NO339430B1 - Compressor stations - Google Patents

Compressor stations Download PDF

Info

Publication number
NO339430B1
NO339430B1 NO20091367A NO20091367A NO339430B1 NO 339430 B1 NO339430 B1 NO 339430B1 NO 20091367 A NO20091367 A NO 20091367A NO 20091367 A NO20091367 A NO 20091367A NO 339430 B1 NO339430 B1 NO 339430B1
Authority
NO
Norway
Prior art keywords
compressor
turbine
steam
gas
gas turbine
Prior art date
Application number
NO20091367A
Other languages
Norwegian (no)
Other versions
NO20091367L (en
Inventor
Hans-Gerd Kölscheid
Klaus Peters
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Publication of NO20091367L publication Critical patent/NO20091367L/en
Publication of NO339430B1 publication Critical patent/NO339430B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0287Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0289Use of different types of prime drivers of at least two refrigerant compressors in a cascade refrigeration system

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Oppfinnelsen vedrører kompressoranlegg, særlig for flytendegjøring av gass. The invention relates to compressor systems, particularly for the liquefaction of gas.

Det er kjent å bruke enten gassturbiner eller dampturbiner eksempelvis for strømforsyning til elektriske drivmaskiner eller elektromotorer for drift av kompressorer. En ulempe ved den kjente teknikk er at anleggenes totalvirkningsgrad begrenser enkeltprosessmulighetene. Virkningsgraden til gassturbiner ligger på ca. 40 %, for dampturbiner på ca. 45 % og for elektriske arbeidsmaskiner (eksempelvis elektromotorer) omtrent på 98 %. For elektriske arbeidsmaskiner henholdsvis elektromotorer må man imidlertid ta hensyn til at strømmen som disse trenger, må tas fra en gassprosess (gassturbin), en dampprosess (dampturbin) eller fra en kombinasjon av disse to prosessene. Virkningsgraden for strømfremstillingen kan således maksimalt komme opp i 60 % med dagens teknikk. Videre er det nødvendig med en komplisert koblingsteknikk, for overføring av den tilveiebrakte elektriske strømmen til elektriske arbeidsmaskiner eller til elektromotorer. Videre kan man heller ikke se bort fra overføringstap i et system hvor elektrisk energi skal omformes fra et frekvensområde i en frekvensomformer. Overføringstapene kan eksempelvis utgjøre ca. 5 %. It is known to use either gas turbines or steam turbines, for example, to supply power to electric drive machines or electric motors to operate compressors. A disadvantage of the known technique is that the plants' total efficiency limits the individual process possibilities. The efficiency of gas turbines is approx. 40%, for steam turbines of approx. 45% and for electrical work machines (for example electric motors) approximately 98%. For electric work machines and electric motors, however, it must be taken into account that the current they need must be taken from a gas process (gas turbine), a steam process (steam turbine) or from a combination of these two processes. The efficiency of electricity generation can thus reach a maximum of 60% with current technology. Furthermore, a complicated connection technique is necessary for the transmission of the supplied electric current to electric work machines or to electric motors. Furthermore, transmission loss cannot be ignored in a system where electrical energy is to be converted from a frequency range in a frequency converter. The transmission losses can, for example, amount to approx. 5%.

De elektriske arbeidsmaskiner eller elektromotorene driver eksempelvis en kompressor, som eksempelvis kan brukes som kompressor i et anlegg for flytendegj øring av gass. Et slikt anlegg for flytendegjøring av gass er eksempelvis et LNG-anlegg (LNG - Liquified Natural Gas). I et slikt anlegg blir jordgass kjølt ned til ca. -160°C. Da blir gassen flytende og vil da (siden den har mindre volum) også lettere kunne transporteres (vanligvis i spesielle transportinnretninger). Kompressorene har til oppgave å komprimere driftsmedier, vanligvis driftsgasser, som kan oppta varme i forbindelse med en senere ekspansjon. Denne varmen trekkes fra gassen i LNG-anleggets såkalte "Cold Box", og gassen blir derved nedkjølt. Driftsmediet eller driftsgassen blir så gjentatte ganger komprimert og ekspandert i et kretsløp. The electric work machines or electric motors, for example, drive a compressor, which can, for example, be used as a compressor in a plant for the liquefaction of gas. Such a plant for the liquefaction of gas is, for example, an LNG plant (LNG - Liquified Natural Gas). In such a facility, natural gas is cooled down to approx. -160°C. The gas then becomes liquefied and (since it has a smaller volume) can also be transported more easily (usually in special transport devices). The compressors have the task of compressing operating media, usually operating gases, which can absorb heat in connection with a later expansion. This heat is extracted from the gas in the LNG plant's so-called "Cold Box", and the gas is thereby cooled. The operating medium or operating gas is then repeatedly compressed and expanded in a circuit.

Kompressorene drives vanligvis av de nevnte elektromotorene, slik at det her oppstår betydelige (overførings)-tap, da den nødvendige strømmen for elektromotoren enten må tas fra gassprosessen eller dampprosessen, og fordi elektromotoren må drive kompressoren. The compressors are usually driven by the aforementioned electric motors, so that significant (transmission) losses occur here, as the necessary current for the electric motor must either be taken from the gas process or the steam process, and because the electric motor must drive the compressor.

Hensikten med oppfinnelsen er ved hjelp av enkle midler å forbedre et kompressoranlegg av den innledningsvis nevnte type, slik at virkningsgraden bedres og man samtidig reduserer skadelige utslipp. The purpose of the invention is, by means of simple means, to improve a compressor system of the type mentioned at the outset, so that the degree of efficiency is improved and at the same time harmful emissions are reduced.

Ifølge oppfinnelsen oppnås denne hensikt med et kompressoranlegg som angitt i krav 1. According to the invention, this purpose is achieved with a compressor system as stated in claim 1.

Fordelaktig brukes gassturbiner og dampturbiner separat for direkte drift av den i det minste ene kompressoren, altså uten mellomkobling av en elektrisk arbeidsmaskin eller en elektromotor. Dette medfører en bedring av virkningsgraden, fordi energioverføringen fra gassturbinen så vel som fra dampturbinen til den respektive i det minste ene kompressoren skjer direkte, slik at man derved unngår omformingstap av den type som oppstår ved produksjon av strøm og drift av kompressorer ved hjelp av elektriske arbeidsmaskiner eller elektromotorer. Dermed oppnås også samtidig en redusering av skadelige utslipp, så som C02-utslipp, noe som særlig er en fordel i forbindelse med handel med henholdsvis kjøp av utslippskvoter. Den som er skyld i mindre utslipp, trenger heller ikke kjøpe så store utslippskvoter. Advantageously, gas turbines and steam turbines are used separately for direct operation of at least one compressor, i.e. without the intermediate connection of an electric working machine or an electric motor. This leads to an improvement in the degree of efficiency, because the energy transfer from the gas turbine as well as from the steam turbine to the respective at least one compressor takes place directly, so that conversion losses of the type that occur when producing electricity and operating compressors using electrical work machines or electric motors. Thus, a reduction in harmful emissions, such as C02 emissions, is also achieved at the same time, which is particularly an advantage in connection with trading or the purchase of emission quotas. Whoever is responsible for minor emissions does not need to buy such large emissions quotas either.

Dette er desto mer fordelaktig fordi avgassen fra gassturbinen kan anvendes for fyring i et dampproduksjonsanlegg, fortrinnsvis en varmekjele, som tilveiebringer den for dampturbinen nødvendige dampen. Særlig er det i samsvar med oppfinnelsen hensiktsmessig dersom gassturbinen og dampturbinen kombineres med hverandre i en gass- og dampprosess (GoD-prosess). Naturligvis kan flere gassturbiner også være tilsluttet til en varmekjele, idet hensiktsmessig hver gassturbin driver i det minste en kompressor direkte. Dampturbinen kan ha en høytrykksdel, en middel stry kkdel og/eller en lavtrykksdel, og fortrinnsvis har en dampturbin alle disse tre nevnte trykkdelene. Fra varmekjelen går dampen eksempelvis først inn i høytrykksdelen, derfra inn i middeltrykksdelen og så inn i lavtrykksdelen, som etterfølges av i det minste en kompressor. Naturligvis er plasseringen av kompressoren bak lavtrykksdelen ikke begrenset til en slik anordning. Det er mulig eksempelvis å anordne kompressoren mellom delturbinene eller på høytrykkssiden. This is all the more advantageous because the exhaust gas from the gas turbine can be used for firing in a steam production plant, preferably a boiler, which provides the steam required for the steam turbine. In particular, in accordance with the invention, it is appropriate if the gas turbine and the steam turbine are combined with each other in a gas and steam process (GoD process). Naturally, several gas turbines can also be connected to a boiler, as each gas turbine conveniently drives at least one compressor directly. The steam turbine can have a high pressure part, a medium pressure part and/or a low pressure part, and preferably a steam turbine has all three of these mentioned pressure parts. From the boiler, for example, the steam first goes into the high-pressure section, from there into the medium-pressure section and then into the low-pressure section, which is followed by at least one compressor. Naturally, the location of the compressor behind the low-pressure section is not limited to such a device. It is possible, for example, to arrange the compressor between the partial turbines or on the high-pressure side.

For ytterligere bedring av virkningsgraden er det fordelaktig ifølge oppfinnelsen dersom den i det minste ene gassturbinen og/eller dampturbinen er tilordnet flere respektive kompressorer, som er seriekoblet med den i det minste ene kompressoren eller er parallellkoblet med denne. For further improvement of the efficiency, it is advantageous according to the invention if the at least one gas turbine and/or steam turbine is assigned to several respective compressors, which are connected in series with the at least one compressor or are connected in parallel with this.

Man kan også tenke seg at det etter den i det minste ene kompressoren er anordnet en generator eller en elektrisk arbeidsmaskin eller en elektromotor, for eksempelvis å drive andre maskiner. One can also imagine that a generator or an electric working machine or an electric motor is arranged after the at least one compressor, for example to drive other machines.

Ifølge oppfinnelsen er det fordelaktig dersom den i det minste ene til gassturbinen tilordnede kompressoren og gassturbinen har en felles aksel, hvorved virkningsgraden kan bedres ytterligere. Naturligvis kan det også forefinnes to adskilte akseldeler for de respektive komponentene, hvilke akseldeler kan forbindes med hverandre ved hjelp av egnede midler. Man kan også ha flere kompressorer som er seriekoblet og har en felles aksel. Naturligvis kan også den i det minste ene til dampturbinen tilordnede kompressoren og dampturbinen ha en felles aksel, idet det også her selvfølgelig kan tenkes bruk av adskilte akseldeler som nevnt foran. According to the invention, it is advantageous if at least one of the compressors assigned to the gas turbine and the gas turbine have a common shaft, whereby the degree of efficiency can be further improved. Naturally, there can also be two separate shaft parts for the respective components, which shaft parts can be connected to each other by means of suitable means. You can also have several compressors that are connected in series and have a common shaft. Of course, at least one of the compressors assigned to the steam turbine and the steam turbine can also have a common shaft, as the use of separate shaft parts as mentioned above is of course conceivable here as well.

Den respektive kompressor, som drives direkte fra gassturbinen henholdsvis dampturbinen, kan eksempelvis brukes som kompressor i et anlegg for flytendegjøring av gass, eksempelvis i et LNG-anlegg. The respective compressor, which is driven directly from the gas turbine or the steam turbine, can for example be used as a compressor in a plant for the liquefaction of gas, for example in an LNG plant.

Ytterligere fordelaktige utførelser av oppfinnelsen er angitt i de uselvstendige kravene og vil bli beskrevet nærmere nedenfor under henvisning til tegningen, hvor Further advantageous embodiments of the invention are indicated in the independent claims and will be described in more detail below with reference to the drawing, where

Fig. I viser prinsippet som brukes i et kompressoranlegg. Fig. I shows the principle used in a compressor system.

Fig. 1 viser et kompressoranlegg 1, med minst én gassturbin 2 og en dampturbin 3.1 utførelseseksemplet er det eksempelvis benyttet tre gassturbiner 2. Fig. 1 shows a compressor system 1, with at least one gas turbine 2 and a steam turbine 3. In the design example, three gas turbines 2 are used, for example.

Avgassene fra gassturbinene 2 brukes i et dampproduksjonsanlegg 2, utformet som en varmekjele. Den dampen som produseres i dampproduksjonsanlegget 4, tilføres dampturbinen 3 og driver denne. The exhaust gases from the gas turbines 2 are used in a steam production plant 2, designed as a boiler. The steam produced in the steam production plant 4 is supplied to the steam turbine 3 and drives it.

En start-hjelpemotor-generator (SHMG) 10 er tilordnet de viste gassturbinene 2. Start-hjelpemotor-generatoren (SHMG) 10 kan brukes både som hjelpemotor så vel som generator. Med start skal her forstås at motoren, på samme måte som i en bilmotor, virker som en startenhet som sørger for at gassturbinen bringes opp til et turtall som gjør det mulig for gassturbinen å drive akselstrengen alene. An auxiliary starter motor generator (SHMG) 10 is assigned to the shown gas turbines 2. The auxiliary starter motor generator (SHMG) 10 can be used both as an auxiliary motor as well as a generator. Starting is to be understood here as meaning that the engine, in the same way as in a car engine, acts as a starting unit which ensures that the gas turbine is brought up to a speed which makes it possible for the gas turbine to drive the axle string alone.

I det i fig. 1 som eksempel viste kompressoranlegg 1 er gassprosessen (gassturbin 2) og dampprosessen (dampturbin 3) kombinert i en gass- og dampprosess (GoD-prosess). In that in fig. 1 shows compressor plant 1 as an example, the gas process (gas turbine 2) and the steam process (steam turbine 3) are combined in a gas and steam process (GoD process).

Dampturbinen 3 i det viste eksemplet har en høytrykksdel 6, en middeltrykksdel 7 og en lavtrykksdel 8. The steam turbine 3 in the example shown has a high pressure part 6, a medium pressure part 7 and a low pressure part 8.

Så vel den i det minste ene gassturbinen 2 så vel som også dampturbinen 3 er tilordnet i det minste en respektiv kompressor 9. Den respektive kompressoren 9 er direkte forbundet med den i det minste ene gassturbinen 2 og dampturbinen 3, idet den i det minste ene til dampturbinen 3 tilordnede kompressor 9 er anordnet etter lavtrykksdelen 8 i dampturbinen 3. De respektive til den i det minste ene gassturbinen 2 og til dampturbinen 3 tilordnede kompressorene 9 drives direkte fra gassturbinen 2 og dampturbinen 3, uten mellomkobling av en elektrisk arbeidsmaskin eller en elektromotor, idet dog gassturbinene riktignok er tilordnet en start-hjelpemotor-generator (SHMG) 10. Both the at least one gas turbine 2 as well as the steam turbine 3 are assigned to at least one respective compressor 9. The respective compressor 9 is directly connected to the at least one gas turbine 2 and the steam turbine 3, the at least one the compressor 9 assigned to the steam turbine 3 is arranged after the low-pressure part 8 in the steam turbine 3. The respective compressors 9 assigned to at least one gas turbine 2 and to the steam turbine 3 are driven directly from the gas turbine 2 and the steam turbine 3, without the intermediate connection of an electric working machine or an electric motor , although the gas turbines are indeed assigned to a start-auxiliary engine-generator (SHMG) 10.

I utførelsen i fig. 1 er det ikke vist, men etter én eller flere av kompressorene 9 kan det være anordnet en elektrisk arbeidsmaskin eller en elektromotor og/eller en generator. Selvfølgelig er plasseringen av kompressorene 9 i akselstrengen ikke begrenset til den her viste posisjoneringen, idet man kan tenke seg flere andre muligheter. In the embodiment in fig. 1, it is not shown, but after one or more of the compressors 9, an electric working machine or an electric motor and/or a generator can be arranged. Of course, the location of the compressors 9 in the axle string is not limited to the positioning shown here, as several other possibilities can be imagined.

Den til gassturbinen 2 i det minste ene kompressoren 9 og den i det minste ene gassturbinen 2 kan ha en felles aksel (linje 11). Videre kan den i det minste ene til dampturbinen 3 henholdsvis til dens lavtrykksdel 8 tilordnede kompressor 9 og dampturbinen 3 henholdsvis lavtrykksdelen 8 ha en felles aksel 12. The at least one compressor 9 of the gas turbine 2 and the at least one gas turbine 2 can have a common shaft (line 11). Furthermore, at least one compressor 9 assigned to the steam turbine 3 or to its low-pressure part 8 and the steam turbine 3 or the low-pressure part 8 can have a common shaft 12.

Den respektive kompressor 9 kan eksempelvis komprimere et driftsmedium eller en driftsgass, slik at driftsmediet ved en senere ekspandering kan oppta varme. Man kan også tenke seg at det i den respektive kompressoren 9 komprimerte driftsmediet tilføres et anlegg for flytendegj øring av gass, eksempelvis et LNG-anlegg for kjøling av jordgassen. The respective compressor 9 can, for example, compress an operating medium or an operating gas, so that the operating medium can absorb heat during subsequent expansion. It is also conceivable that the operating medium compressed in the respective compressor 9 is supplied to a plant for liquefaction of gas, for example an LNG plant for cooling the natural gas.

Claims (8)

1. Kompressoranlegg, særlig for flytendegj øring av gass, med minst en gassturbin (2), som innbefatter en gassturbinkompressor, og med en dampturbin (3), idet et til gassturbinen (2) tilordnet dampproduksjonsanlegg (4) drives med avgasser fra gassturbinen (2), slik at den i dampproduksjonsanlegget (4) tilveiebrakte dampen driver dampturbinen (3), hvilken kombinasjon av gassturbin (2) og dampturbin (3) er tilordnet minst én ekstra kompressor (9) for komprimering av et prosessmedium, hvilken kompressor (9) er direkte forbundet med gassturbinen (2) og/eller dampturbinen (3), slik at den tilordnede kompressoren (9) er direkte drivbar med gassturbinen (2) og/eller dampturbinen (3); karakterisert vedat minst en gassturbin (2) er tilordnet med en start-hjelpemotor-generator (SGMH) (10), tilveiebrakt slik at den kan brukes både som hjelpemotor så vel som generator.1. Compressor plant, in particular for the liquefaction of gas, with at least one gas turbine (2), which includes a gas turbine compressor, and with a steam turbine (3), with a steam production plant (4) assigned to the gas turbine (2) being operated with exhaust gases from the gas turbine ( 2), so that the steam provided in the steam production plant (4) drives the steam turbine (3), which combination of gas turbine (2) and steam turbine (3) is assigned at least one additional compressor (9) for compressing a process medium, which compressor (9 ) is directly connected to the gas turbine (2) and/or steam turbine (3), so that the assigned compressor (9) is directly operable with the gas turbine (2) and/or steam turbine (3); characterized in that at least one gas turbine (2) is assigned to a start-auxiliary engine-generator (SGMH) (10), provided so that it can be used both as an auxiliary engine as well as a generator. 2. Kompressoranlegg ifølge krav 1, karakterisert vedat både gassturbinen (2) så vel som dampturbinen (3) er tilordnet i det minste én ekstra kompressor (9), som er direkte forbundet med henholdsvis gassturbinen (2) og dampturbinen (3), slik at den respektive tilordnede kompressoren (9) er drivbar direkte fra gassturbinen (2) henholdsvis dampturbinen (3).2. Compressor system according to claim 1, characterized in that both the gas turbine (2) as well as the steam turbine (3) are assigned at least one additional compressor (9), which is directly connected to the gas turbine (2) and the steam turbine (3) respectively, so that the respective assigned compressor (9 ) can be driven directly from the gas turbine (2) or the steam turbine (3). 3. Kompressoranlegg ifølge krav 1 eller 2, karakterisert vedat gassturbinen (2) og/eller dampturbinen (3) er tilordnet flere respektive kompressorer (9), som er direkte drivbare fra den respektive turbinen (2, 3).3. Compressor system according to claim 1 or 2, characterized in that the gas turbine (2) and/or steam turbine (3) is assigned to several respective compressors (9), which are directly drivable from the respective turbine (2, 3). 4. Kompressoranlegg ifølge krav 1, 2 eller 3, karakterisert vedat etter den i det minste ene kompressoren (9) er det koblet en elektrisk arbeidsmaskin og/eller en generator.4. Compressor system according to claim 1, 2 or 3, characterized in that after the at least one compressor (9) an electric working machine and/or a generator is connected. 5. Kompressoranlegg ifølge et av de foregående krav, karakterisert vedat den i det minste ene til gassturbinen (2) tilordnede kompressoren (9) og gassturbinen (2) har en felles aksel.5. Compressor system according to one of the preceding claims, characterized in that at least one compressor (9) assigned to the gas turbine (2) and the gas turbine (2) have a common shaft. 6. Kompressoranlegg ifølge et av de foregående krav, karakterisert vedat den i det minste ene til dampturbinen (3) tilordnede kompressoren (9) og dampturbinen (3) har en felles aksel.6. Compressor system according to one of the preceding claims, characterized in that at least one compressor (9) assigned to the steam turbine (3) and the steam turbine (3) have a common shaft. 7. Kompressoranlegg ifølge et av de foregående krav, karakterisert vedat dampproduksjonsan I egget (4) er utført som en varmekjele.7. Compressor system according to one of the preceding claims, characterized in that the steam production in the egg (4) is designed as a boiler. 8. Kompressoranlegg ifølge et av de foregående krav, karakterisert vedat den respektive til gassturbinen (2) og dampturbinen (3) tilordnede i det minste ene kompressor (9) kan brukes som kompressor (9) i et anlegg for flytendegjøring av gass.8. Compressor system according to one of the preceding claims, characterized in that the respective at least one compressor (9) assigned to the gas turbine (2) and the steam turbine (3) can be used as compressor (9) in a plant for liquefaction of gas.
NO20091367A 2006-09-15 2009-04-02 Compressor stations NO339430B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06019355A EP1903189A1 (en) 2006-09-15 2006-09-15 LNG-System in combination with gas- and steam-turbines
PCT/EP2007/059502 WO2008031810A2 (en) 2006-09-15 2007-09-11 Compressor plant

Publications (2)

Publication Number Publication Date
NO20091367L NO20091367L (en) 2009-04-02
NO339430B1 true NO339430B1 (en) 2016-12-12

Family

ID=38229928

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20091367A NO339430B1 (en) 2006-09-15 2009-04-02 Compressor stations

Country Status (7)

Country Link
US (1) US20120324861A1 (en)
EP (2) EP1903189A1 (en)
JP (1) JP5241719B2 (en)
CN (1) CN101517202A (en)
NO (1) NO339430B1 (en)
RU (1) RU2441988C2 (en)
WO (1) WO2008031810A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO331740B1 (en) 2008-08-29 2012-03-12 Hamworthy Gas Systems As Method and system for optimized LNG production
NO331154B1 (en) * 2008-11-04 2011-10-24 Hamworthy Gas Systems As System for combined cycle mechanical operation in cryogenic condensation processes.
DE102008062355A1 (en) * 2008-12-18 2010-07-08 Siemens Aktiengesellschaft Turbo compressor train and method of operating the same and natural gas liquefaction plant with the turbo compressor train
CN102498267B (en) * 2009-06-09 2015-11-25 西门子公司 For making the device of natural gas liquefaction and the method for starting described device
RU2463515C1 (en) * 2011-05-05 2012-10-10 Открытое акционерное общество "Гипрогазцентр" Modular compressor station
DE102016217886A1 (en) 2016-09-19 2018-03-22 Siemens Aktiengesellschaft Plant and process with a thermal power plant and a process compressor
US11703278B2 (en) 2020-06-19 2023-07-18 Mitsubishi Heavy Industries Compressor Corporation Liquefied natural gas compression system
US20220252341A1 (en) * 2021-02-05 2022-08-11 Air Products And Chemicals, Inc. Method and system for decarbonized lng production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2102770A1 (en) * 1971-01-21 1972-08-03 Rastalsky O Installation of a gas turbine with energy storage linked to a steam turbine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2012967A (en) * 1932-02-09 1935-09-03 Holzwarth Gas Turbine Company Method and apparatus for obtaining a pressure medium
LU56620A1 (en) * 1967-08-08 1968-11-14
HU182479B (en) * 1978-10-31 1984-01-30 Energiagazdalkodasi Intezet Method and apparatus for increasing the capacity and/or energetics efficiency of pressure-intensifying stations of hydrocarbon pipelines
US6446465B1 (en) * 1997-12-11 2002-09-10 Bhp Petroleum Pty, Ltd. Liquefaction process and apparatus
US6248794B1 (en) * 1999-08-05 2001-06-19 Atlantic Richfield Company Integrated process for converting hydrocarbon gas to liquids
TW480325B (en) * 1999-12-01 2002-03-21 Shell Int Research Plant for liquefying natural gas
JP2002349289A (en) * 2001-05-21 2002-12-04 Toshiba Corp Sole plate for turbine and power generation plant apparatus using the sole plate
CN102345966A (en) * 2002-09-30 2012-02-08 Bp北美公司 Reduced carbon dioxide emission system and method
BR0306492A (en) * 2002-09-30 2004-10-13 Bp Corp North America Inc Methods to provide refrigerant compression power, refrigerant compression power and shared electrical power for a low carbon, low carbon gas liquefaction gas process, and system to provide refrigerant compression power and shared electric power for a hydrocarbon gas liquefaction process with low carbon dioxide emissions
JP4274846B2 (en) * 2003-04-30 2009-06-10 三菱重工業株式会社 Carbon dioxide recovery method and system
US6872867B1 (en) * 2003-07-17 2005-03-29 Uop Llc Start-up of a methanol-to-olefin process
IL157887A (en) * 2003-09-11 2006-08-01 Ormat Ind Ltd Method and apparatus for augmenting the pressure head of gas flowing in a pipeline

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2102770A1 (en) * 1971-01-21 1972-08-03 Rastalsky O Installation of a gas turbine with energy storage linked to a steam turbine

Also Published As

Publication number Publication date
JP5241719B2 (en) 2013-07-17
RU2009114164A (en) 2010-10-20
JP2010503790A (en) 2010-02-04
WO2008031810A3 (en) 2008-09-25
CN101517202A (en) 2009-08-26
NO20091367L (en) 2009-04-02
US20120324861A1 (en) 2012-12-27
EP2061954A2 (en) 2009-05-27
EP1903189A1 (en) 2008-03-26
WO2008031810A2 (en) 2008-03-20
EP2061954B1 (en) 2013-07-31
RU2441988C2 (en) 2012-02-10

Similar Documents

Publication Publication Date Title
NO339430B1 (en) Compressor stations
DK2634383T3 (en) Method and assembly for storing energy
US10584634B2 (en) Compressed-air-energy-storage (CAES) system and method
PE20040383A1 (en) MOTOR DRIVEN COMPRESSOR SYSTEM FOR LIQUIDATION OF NATURAL GAS
EP3314096B1 (en) Power system and method for producing useful power from heat provided by a heat source
JP2006504928A5 (en)
KR101705657B1 (en) Electricity Generation Device and Method
JP2018513937A (en) Regenerative thermodynamic power cycle system and method for operating the same
JP4833293B2 (en) Steam turbine power plant and method for adding steam turbine power plant
CA2797215A1 (en) Heat recovery in carbon dioxide compression and compression and liquefaction systems
US20120131950A1 (en) Arrangement for Liquefying Natural Gas and Method for Starting Said Arrangement
JP2015524532A (en) Dual-end drive gas turbine
US10177629B2 (en) Method for generating electrical energy and energy generation plant
EP3420201A1 (en) Waste heat recovery cascade cycle and method
GB2501458A (en) Exhaust energy recovery system with power turbine and organic Rankine cycle
AU2009216592A1 (en) Integration of an air separation apparatus and of a steam reheating cycle
US20180187971A1 (en) Method for Thermally Assisted Electric Energy Storage
JP2002038907A (en) Electric power plant of combined cycle
KR101566303B1 (en) Power generation system using compressed air which stores and generating system using the same
US11098643B2 (en) Method for exhaust waste energy recovery at the reciprocating gas engine-based polygeneration plant
AU2021201477B2 (en) Liquefied natural gas compression system
CN219262722U (en) Compressed carbon dioxide energy storage system
US8863492B2 (en) Combined cycle power plant with split compressor
Chiu et al. Improve Energy Efficiency in LNG Production for Baseload LNG Plants

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees