NO346550B1 - Torque adjusted rotor motor - Google Patents

Torque adjusted rotor motor Download PDF

Info

Publication number
NO346550B1
NO346550B1 NO20210195A NO20210195A NO346550B1 NO 346550 B1 NO346550 B1 NO 346550B1 NO 20210195 A NO20210195 A NO 20210195A NO 20210195 A NO20210195 A NO 20210195A NO 346550 B1 NO346550 B1 NO 346550B1
Authority
NO
Norway
Prior art keywords
rotor
flywheel
center
pressure
shaft
Prior art date
Application number
NO20210195A
Other languages
Norwegian (no)
Other versions
NO20210195A1 (en
Inventor
Petter Ottesen
Original Assignee
Petter Ottesen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petter Ottesen filed Critical Petter Ottesen
Priority to NO20210195A priority Critical patent/NO346550B1/en
Publication of NO20210195A1 publication Critical patent/NO20210195A1/en
Publication of NO346550B1 publication Critical patent/NO346550B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/321Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/324Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

Benevnelse Designation

Momentjustert rotormotor Torque adjusted rotor motor

Anvendelse Application

Motor som kan erstatte stempelmotoren. Engine that can replace the piston engine.

Teknikkens stilling The position of the technique

Patent NO 345283 B1 viser «Sentermatet rotormotor», og er den grunnleggende teknikken for rotormotorer med eksplosjonskammer i senter, og skovler som utnytter trykket og overfører momentet til et svinghjul som driver en rotor. Patent NO 345283 B1 shows "Center-fed rotor motor", and is the basic technique for rotor motors with an explosion chamber in the center, and vanes that utilize the pressure and transfer the torque to a flywheel that drives a rotor.

Patent NO 345283 B1 bygger på prinsippene til «Sentermatet skovleturbin» i patent NO 343537 B1, som er en turbin som får tilført trykk fra miljøet utenfor turbinen. Ved å føre drivstoff og luft til et kammer i senterdelen, som antennes og lager trykk, blir turbinen en motor som beskrevet i patent NO 345283 B1. Patent NO 345283 B1 is based on the principles of the "Center-fed vane turbine" in patent NO 343537 B1, which is a turbine that receives pressure from the environment outside the turbine. By feeding fuel and air to a chamber in the central part, which is ignited and creates pressure, the turbine becomes an engine as described in patent NO 345283 B1.

Patentene US 2010/070469 A1, US 4106472 A, US 2585354 A, US 4072132 A, US 810366 A og US 2098244 A er rotasjonsmotorer uten eksplosjonskammer i senterdelen av motoren og et svinghjul i rotor som avgrenser eksplosjonskammeret, som beskrevet i den innledende delen av patentkravet. Patentene bygger derfor på et annet prinsipp enn teknologien beskrevet i denne patentsøknaden. The patents US 2010/070469 A1, US 4106472 A, US 2585354 A, US 4072132 A, US 810366 A and US 2098244 A are rotary engines without an explosion chamber in the central part of the engine and a flywheel in the rotor delimiting the explosion chamber, as described in the introductory part of the patent claim. The patents are therefore based on a different principle than the technology described in this patent application.

Det nye The new

Skovlene er plassert med tyngdepunktet på en rett linje gjennom opplagringen av skovlene i svinghjulet til svinghjulets tyngdepunkt. Hensikten er å unngå skjev belastning av opplagringen til skovlene fra trykk og rotasjon. The vanes are positioned with the center of gravity on a straight line through the bearing of the vanes in the flywheel to the center of gravity of the flywheel. The purpose is to avoid uneven loading of the storage of the vanes from pressure and rotation.

Dette gjør at omdreiningshastigheten på rotor kan økes, og «Momentjustert rotormotor» får høyere effekt enn «Sentermatet rotormotor» med samme ytre dimensjoner. This means that the rotational speed of the rotor can be increased, and "Torque-adjusted rotor motor" has a higher output than "Center-fed rotor motor" with the same external dimensions.

Figurbeskrivelse Figure description

Figur 1 a Bunn i hus (A) Figure 1 a Bottom of housing (A)

b Side i hus (A) b Side in house (A)

c Topp i hus (A) c Top of house (A)

d Øverste innerside i hus (A) d Upper inner side of housing (A)

e Avstandsstykker til neste rotormotor eller gear e Spacers for the next rotor motor or gear

f Glideskinner for å få skovle (r) i transportstilling f Slide rails to get bucket(s) into transport position

g Rør for drivstoff til eksplosjonskammer (j) g Pipe for fuel to explosion chamber (j)

k Vifteblad som skaffer luft til eksplosjonskammer (j) k Fan blade that supplies air to the explosion chamber (j)

m Rotoraksel m Rotor shaft

m1 Rotoraksel, hann tilkobling m1 Rotor shaft, male connection

n Hull for bolter som holder rotormotoren sammen n Holes for bolts that hold the rotor motor together

o Rotasjonsretning o Direction of rotation

p Utløp for brennstoffgasser p Outlet for fuel gases

Figur 2 q Rotorstaver tilpasset avstanden mellom innsnevring (s) og innerveggene (d) og (w). Figure 2 q Rotor rods adapted to the distance between narrowing (s) and the inner walls (d) and (w).

r1 Skovle i transportstilling r1 Bucket in transport position

r2 Skovle i aktiv stilling r2 Bucket in active position

s Innsnevring i huset som stenger mellom høyt og lavt trykk s Narrowing in the housing that closes between high and low pressure

Figur 3 Hus (A) Figure 3 House (A)

i Skovlekammer in Shovelkammer

j Eksplosjonskammer j Explosion chamber

t Senterforing i hus (A) for aksel (m) i rotor (B) t Center liner in housing (A) for shaft (m) in rotor (B)

u Åpning fra eksplosjonskammer (j) til skovlekammer (i) u Opening from explosion chamber (j) to vane chamber (i)

w Nedre innervegg w Lower inner wall

Figur 4 Rotor (B) Figure 4 Rotor (B)

h Bolt for feste av skovle (r) til svinghjul (y) h Bolt for attachment of vane (r) to flywheel (y)

y Svinghjul i rotor (B) y Flywheel in rotor (B)

x Festeplate i skovle (r) x Attachment plate in bucket(s)

z Foringer festet på svinghjul (y) z Bushings attached to flywheel (y)

Figur 5 t Senterforing som er fast i hus (A) Figure 5 t Center liner fixed in housing (A)

m2 Hunntilkobling på aksel (m) på rotor (B) m2 Female connection on shaft (m) on rotor (B)

f Ledejern for å få skovle (r) i transportstilling (r1) f Guide rail to bring bucket (r) into transport position (r1)

Figur 6 Skovle (r) Figure 6 Shovel(s)

h Bolt for feste av skovle (r) til svinghjul (y) h Bolt for attachment of vane (r) to flywheel (y)

x Festeplate som er fast i skovle (r), og som beveger seg i tilpasset spor i svinghjul (y) x Fixing plate which is fixed in vane (r) and which moves in adapted groove in flywheel (y)

v Tapp som bestemmer aktiv stilling(r2) eller transportstilling (r1) av skovle (r) Forklaring v Pin that determines active position (r2) or transport position (r1) of bucket (r) Explanation

Figur 1 viser en «Momentjustert rotormotor», hvor hoveddelene er hus (A), vist på figur 3, og rotor (B), vist på figur 4. Delene av hus (A) som vises på figur 1 er bunn (a), side (b), topplate (c), øvre innerside (d), ledejern (f), avstandstykker (e) og rørene (g) som leder brennstoff til eksplosjonskammer (j), vist på figur 3. Utløpet (p) viser hvor avgassene slippes til friluft. Hull (n) er ett av flere like hull for bolter som holder rotormotor og gear sammen. Av rotor (B) vises aksel (m) med ende (m1) og vifteblad (k). Dreieretningen er vist med pil (o). Figure 1 shows a "Torque adjusted rotor motor", where the main parts are housing (A), shown in figure 3, and rotor (B), shown in figure 4. The parts of housing (A) shown in figure 1 are bottom (a), side (b), top plate (c), upper inner side (d), guide iron (f), spacers (e) and the pipes (g) that lead fuel to the explosion chamber (j), shown in figure 3. The outlet (p) shows where the exhaust gases are released into the open air. Hole (n) is one of several identical holes for bolts that hold the rotor motor and gear together. The rotor (B) shows the shaft (m) with end (m1) and fan blade (k). The direction of rotation is shown by arrow (o).

På figur 2 er topplate (c) av huset (A) borte og vi ser mer av rotor (B) som nå viser rotorstavene (q) og de 2 skovlene (r), hvor den ene er i transportstilling (r1) og den andre i aktiv stilling (r2). In figure 2, the top plate (c) of the housing (A) is gone and we see more of the rotor (B) which now shows the rotor rods (q) and the 2 vanes (r), where one is in transport position (r1) and the other in active position (r2).

Innsnevring (s) i skovlekammer (i) hindrer trykket i å gå til utløpet (p) uten å påvirke skovlene (r). Figur 3 viser hus (A) hvor topplaten (c) er borte, og vi ser senterforing (t), hvor aksel (m) i rotor (B) er opplagret. Vi ser også nedre innerforing (w) som skiller eksplosjonskammer (j) fra skovlekammer (i). I eksplosjonskammer (j) antennes brennstoffet og skaper trykk som tilføres skovlekammer (i) gjennom åpning (u), slik at skovle (r) får trykk som skaper dreiemoment på svinghjul (y) og rotasjon av rotor (B). Narrowing (s) in vane chamber (i) prevents the pressure from going to the outlet (p) without affecting the vanes (r). Figure 3 shows the housing (A) where the top plate (c) is gone, and we see the center liner (t), where the shaft (m) in the rotor (B) is stored. We also see the lower inner lining (w) which separates the explosion chamber (j) from the vane chamber (i). In the explosion chamber (j), the fuel is ignited and creates pressure that is supplied to the vane chamber (i) through opening (u), so that the vane (r) receives pressure that creates torque on the flywheel (y) and rotation of the rotor (B).

Svinghjul (y) på rotor (B) beveger seg mellom øvre innervegg (d) og nedre innervegg (w), og svinghjul (y) har stor masse for å få jevnere rotasjonshastighet når trykket fra eksplosjonskammer (j) utnyttes. Svinghjul (y) danner også et tak på eksplosjonskammer (j), slik at bare åpning (u) slipper eksplosjonstrykket til i skovlekammer (i). Flywheel (y) on rotor (B) moves between upper inner wall (d) and lower inner wall (w), and flywheel (y) has a large mass to obtain a more uniform rotation speed when the pressure from explosion chamber (j) is utilized. Flywheel (y) also forms a roof on explosion chamber (j), so that only opening (u) releases the explosion pressure into vane chamber (i).

Avstanden mellom innsnevring (s) og innerveggene (d) og (w) er tilpasset stavene (q) og skovlene (r), og hindrer trykket fra eksplosjonskammer (j) å ta snarveien fra skovlekammer (i) til utløpet (p). Figur 4 viser rotor (B) med svinghjul (y), hvor skovle (r1) er i transportstilling og skovle (r2) er i aktiv stilling. Foringene (z) er fast i svinghjul (y), og bolt (h) gjennom foringene (z) og skovle (r) lager en opplagring mellom svinghjul (y) og skovle (r). The distance between the constriction (s) and the inner walls (d) and (w) is adapted to the rods (q) and vanes (r), and prevents the pressure from the explosion chamber (j) from taking the shortcut from the vane chamber (i) to the outlet (p). Figure 4 shows rotor (B) with flywheel (y), where vane (r1) is in transport position and vane (r2) is in active position. The liners (z) are fixed in the flywheel (y), and the bolt (h) through the liners (z) and vane (r) creates a bearing between the flywheel (y) and vane (r).

Bolt (h) går også gjennom plate (x) som er fast i skovle (r), vist på figur 6. Plate (x) er tilpasset en åpning i svinghjul (y). Tapp (v), som er fast i plate (x), stopper skovlene (r) og bestemmer aktiv stilling (r2) og transportstilling (r1). Bolt (h) also passes through plate (x) which is fixed in vane (r), shown in figure 6. Plate (x) is adapted to an opening in flywheel (y). Pin (v), which is fixed in plate (x), stops the vanes (r) and determines active position (r2) and transport position (r1).

Svinghjul (y) har også åpninger med skråstilte vifteblad (k), som lager en vifte med tilbakeslagsventiler og tilfører eksplosjonskammer (j) luft når trykket er mindre enn utenfor rotormotoren. Aksel (m), har en hann ende (m1) og en hunn ende (m2) for å koble sammen rotormotor og gear, og eventuelt flere rotormotorer. Flywheel (y) also has openings with inclined fan blades (k), which create a fan with non-return valves and supply explosion chamber (j) with air when the pressure is less than outside the rotor motor. Shaft (m), has a male end (m1) and a female end (m2) to connect the rotor motor and gear, and possibly several rotor motors.

Det er en rett linje fra tyngdepunktet i skovle (r) og gjennom opplagringen til skovlene og til tyngdepunktet i svinghjul (y). Opplagring med hengsle på denne måten hindrer skjev belastning av opplagringspunktet når trykk og rotasjon lager press på skovlene (r). Denne måten å lage opplagring på gjør at effekten til «Momentjustert rotormotor» er større enn for «Sentermatet rotormotor» med samme ytre dimensjoner. There is a straight line from the center of gravity in the vane (r) and through the bearing to the vanes and to the center of gravity in the flywheel (y). Storage with a hinge in this way prevents skewed loading of the storage point when pressure and rotation put pressure on the vanes (r). This way of creating storage means that the effect of "Torque-adjusted rotor motor" is greater than that of "Center-fed rotor motor" with the same external dimensions.

Det at aksel (m) har en hann og en hunn ende gjør at rotor (B) og gear kan kobles sammen og rotor (B) får opplagring i begge ender. The fact that the shaft (m) has a male and a female end means that the rotor (B) and gear can be connected together and the rotor (B) is supported at both ends.

Figur 5 viser hvordan opplagringen er mellom rotoraksel (m) og foring (t) i bunnen (a). Figure 5 shows how the bearing is between the rotor shaft (m) and liner (t) in the bottom (a).

Claims (1)

PatentkravPatent claims Momentjustert rotormotor har et hus (A) med eksplosjonskammer (j) hvor svinghjul (y) i rotor (B) danner et tak og åpning (u) slipper eksplosjonstrykket til et skovlekammer (i), hvor skovler (r) utnytter trykket og lager dreiemoment til et svinghjul (y) på en rotor (B), og videre har rotor (B) en aksel (m) som er opplagret i senterforing (t) i huset (A), og videre har aksel (m) en hann og en hunn ende, slik at gear og flere rotormotorer kan kobles sammen og festes med bolter gjennom hullene (n), og aksel (m) får nødvendig opplagring i begge ender, og videre er skovlene (r) og stavene (q) laget slik at de fyller rommet mellom innsnevring (s) og innerveggene (d) og (w) i transportfasen (r1),Torque-adjusted rotor motor has a housing (A) with explosion chamber (j) where flywheel (y) in rotor (B) forms a roof and opening (u) releases the explosion pressure to a vane chamber (i), where vanes (r) utilize the pressure and create torque to a flywheel (y) on a rotor (B), and furthermore rotor (B) has a shaft (m) which is stored in a center bushing (t) in the housing (A), and further shaft (m) has a male and a female end, so that the gear and several rotor motors can be connected together and fixed with bolts through the holes (n), and the shaft (m) gets the necessary support at both ends, and furthermore the vanes (r) and rods (q) are made so that they fills the space between constriction (s) and the inner walls (d) and (w) in the transport phase (r1), K a r a kt e r i s e rt v e dC h a r a c t e r i s e rt w e d at en rett linje mellom tyngdepunktet i skovle (r) og tyngdepunktet i svinghjul (y) går gjennom opplagringen av skovle (r), i den hensikt å unngå skjev belastning av opplagringspunktet til skovle (r) fra eksplosjonstrykk og rotasjon. that a straight line between the center of gravity of the blade (r) and the center of gravity of the flywheel (y) passes through the bearing of the blade (r), in order to avoid biased loading of the bearing point of the blade (r) from explosion pressure and rotation.
NO20210195A 2021-02-15 2021-02-15 Torque adjusted rotor motor NO346550B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20210195A NO346550B1 (en) 2021-02-15 2021-02-15 Torque adjusted rotor motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20210195A NO346550B1 (en) 2021-02-15 2021-02-15 Torque adjusted rotor motor

Publications (2)

Publication Number Publication Date
NO20210195A1 NO20210195A1 (en) 2022-08-16
NO346550B1 true NO346550B1 (en) 2022-10-03

Family

ID=83231068

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20210195A NO346550B1 (en) 2021-02-15 2021-02-15 Torque adjusted rotor motor

Country Status (1)

Country Link
NO (1) NO346550B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US810366A (en) * 1905-02-03 1906-01-16 Peter Bartoletti Rotary explosion-engine.
US2098244A (en) * 1935-02-07 1937-11-09 Hopfensberger Georg Rotating machine
US2585354A (en) * 1946-07-17 1952-02-12 Thorgrimsson Einar Rotary motor
US4072132A (en) * 1976-08-27 1978-02-07 Mighty-Mini Rotary Engine, Limited Rotary internal combustion engine
US4106472A (en) * 1976-11-08 1978-08-15 Glenn Rusk Rotary energy converter with respiring chambers
US20100170469A1 (en) * 2009-01-06 2010-07-08 Scott Hudson Rotary energy converter with retractable barrier
NO343537B1 (en) * 2018-05-04 2019-04-01 Innovako Aanund Ottesen Center-fed bucket turbine
NO345283B1 (en) * 2019-05-21 2020-11-30 Ottesen Aanund Center-fed rotor motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US810366A (en) * 1905-02-03 1906-01-16 Peter Bartoletti Rotary explosion-engine.
US2098244A (en) * 1935-02-07 1937-11-09 Hopfensberger Georg Rotating machine
US2585354A (en) * 1946-07-17 1952-02-12 Thorgrimsson Einar Rotary motor
US4072132A (en) * 1976-08-27 1978-02-07 Mighty-Mini Rotary Engine, Limited Rotary internal combustion engine
US4106472A (en) * 1976-11-08 1978-08-15 Glenn Rusk Rotary energy converter with respiring chambers
US20100170469A1 (en) * 2009-01-06 2010-07-08 Scott Hudson Rotary energy converter with retractable barrier
NO343537B1 (en) * 2018-05-04 2019-04-01 Innovako Aanund Ottesen Center-fed bucket turbine
NO345283B1 (en) * 2019-05-21 2020-11-30 Ottesen Aanund Center-fed rotor motor

Also Published As

Publication number Publication date
NO20210195A1 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
US2820339A (en) Turbo-charged internal combustion engines and methods of starting and operating them
NO156703B (en) PROCEDURE FOR IMPROVING THE OPERATING PARAMETERS FOR A COMBUSTION ENGINE AND AN ENGINE ADAPTED TO THIS PROCEDURE.
US2968914A (en) Turbocharging of internal combustion engines
SE422346B (en) SET TO CONTROL THE PROCEDURE IN A COMBUSTION ENGINE AND COMBUSTION ENGINE FOR REALIZING THE SET
SE514969C2 (en) Internal combustion engine
GB2090913A (en) Turbocharged ic engine with an auxiliary charge compressor
US2688230A (en) Continuous combustion engine
JP6378251B2 (en) Internal combustion engine supercharging system
NO346550B1 (en) Torque adjusted rotor motor
FI127178B (en) A combustion chamber arrangement and a system comprising said arrangement
Bozza et al. Second law analysis of turbocharged engine operation
JP4631848B2 (en) Spark ignition internal combustion engine
US334153A (en) George h
JP5569649B2 (en) Internal combustion engine having a variable compression ratio mechanism
US20060283419A1 (en) Continuous internal combustion engine
JP2006316681A (en) Internal combustion engine
NO20190631A1 (en)
US3924976A (en) Engine
CA2612386C (en) Continuous internal combustion engine
US1147280A (en) Combined internal-combustion engine and turbine and process of converting heat energy into power.
SE527959C2 (en) Piston rotor machine and internal combustion engine
KR20080042505A (en) Turbo-charger system
CN108730028A (en) A kind of rotor-reciprocating engine
US1353687A (en) Turbine-engine
US1125157A (en) Internal-combustion turbine-engine.