukt oppnådd ved utluting og/eller utfelling av nikkelmalmer og/eller nikkelkonsentrater.Method according to any of the preceding claims, characterized in that at least partially a nickel-containing intermediate product obtained by leaching and/or precipitation of nickel ores and/or nickel concentrates is fed into the smelting furnace as nickel-containing raw material. 8.8. Fremgangsmåte ifølge krav 7, karakterisert ved at det mates inn i smelteovnen minst delvis nikkelholdig mellomprodukt oppnådd ved trykkutluting av laterittiske eller sulfidiske nikkelmalmer eller nikkelkonsentrater.Method according to claim 7, characterized in that at least partially nickel-containing intermediate product obtained by pressure leaching of lateritic or sulphidic nickel ores or nickel concentrates is fed into the melting furnace. 9.9. Fremgangsmåte ifølge krav 7, karakterisert ved at det mates inn i smelteovnen minst delvis nikkelholdig mellomprodukt oppnådd ved atmosfærisk utluting av laterittiske eller sulfidiske nikkelmalmer eller nikkelkonsentrater.Method according to claim 7, characterized in that at least partially nickel-containing intermediate product obtained by atmospheric leaching of lateritic or sulphidic nickel ores or nickel concentrates is fed into the melting furnace. 10.10. Fremgangsmåte ifølge krav 7, karakterisert ved at det mates inn i smelteovnen minst delvis nikkelholdig mellomprodukt oppnådd ved haugutvasking av laterittiske eller sulfidiske nikkelmalmer eller nikkelkonsentrater.Method according to claim 7, characterized in that at least partially nickel-containing intermediate product obtained by heap leaching of lateritic or sulphidic nickel ores or nickel concentrates is fed into the melting furnace. 11. 11. Fremgangsmåte ifølge krav 7, karakterisert ved at det mates inn i smelteovnen minst delvis nikkelholdig utfelt produkt av nikkelholdige løsemiddelekstraksjonsløsninger.Method according to claim 7, characterized in that at least partially nickel-containing precipitated product of nickel-containing solvent extraction solutions is fed into the melting furnace. 12.12. Fremgangsmåte ifølge krav 7, karakterisert ved at det mates inn i smelteovnen minst delvis nikkelholdig utfelt produkt av nikkelholdige strippeløsninger.Method according to claim 7, characterized in that at least partially nickel-containing precipitated product of nickel-containing stripping solutions is fed into the melting furnace. 13.13. Fremgangsmåte ifølge krav 7, karakterisert ved at det mates inn i smelteovnen minst delvis nikkelholdig utfelt produkt av nikkelholdige raffineringsløsninger.Method according to claim 7, characterized in that at least partially nickel-containing precipitated product of nickel-containing refining solutions is fed into the melting furnace. 14.14. Fremgangsmåte ifølge krav 1-7, karakterisert ved at det mates inn i smelteovnen som nikkelholdig materiale delvis nikkelkonsentrat, delvis et nikkelholdig mellomprodukt oppnådd ved utluting og/eller utfelling av nikkelmalmer og/eller nikkelkonsentrater. Method according to claims 1-7, characterized in that partly nickel concentrate, partly a nickel-containing intermediate product obtained by leaching and/or precipitation of nickel ores and/or nickel concentrates is fed into the smelting furnace as nickel-containing material.
NO20140016A 2011-06-13 2012-06-08 Method for improving the degree of reduction in melting of ferroalloys NO347489B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20110200A FI123241B (en) 2011-06-13 2011-06-13 Process for improving the degree of reduction in melting of a ferro-mixture
PCT/FI2012/050580 WO2012172168A1 (en) 2011-06-13 2012-06-08 Method for improving the reduction degree in the smelting of ferroalloy

Publications (2)

Publication Number Publication Date
NO20140016A1 NO20140016A1 (en) 2014-01-08
NO347489B1 true NO347489B1 (en) 2023-11-20

Family

ID=44206736

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20140016A NO347489B1 (en) 2011-06-13 2012-06-08 Method for improving the degree of reduction in melting of ferroalloys

Country Status (20)

Country Link
US (1) US20140116202A1 (en)
EP (1) EP2718476A4 (en)
JP (1) JP6148230B2 (en)
KR (2) KR20160087397A (en)
CN (1) CN103732774A (en)
AP (1) AP3866A (en)
AT (1) AT513441B1 (en)
AU (1) AU2012270290B2 (en)
BR (1) BR112013031991A8 (en)
CA (1) CA2843210A1 (en)
DE (1) DE112012002439T5 (en)
FI (1) FI123241B (en)
MX (1) MX2013014524A (en)
NO (1) NO347489B1 (en)
RU (1) RU2600788C2 (en)
SE (1) SE538994C2 (en)
TW (1) TWI612147B (en)
UA (1) UA115863C2 (en)
WO (1) WO2012172168A1 (en)
ZA (1) ZA201309401B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130143098A (en) 2010-12-03 2013-12-30 인터디지탈 패튼 홀딩스, 인크 Methods, apparatus and systems for performing multi-radio access technology carrier aggregation
EP3813474A1 (en) 2011-07-29 2021-04-28 Interdigital Patent Holdings, Inc. Method and apparatus for radio resources management in multi-radio access technology wireless systems
FI126718B (en) * 2013-12-17 2017-04-28 Outotec Finland Oy Process for utilizing dust from a ferro-nickel process and sintered pellets prepared by the process
CN105506271B (en) * 2014-09-24 2018-05-08 宝钢不锈钢有限公司 Chrome ore composite pellet and its production method and application are used in a kind of argon oxygen decarburizing furnace reduction
EA201990103A1 (en) * 2016-07-11 2019-06-28 Оутотек (Финлэнд) Ой METHOD OF MAKING A FERROCHROMIC ALLOY WITH THE DESIRABLE CONTENT OF MANGANESE, NICKEL AND MOLIBDEN
BR112019000149B1 (en) * 2016-07-11 2023-02-23 Outotec (Finland) Oy PROCESS FOR MANUFACTURING AGGLOMERATES CONTAINING CHROME AND IRON WITH DIFFERENT ADDITION OF MATERIALS CONTAINING MANGANESE, NICKEL AND MOLYBDENUM
FI128814B (en) * 2016-12-30 2020-12-31 Outotec Finland Oy Method for producing nickel containing indurated chromite pellets, method for producing ferrochrome nickel alloy and indurated chromite pellet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020954A1 (en) * 1995-12-06 1997-06-12 Wmc Resources Ltd. Simplified duplex processing of nickel ores and/or concentrates for the production of ferronickels, nickel irons and stainless steels
EP0846778A1 (en) * 1996-12-04 1998-06-10 Armco Inc. Melting of nickel laterite and sulfur-bearing Ni concentrate in making Ni-alloyed iron and stainless steel
WO2010092234A1 (en) * 2009-02-11 2010-08-19 Outokumpu Oyj Method for producing ferroalloy containing nickel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB759085A (en) * 1953-06-05 1956-10-10 Chromium Mining & Smelting Cor Improvements in or relating to ferroalloying materials and process of preparing the same
US3525604A (en) * 1966-10-21 1970-08-25 Edward M Van Dornick Process for refining pelletized metalliferous materials
JPS5335892B2 (en) * 1972-05-29 1978-09-29
ZA935789B (en) * 1992-08-11 1994-03-03 Mintek The production of stainless steel.
RU2190034C2 (en) * 2000-06-26 2002-09-27 Региональное Уральское отделение Академии инженерных наук Российской Федерации Method of smelting alloys from oxide-containing materials
CN1306049C (en) * 2005-09-16 2007-03-21 刘沈杰 Ferronickel smelting process of nickel oxide ore free of crystal water in blast furnace
CN1847440A (en) * 2006-04-25 2006-10-18 吴江市东大铸造有限公司 Nickel-chromium-iron alloy and production method thereof
RU2406767C1 (en) * 2009-04-08 2010-12-20 Александр Валерьевич Кольба Procedure for metal-thermal metal and alloy melting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020954A1 (en) * 1995-12-06 1997-06-12 Wmc Resources Ltd. Simplified duplex processing of nickel ores and/or concentrates for the production of ferronickels, nickel irons and stainless steels
EP0846778A1 (en) * 1996-12-04 1998-06-10 Armco Inc. Melting of nickel laterite and sulfur-bearing Ni concentrate in making Ni-alloyed iron and stainless steel
WO2010092234A1 (en) * 2009-02-11 2010-08-19 Outokumpu Oyj Method for producing ferroalloy containing nickel

Also Published As

Publication number Publication date
AT513441B1 (en) 2020-03-15
AP3866A (en) 2016-10-31
EP2718476A1 (en) 2014-04-16
AP2013007314A0 (en) 2013-12-31
RU2013154744A (en) 2015-07-20
AT513441A2 (en) 2014-04-15
KR20140012754A (en) 2014-02-03
AU2012270290B2 (en) 2017-02-02
CA2843210A1 (en) 2012-12-20
EP2718476A4 (en) 2014-11-05
AU2012270290A1 (en) 2014-01-09
ZA201309401B (en) 2015-04-29
JP2014523966A (en) 2014-09-18
TWI612147B (en) 2018-01-21
KR20160087397A (en) 2016-07-21
BR112013031991A2 (en) 2016-12-20
AT513441A3 (en) 2020-03-15
UA115863C2 (en) 2018-01-10
BR112013031991A8 (en) 2018-04-03
RU2600788C2 (en) 2016-10-27
JP6148230B2 (en) 2017-06-14
SE538994C2 (en) 2017-03-14
WO2012172168A1 (en) 2012-12-20
FI123241B (en) 2013-01-15
TW201303037A (en) 2013-01-16
NO20140016A1 (en) 2014-01-08
DE112012002439T5 (en) 2014-04-03
CN103732774A (en) 2014-04-16
SE1351487A1 (en) 2014-03-04
US20140116202A1 (en) 2014-05-01
FI20110200A0 (en) 2011-06-13
FI20110200L (en) 2012-12-14
MX2013014524A (en) 2014-02-19

Similar Documents

Publication Publication Date Title
NO20140016A1 (en) Process for improving the degree of reduction in melting of ferroalloys
AU2010212733B2 (en) Method for producing ferroalloy containing nickel
Zulhan et al. Evolution of ferronickel particles during the reduction of low-grade saprolitic laterite nickel ore by coal in the temperature range of 900–1250° C with the addition of CaO-CaF 2-H 3 BO 3
EP3497249A1 (en) Process for manufacturing ferrochromium alloy with desired content of manganese, nickel and molybdenum
EP2679691B1 (en) Method for manufacturing an austenitic stainless steel from a nickel laterite ore and a chromite ore
CN105624357A (en) Stainless steel AOD converter steelmaking technology using nickel protoxide ball for direct reductive alloying
CN101775531B (en) Nickel-molybdenum-copper alloy and preparation method thereof
Balangao et al. Production of Iron-Chromium-Nickel Metal Alloys Via Reduction of Mixed Chromite Ore from Zambales and Laterite Ore from Taganito, Surigao del Norte under Argon Atmosphere
Laranjo et al. Production of Fe-Cr-Ni-Mn alloy by direct smelting of mixed low-grade chromite, nickel laterite and manganese ores with low-grade coal as reductant
Nokhrina et al. Modern Approaches to Efficient Use of Mn-Containing Raw Material in Steel Production
BR112019000149B1 (en) PROCESS FOR MANUFACTURING AGGLOMERATES CONTAINING CHROME AND IRON WITH DIFFERENT ADDITION OF MATERIALS CONTAINING MANGANESE, NICKEL AND MOLYBDENUM
CA2820676C (en) Method for manufacturing an austenitic stainless steel from a nickel laterite ore and a chromite ore
WO2017164898A1 (en) Method of treating unrefined tungstic acid to produce alloy grade tungsten for use in tungsten bearing steels and nickel based superalloys
CN108034792A (en) A kind of method for removing titanium in bearing steel molten steel
OA20401A (en) Process for the smelting of a metalliferous feedstock material.
Kapure et al. Process for effective utilization of low grade chromite overburden

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: OUTOKUMPU OYJ, FI