EP2061954B1 - Lng-system in combination with gas- and steam-turbines - Google Patents

Lng-system in combination with gas- and steam-turbines Download PDF

Info

Publication number
EP2061954B1
EP2061954B1 EP07820112.6A EP07820112A EP2061954B1 EP 2061954 B1 EP2061954 B1 EP 2061954B1 EP 07820112 A EP07820112 A EP 07820112A EP 2061954 B1 EP2061954 B1 EP 2061954B1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
gas
compressor
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07820112.6A
Other languages
German (de)
French (fr)
Other versions
EP2061954A2 (en
Inventor
Hans-Gerd Kölscheid
Klaus Peters
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07820112.6A priority Critical patent/EP2061954B1/en
Publication of EP2061954A2 publication Critical patent/EP2061954A2/en
Application granted granted Critical
Publication of EP2061954B1 publication Critical patent/EP2061954B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0282Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0287Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0289Use of different types of prime drivers of at least two refrigerant compressors in a cascade refrigeration system

Definitions

  • the invention relates to a compression plant, in particular for gas liquefaction, with at least one gas turbine, which comprises a gas turbine compressor, and with a steam turbine, wherein a gas turbine associated steam generating plant is operated with exhaust gases of the gas turbine, so that the steam generated in the steam generating plant drives the steam turbine, wherein the combination of the gas turbine and the steam turbine is associated with at least one additional compressor for compressing a process medium, which is connected directly to the gas turbine and / or the steam turbine, so that the associated compressor can be driven directly from the gas turbine and / or the steam turbine.
  • gas turbines or steam turbines for example, to generate electricity for electric drive machines or electric motors for the drive of compressors or compressors.
  • a disadvantage of the known state of the art is that the overall efficiency of the systems is limited to the possibilities of the individual process.
  • the efficiencies of gas turbines are about 40%, of steam turbines about 45% and of electrical machines (eg electric motors) about 98%.
  • electric machines or electric motors it must be taken into consideration that the power they require must be provided by a gas process (gas turbine), a steam process (steam turbine) or by a combination of both processes.
  • the efficiency for power generation can amount to a maximum of 60% with today's technology.
  • transmission losses in a system are the electrical energy in a frequency converter from one frequency range to another has also not negligible.
  • the transmission losses may be, for example, up to about 5%.
  • the electric machines or electric motors drive a compressor, e.g. can be used as a compressor of a gas liquefaction plant.
  • a gas liquefaction plant is e.g. known as LNG plant (Liquefied Natural Gas).
  • LNG plant Liquefied Natural Gas
  • natural gas is cooled down to about -160 ° C.
  • the natural gas becomes liquid and is then (smaller volume) also easier to transport (usually in special transport devices).
  • the compressors have the task of operating media, usually compress operating gases that can absorb heat during a later expansion. This heat is extracted from the natural gas in the so-called "cold box" of the LNG plant, and the natural gas is cooled in this way.
  • the operating medium or operating gas is compressed and relaxed again and again in a cycle.
  • the compressors are usually supplied by the o.g. Driven electric motor, so that there are significant (transmission) losses, since the electricity to be generated for the electric motor is generated either by the gas process or the steam process, and because the electric motor must drive the compressor.
  • the invention has the object to improve a compacting system of the type mentioned by simple means to the effect that the efficiency is improved while harmful emissions are reduced.
  • gas turbines and steam turbines are each used separately to each drive the at least one compressor directly, so without the interposition of an electrical machine or an electric motor.
  • a reduction of harmful emissions such as CO 2 emissions is achieved, which is particularly true with regard to trade and the acquisition of emission rights is advantageous. Because who emits less emissions, must also acquire fewer emission rights.
  • the exhaust gas of the gas turbine can be used to a steam generating plant, preferably to fire a waste heat boiler, which in turn generates the steam required for the steam turbine.
  • a gas and steam process gas and steam process
  • each gas turbine drives at least one compressor directly.
  • the steam turbine can have a high-pressure part, a medium-pressure part and / or a low-pressure part, wherein a steam turbine with all three above-mentioned pressure parts is preferably provided.
  • the steam passes, for example, first into the high-pressure part, from there into the medium-pressure part and then into the low-pressure part, behind which the at least one compressor is arranged.
  • the arrangement of the compressor behind the low pressure part is not limited to this arrangement. It is possible that the compressor is arranged, for example between the turbine sections or on the high pressure side.
  • the at least one gas turbine and / or the steam turbine are each assigned a plurality of compressors, which are connected in series with the at least one compressor or connected in parallel thereto.
  • the at least one compressor, a generator or an electric machine or an electric motor is connected downstream, for example, to drive other machines.
  • the at least one of the gas turbine associated compressor and the gas turbine have a common shaft, so that the efficiency is further improved.
  • two separate shaft parts of the respective component may be provided, which are interconnected by suitable means.
  • a common shaft may be provided.
  • the at least one of the steam turbine associated compressor and the steam turbine may have a common shaft, which of course also separate shaft parts as mentioned above are possible.
  • the respective compressor which is driven directly by the gas turbine or the steam turbine, for example, as a compressor of a gas liquefaction plant, e.g. a LNG plant.
  • FIG. 1 shows a compression system 1, which has at least one gas turbine 2 and a steam turbine 3. In the illustrated embodiment, by way of example, three gas turbines 2 are provided.
  • the exhaust gases of the gas turbine 2 fuel a steam generating plant 4, which is designed as a waste heat boiler.
  • the steam generated in the steam generating plant 4 is supplied to the steam turbine 3 and drives it.
  • the illustrated gas turbine 2 is a starter helper motor generator (SHMG) 10 assigned.
  • the starter helper motor generator (SHMG) 10 can be used both as a helper motor (auxiliary motor) and as a generator.
  • the starter is in Understand the meaning of the invention such that the engine - as in a car engine - is the starter, and ensures to bring the gas turbine to a speed that the gas turbine is able to operate the shaft train alone.
  • gas turbine 2 gas turbine 2
  • steam turbine 3 steam turbine 3
  • gas and steam process gas and steam process
  • the steam turbine 3 has a high-pressure part 6, a medium-pressure part 7 and a low-pressure part 8.
  • Both the at least one gas turbine 2 and the steam turbine 3 are each assigned at least one compressor 9.
  • the respective compressors 9 are each directly connected to the at least one gas turbine 2 and the steam turbine 3, wherein the at least one of the steam turbine 3 associated compressor 9 is disposed behind the low pressure part 8 of the steam turbine 3.
  • Each of the at least one gas turbine 2 and the steam turbine 3 associated compressor 9 are each driven directly from the gas turbine 2 and the steam turbine 3, without the interposition of an electric machine or an electric motor, the gas turbines, however, the starter helper motor generator (SHMG ) 10 is assigned.
  • SHMG starter helper motor generator
  • one or more compressors 9, an electric machine or an electric motor and / or a generator may be connected downstream.
  • the positioning of the compressor 9 in the shaft strands should not be limited to the disclosed position, but may be made variable.
  • the gas turbine 2 may have at least one compressor 9 and the at least one gas turbine 2 to have a common shaft (line 11). Further, the at least one of the steam turbine 3, or its low-pressure part 8 associated compressor 9 and the steam turbine 3 and low pressure part 8 may have a common shaft 12.
  • the respective compressor 9 can, for example, compress an operating medium or an operating gas so that the operating medium can absorb heat during a later expansion. It is conceivable, for example, that the compressed in the respective compressor 9 operating medium of a gas liquefaction plant, for example, a LNG plant (Liquefied Natural Gas) is supplied to cool natural gas.
  • a gas liquefaction plant for example, a LNG plant (Liquefied Natural Gas) is supplied to cool natural gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

Die Erfindung betrifft eine Verdichtungsanlage, insbesondere zur Gasverflüssigung, mit zumindest einer Gasturbine, welche einen Gasturbinenverdichter umfasst, und mit einer Dampfturbine, wobei eine der Gasturbine zugeordnete Dampferzeugungsanlage mit Abgasen der Gasturbine betrieben wird, so dass der in der Dampferzeugungsanlage erzeugte Dampf die Dampfturbine antreibt, wobei der Kombination aus Gasturbine und der Dampfturbine mindestens ein zusätzlicher Verdichter zur Verdichtung eines Prozessmediums zugeordnet ist, der direkt mit der Gasturbine und/oder der Dampfturbine verbunden ist, so dass der zugeordnete Verdichter jeweils direkt von der Gasturbine und/oder der Dampfturbine antreibbar ist.The invention relates to a compression plant, in particular for gas liquefaction, with at least one gas turbine, which comprises a gas turbine compressor, and with a steam turbine, wherein a gas turbine associated steam generating plant is operated with exhaust gases of the gas turbine, so that the steam generated in the steam generating plant drives the steam turbine, wherein the combination of the gas turbine and the steam turbine is associated with at least one additional compressor for compressing a process medium, which is connected directly to the gas turbine and / or the steam turbine, so that the associated compressor can be driven directly from the gas turbine and / or the steam turbine.

Bekannt ist, entweder Gasturbinen oder Dampfturbinen beispielsweise zur Stromerzeugung für elektrische Antriebsmaschinen bzw. Elektromotoren für den Antrieb von Kompressoren bzw. Verdichtern einzusetzen. Nachteilig bei dem bekannten Stand der Technik ist, dass sich der Gesamtwirkungsgrad der Anlagen auf die Möglichkeiten des Einzelprozesses beschränkt. Dabei liegen die Wirkungsgrade von Gasturbinen etwa bei 40%, von Dampfturbinen etwa bei 45% und von elektrischen Arbeitsmaschinen (z.B. Elektromotoren) etwa bei 98%. Bei den elektrischen Arbeitsmaschinen bzw. den Elektromotoren ist allerdings zu berücksichtigen, dass der Strom, den diese benötigen von einem Gasprozess (Gasturbine), einem Dampfprozess (Dampfturbine) oder durch eine Kombination beider Prozesse bereitgestellt werden muss. Der Wirkungsgrad für die Stromerzeugung kann dabei mit der heutigen Technik maximal 60% betragen. Weiter ist eine komplizierte Schaltungstechnik erforderlich, um den erzeugten elektrischen Strom zur elektrischen Arbeitsmaschine bzw. zum Elektromotor zu übertragen. Weiter sind übertragungsverluste bei einem System, das elektrische Energie in einem Frequenzumrichter von einem Frequenzbereich in einen anderen umzusetzen hat ebenfalls nicht vernachlässigbar. Die Übertragungsverluste können beispielsweise bis zu etwa 5% betragen.It is known to use either gas turbines or steam turbines, for example, to generate electricity for electric drive machines or electric motors for the drive of compressors or compressors. A disadvantage of the known state of the art is that the overall efficiency of the systems is limited to the possibilities of the individual process. The efficiencies of gas turbines are about 40%, of steam turbines about 45% and of electrical machines (eg electric motors) about 98%. In the case of electric machines or electric motors, however, it must be taken into consideration that the power they require must be provided by a gas process (gas turbine), a steam process (steam turbine) or by a combination of both processes. The efficiency for power generation can amount to a maximum of 60% with today's technology. Next, a complicated circuit technology is required to transmit the generated electric power to the electric machine or to the electric motor. Further, transmission losses in a system are the electrical energy in a frequency converter from one frequency range to another has also not negligible. The transmission losses may be, for example, up to about 5%.

Die elektrischen Arbeitsmaschinen bzw. die Elektromotoren treiben beispielsweise einen Verdichter an, der z.B. als Verdichter einer Gasverflüssigungsanlage einsetzbar ist. Eine solche Gasverflüssigungsanlage ist z.B. als LNG-Anlage (Liquified Natural Gas) bekannt. Hierbei wird Erdgas bis auf ca. -160°C abgekühlt. Dabei wird das Erdgas flüssig und ist (kleineres Volumen) dann auch leichter zu transportieren (üblicherweise in speziellen Transportvorrichtungen). Die Verdichter haben dabei die Aufgabe Betriebsmedien, üblicherweise Betriebsgase zu verdichten, die bei einer späteren Expansion Wärme aufnehmen können. Diese Wärme wird dem Erdgas in der so genannten "Cold Box" der LNG-Anlage entzogen, und das Erdgas auf diese Weise abgekühlt. Das Betriebsmedium bzw. Betriebsgas wird dabei in einem Kreislauf immer wieder verdichtet und entspannt.For example, the electric machines or electric motors drive a compressor, e.g. can be used as a compressor of a gas liquefaction plant. Such a gas liquefaction plant is e.g. known as LNG plant (Liquefied Natural Gas). Here, natural gas is cooled down to about -160 ° C. The natural gas becomes liquid and is then (smaller volume) also easier to transport (usually in special transport devices). The compressors have the task of operating media, usually compress operating gases that can absorb heat during a later expansion. This heat is extracted from the natural gas in the so-called "cold box" of the LNG plant, and the natural gas is cooled in this way. The operating medium or operating gas is compressed and relaxed again and again in a cycle.

Die Verdichter werden üblicherweise von dem o.g. Elektromotor angetrieben, so dass hier erhebliche (Übertragungs) Verluste entstehen, da der für den Elektromotor zu erzeugende Strom entweder von dem Gasprozess oder dem Dampfprozess erzeugt wird, und da der Elektromotor den Verdichter antreiben muss.The compressors are usually supplied by the o.g. Driven electric motor, so that there are significant (transmission) losses, since the electricity to be generated for the electric motor is generated either by the gas process or the steam process, and because the electric motor must drive the compressor.

Aus der DE 21 02 770 , der US 4,321,790 und der WO 2005/024188 A2 sind jeweils kombinierte Gas- und Dampfturbinenanlagen bekannt, welche auch zum Antrieb eines Verdichters vorgesehen sind. Die beschriebenen Anlagen haben insbesondere im Schwankungsbetrieb signifikante Wirkungsgradeinbußen.From the DE 21 02 770 , of the US 4,321,790 and the WO 2005/024188 A2 combined gas and steam turbine plants are known, which are also provided to drive a compressor. The plants described have significant losses of efficiency, especially in the fluctuation mode.

Der Erfindung liegt die Aufgabe zugrunde eine Verdichtungsanlage der Eingangs genannten Art mit einfachen Mitteln dahingehend zu verbessern, dass der Wirkungsgrad verbessert und gleichzeitig schädliche Emissionen reduziert werden.The invention has the object to improve a compacting system of the type mentioned by simple means to the effect that the efficiency is improved while harmful emissions are reduced.

Erfindungsgemäß wird die Aufgabe durch eine Verdichtungsanlage mit den Merkmalen des Anspruchs 1 gelöst.According to the invention the object is achieved by a compression system with the features of claim 1.

Vorteilhaft werden Gasturbinen und Dampfturbinen jeweils separat dazu benutzt jeweils den zumindest einen Verdichter direkt anzutreiben, also ohne Zwischenschaltung einer elektrischen Arbeitsmaschine bzw. eines Elektromotors. Dies führt zu einer Wirkungsgradverbesserung, da die Energieübertragung sowohl von der Gasturbine als auch der Dampfturbine zu dem jeweils zugeordneten zumindest einen Verdichter auf direktem Wege erfolgt, und so Umwandlungsverluste, wie sie bei der Erzeugung von Strom und Antrieb von Verdichtern mittels elektrischer Arbeitsmaschinen bzw. Elektromotoren auftritt, zu vermeiden. Damit wird aber auch gleichzeitig eine Reduzierung schädlicher Emissionen wie z.B. -CO2-Emissionen erreicht, was insbesondere in Hinsicht auf den Handel bzw. den Erwerb von Emissionsrechten vorteilhaft ist. Denn wer weniger Emissionen ausstößt, muss auch weniger Emissionsrechte erwerben.Advantageously, gas turbines and steam turbines are each used separately to each drive the at least one compressor directly, so without the interposition of an electrical machine or an electric motor. This leads to an improvement in efficiency, since the energy transfer takes place both from the gas turbine and the steam turbine to the associated at least one compressor directly, and thus conversion losses, as in the generation of electricity and drive of compressors by electric machines or electric motors occurs, avoid. At the same time, however, a reduction of harmful emissions such as CO 2 emissions is achieved, which is particularly true with regard to trade and the acquisition of emission rights is advantageous. Because who emits less emissions, must also acquire fewer emission rights.

Dies ist umso vorteilhafter, als das Abgas der Gasturbine dazu verwendet werden kann eine Dampferzeugungsanlage, bevorzugt einen Abhitzekessel zu befeuern, der wiederum den für die Dampfturbine benötigten Dampf erzeugt. Insofern ist es zweckmäßig im Sinne der Erfindung, wenn die Gasturbine und die Dampfturbine miteinander zu einem Gas- und Dampfprozess (GuD-Prozess) kombiniert werden. Natürlich können mehrere Gasturbinen an einen Abhitzekessel angeschlossen sein, wobei dann zweckmäßiger Weise auch jede Gasturbine jeweils zumindest einen Verdichter direkt antreibt. Die Dampfturbine kann einen Hochdruckteil, einen Mitteldruckteil und/oder einen Niederdruckteil aufweisen, wobei bevorzugt eine Dampfturbine mit allen drei oben genannten Druckteilen vorgesehen ist. Aus dem Abhitzekessel gelangt dabei der Dampf beispielhaft zunächst in den Hochdruckteil, von dort in den Mitteldruckteil und anschließend in den Niederdruckteil, hinter dem der zumindest eine Verdichter angeordnet ist. Natürlich ist die Anordnung des Verdichters hinter dem Niederdruckteil nicht auf diese Anordnung beschränkt. Möglich ist, dass der Verdichter beispielsweise zwischen den Teilturbinen oder auf der Hochdruckseite angeordnet ist.This is all the more advantageous as the exhaust gas of the gas turbine can be used to a steam generating plant, preferably to fire a waste heat boiler, which in turn generates the steam required for the steam turbine. In this respect, it is expedient for the purposes of the invention, when the gas turbine and the steam turbine are combined with each other to a gas and steam process (gas and steam process). Of course, several gas turbines may be connected to a waste heat boiler, then expediently each gas turbine drives at least one compressor directly. The steam turbine can have a high-pressure part, a medium-pressure part and / or a low-pressure part, wherein a steam turbine with all three above-mentioned pressure parts is preferably provided. From the waste heat boiler, the steam passes, for example, first into the high-pressure part, from there into the medium-pressure part and then into the low-pressure part, behind which the at least one compressor is arranged. Of course, the arrangement of the compressor behind the low pressure part is not limited to this arrangement. It is possible that the compressor is arranged, for example between the turbine sections or on the high pressure side.

Um den Wirkungsgrad weiter zu verbessern, ist es vorteilhaft im Sinne der Erfindung, wenn der zumindest einen Gasturbine und/oder der Dampfturbine jeweils mehrere Verdichter zugeordnet sind, die mit dem zumindest einen Verdichter in Reihe geschaltet oder parallel dazu geschaltet sind.To further improve the efficiency, it is advantageous for the purposes of the invention if the at least one gas turbine and / or the steam turbine are each assigned a plurality of compressors, which are connected in series with the at least one compressor or connected in parallel thereto.

Denkbar ist, dass dem zumindest einen Verdichter ein Generator oder eine elektrische Arbeitsmaschine bzw. ein Elektromotor nachgeschaltet ist, um z.B. andere Maschinen anzutreiben.It is conceivable that the at least one compressor, a generator or an electric machine or an electric motor is connected downstream, for example, to drive other machines.

Günstig im Sinne der Erfindung ist, wenn der zumindest eine der Gasturbine zugeordnete Verdichter und die Gasturbine eine gemeinsame Welle aufweisen, so dass der Wirkungsgrad weiter verbessert wird. Natürlich können auch zwei getrennte Wellenteile der jeweiligen Komponente vorgesehen sein, welche mit geeigneten Mitteln miteinander verbunden sind. Auch wenn einen Mehrzahl von Verdichtern in Reihe geschaltet sind, kann einen gemeinsame Welle vorgesehen sein. Natürlich können auch der zumindest eine der Dampfturbine zugeordnete Verdichter und die Dampfturbine eine gemeinsame Welle aufweisen, wobei selbstverständlich auch getrennte Wellenteile wie oben genannt möglich sind.Favorable in the context of the invention is when the at least one of the gas turbine associated compressor and the gas turbine have a common shaft, so that the efficiency is further improved. Of course, two separate shaft parts of the respective component may be provided, which are interconnected by suitable means. Although a plurality of compressors are connected in series, a common shaft may be provided. Of course, the at least one of the steam turbine associated compressor and the steam turbine may have a common shaft, which of course also separate shaft parts as mentioned above are possible.

Der jeweilige Verdichter, welcher direkt von der Gasturbine bzw. der Dampfturbine angetrieben ist kann beispielsweise als Verdichter einer Gasverflüssigungsanlage, z.B. einer LNG-Anlage eingesetzt werden.The respective compressor, which is driven directly by the gas turbine or the steam turbine, for example, as a compressor of a gas liquefaction plant, e.g. a LNG plant.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen und der folgenden Figurenbeschreibung offenbart. Es zeigt die einzige

Fig. 1
eine Prinzipdarstellung einer Verdichtungsanlage.
Further advantageous embodiments of the invention are disclosed in the subclaims and the following description of the figures. It shows the only one
Fig. 1
a schematic diagram of a compaction system.

Figur 1 zeigt eine Verdichtungsanlage 1, die zumindest eine Gasturbine 2 und eine Dampfturbine 3 aufweist. In dem dargestellten Ausführungsbeispiel sind beispielhaft drei Gasturbinen 2 vorgesehen.FIG. 1 shows a compression system 1, which has at least one gas turbine 2 and a steam turbine 3. In the illustrated embodiment, by way of example, three gas turbines 2 are provided.

Die Abgase der Gasturbine 2 befeuern eine Dampferzeugungsanlage 4, welche als Abhitzekessel ausgeführt ist. Der in der Dampferzeugungsanlage 4 erzeugte Dampf wird der Dampfturbine 3 zugeführt und treibt diese an.The exhaust gases of the gas turbine 2 fuel a steam generating plant 4, which is designed as a waste heat boiler. The steam generated in the steam generating plant 4 is supplied to the steam turbine 3 and drives it.

Den dargestellten Gasturbinen 2 ist ein Starter-Helpermotor-Generator (SHMG) 10 zugeordnet. Der Starter-Helpermotor-Generator (SHMG) 10 kann sowohl als Helpermotor (Hilfsmotor) als auch als Generator eingesetzt werden. Der Starter ist im Sinne der Erfindung derart zu verstehen, dass der Motor - ähnlich wie bei einem Automotor - den Anlasser darstellt, und dafür Sorge trägt, die Gasturbine auf eine Drehzahl zu bringen, dass die Gasturbine dazu in der Lage ist, den Wellenstrang allein zu betreiben.The illustrated gas turbine 2 is a starter helper motor generator (SHMG) 10 assigned. The starter helper motor generator (SHMG) 10 can be used both as a helper motor (auxiliary motor) and as a generator. The starter is in Understand the meaning of the invention such that the engine - as in a car engine - is the starter, and ensures to bring the gas turbine to a speed that the gas turbine is able to operate the shaft train alone.

In der in Figur 1 dargestellten beispielhaften Verdichtungsanlage 1 ist der Gasprozess (Gasturbine 2) und der Dampfprozess (Dampfturbine 3) zu einem Gas- und Dampfprozess (GuD-Prozess) kombiniert.In the exemplary compression plant 1 shown in FIG. 1, the gas process (gas turbine 2) and the steam process (steam turbine 3) are combined to form a gas and steam process (gas and steam process).

Die Dampfturbine 3 gemäß dem dargestellten Ausführungsbeispiel weist einen Hochdruckteil 6, einen Mitteldruckteil 7 und einen Niederdruckteil 8 auf.The steam turbine 3 according to the illustrated embodiment has a high-pressure part 6, a medium-pressure part 7 and a low-pressure part 8.

Sowohl der zumindest einen Gasturbine 2 als auch der Dampfturbine 3 ist jeweils zumindest ein Verdichter 9 zugeordnet. Die jeweiligen Verdichter 9 sind jeweils direkt mit der zumindest einen Gasturbine 2 und der Dampfturbine 3 verbunden, wobei der zumindest eine der Dampfturbine 3 zugeordnete Verdichter 9 hinter dem Niederdruckteil 8 der Dampfturbine 3 angeordnet ist. Die jeweils der zumindest einen Gasturbine 2 und der Dampfturbine 3 zugeordneten Verdichter 9 werden so jeweils direkt von der Gasturbine 2 und der Dampfturbine 3, ohne Zwischenschaltung einer elektrischen Arbeitsmaschine bzw. eines Elektromotors angetrieben, wobei den Gasturbinen allerdings der Starter-Helpermotor-Generator (SHMG) 10 zuzuordnen ist.Both the at least one gas turbine 2 and the steam turbine 3 are each assigned at least one compressor 9. The respective compressors 9 are each directly connected to the at least one gas turbine 2 and the steam turbine 3, wherein the at least one of the steam turbine 3 associated compressor 9 is disposed behind the low pressure part 8 of the steam turbine 3. Each of the at least one gas turbine 2 and the steam turbine 3 associated compressor 9 are each driven directly from the gas turbine 2 and the steam turbine 3, without the interposition of an electric machine or an electric motor, the gas turbines, however, the starter helper motor generator (SHMG ) 10 is assigned.

Nicht dargestellt ist in dem Ausführungsbeispiel zu Figur 1, dass einem oder mehreren Verdichtern 9 eine elektrische Arbeitsmaschine bzw. ein Elektromotor und/oder ein Generator nachgeschaltet sein kann. Selbstverständlich soll die Positionierung des Verdichters 9 in den Wellensträngen nicht auf die offenbarte Position beschränkt sein, sondern kann variabel gestaltet werden.Not shown in the embodiment of Figure 1 that one or more compressors 9, an electric machine or an electric motor and / or a generator may be connected downstream. Of course, the positioning of the compressor 9 in the shaft strands should not be limited to the disclosed position, but may be made variable.

Möglich ist, dass der der Gasturbine 2 zumindest eine Verdichter 9 und die zumindest eine Gasturbine 2 eine gemeinsame Welle (Linie 11) aufweisen. Weiter können der zumindest eine der Dampfturbine 3, bzw. dessen Niederdruckteil 8 zugeordnete Verdichter 9 und die Dampfturbine 3 bzw. Niederdruckteil 8 eine gemeinsame Welle 12 aufweisen.It is possible for the gas turbine 2 to have at least one compressor 9 and the at least one gas turbine 2 to have a common shaft (line 11). Further, the at least one of the steam turbine 3, or its low-pressure part 8 associated compressor 9 and the steam turbine 3 and low pressure part 8 may have a common shaft 12.

Der jeweilige Verdichter 9 kann beispielsweise eine Betriebsmedium bzw. ein Betriebsgas verdichten, so dass das Betriebsmedium bei einer späteren Expansion Wärme aufnehmen kann. Denkbar ist beispielsweise, dass das in dem jeweiligen Verdichter 9 verdichtete Betriebsmedium einer Gasverflüssigungsanlage, zum Beispiel einer LNG-Anlage (Liquified Natural Gas) zugeführt wird um Erdgas abzukühlen.The respective compressor 9 can, for example, compress an operating medium or an operating gas so that the operating medium can absorb heat during a later expansion. It is conceivable, for example, that the compressed in the respective compressor 9 operating medium of a gas liquefaction plant, for example, a LNG plant (Liquefied Natural Gas) is supplied to cool natural gas.

Claims (8)

  1. Compression installation, in particular for gas liquefaction, having at least one gas turbine (2) which comprises a gas turbine compressor, and having a steam turbine (3) with a steam generating installation (4), which is associated with the gas turbine (2), being operated with exhaust gases from the gas turbine (2), such that the steam which is generated in the steam generating installation (4) drives the steam turbine (3),
    with the combination of the gas turbine (2) and the steam turbine (3) having at least one additional associated compressor (9) for compression of a process medium, which compressor (9) is connected directly to the gas turbine (2) and/or to the steam turbine (3) such that the associated compressor (9) can respectively be driven directly by the gas turbine (2) and/or the steam turbine (3),
    characterized in that
    the at least one gas turbine (2) has an associated starter-helper motor generator (SHMG) 10 which is designed such that it can be used both as a helper motor and as a generator.
  2. Compression installation according to Claim 1, characterized in that
    both the gas turbine (2) and the steam turbine (3) each have at least one additional associated compressor (9), which compressors (9) are respectively connected directly to the gas turbine (2) and the steam turbine (3) such that the respectively associated compressors (9) can respectively be driven directly by the gas turbine (2) and the steam turbine (3).
  3. Compression installation according to Claim 1 or 2, characterized in that
    the gas turbine (2) and/or the steam turbine (3) each has or have a plurality of associated compressors (9) which can be driven directly by the respective turbine (2; 3).
  4. Compression installation according to Claim 1, 2 or 3, characterized in that
    the at least one compressor (9) is followed by an electrical process machine and/or a generator.
  5. Compression installation according to one of the preceding claims,
    characterized in that
    the at least one compressor (9) which is associated with the gas turbine (2), and the gas turbine (2), have a common shaft.
  6. Compression installation according to one of the preceding claims,
    characterized in that
    the at least one compressor (9) which is associated with the steam turbine (3), and the steam turbine (3), have a common shaft.
  7. Compression installation according to one of the preceding claims,
    characterized in that
    the steam generating installation (4) is in the form of a waste-heat boiler.
  8. Compression installation according to one of the preceding claims,
    characterized in that
    the at least one compressor (9) which is respectively associated with the gas turbine (2) and the steam turbine (3) can be used as a compressor (9) in a gas liquefaction installation.
EP07820112.6A 2006-09-15 2007-09-11 Lng-system in combination with gas- and steam-turbines Not-in-force EP2061954B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07820112.6A EP2061954B1 (en) 2006-09-15 2007-09-11 Lng-system in combination with gas- and steam-turbines

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06019355A EP1903189A1 (en) 2006-09-15 2006-09-15 LNG-System in combination with gas- and steam-turbines
PCT/EP2007/059502 WO2008031810A2 (en) 2006-09-15 2007-09-11 Compressor plant
EP07820112.6A EP2061954B1 (en) 2006-09-15 2007-09-11 Lng-system in combination with gas- and steam-turbines

Publications (2)

Publication Number Publication Date
EP2061954A2 EP2061954A2 (en) 2009-05-27
EP2061954B1 true EP2061954B1 (en) 2013-07-31

Family

ID=38229928

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06019355A Withdrawn EP1903189A1 (en) 2006-09-15 2006-09-15 LNG-System in combination with gas- and steam-turbines
EP07820112.6A Not-in-force EP2061954B1 (en) 2006-09-15 2007-09-11 Lng-system in combination with gas- and steam-turbines

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06019355A Withdrawn EP1903189A1 (en) 2006-09-15 2006-09-15 LNG-System in combination with gas- and steam-turbines

Country Status (7)

Country Link
US (1) US20120324861A1 (en)
EP (2) EP1903189A1 (en)
JP (1) JP5241719B2 (en)
CN (1) CN101517202A (en)
NO (1) NO339430B1 (en)
RU (1) RU2441988C2 (en)
WO (1) WO2008031810A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO331740B1 (en) 2008-08-29 2012-03-12 Hamworthy Gas Systems As Method and system for optimized LNG production
NO331154B1 (en) * 2008-11-04 2011-10-24 Hamworthy Gas Systems As System for combined cycle mechanical operation in cryogenic condensation processes.
DE102008062355A1 (en) * 2008-12-18 2010-07-08 Siemens Aktiengesellschaft Turbo compressor train and method of operating the same and natural gas liquefaction plant with the turbo compressor train
CN102498267B (en) * 2009-06-09 2015-11-25 西门子公司 For making the device of natural gas liquefaction and the method for starting described device
RU2463515C1 (en) * 2011-05-05 2012-10-10 Открытое акционерное общество "Гипрогазцентр" Modular compressor station
DE102016217886A1 (en) 2016-09-19 2018-03-22 Siemens Aktiengesellschaft Plant and process with a thermal power plant and a process compressor
US11703278B2 (en) 2020-06-19 2023-07-18 Mitsubishi Heavy Industries Compressor Corporation Liquefied natural gas compression system
US20220252341A1 (en) * 2021-02-05 2022-08-11 Air Products And Chemicals, Inc. Method and system for decarbonized lng production

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2012967A (en) * 1932-02-09 1935-09-03 Holzwarth Gas Turbine Company Method and apparatus for obtaining a pressure medium
LU56620A1 (en) * 1967-08-08 1968-11-14
DE2102770A1 (en) * 1971-01-21 1972-08-03 Rastalsky O Installation of a gas turbine with energy storage linked to a steam turbine
HU182479B (en) * 1978-10-31 1984-01-30 Energiagazdalkodasi Intezet Method and apparatus for increasing the capacity and/or energetics efficiency of pressure-intensifying stations of hydrocarbon pipelines
US6446465B1 (en) * 1997-12-11 2002-09-10 Bhp Petroleum Pty, Ltd. Liquefaction process and apparatus
US6248794B1 (en) * 1999-08-05 2001-06-19 Atlantic Richfield Company Integrated process for converting hydrocarbon gas to liquids
TW480325B (en) * 1999-12-01 2002-03-21 Shell Int Research Plant for liquefying natural gas
JP2002349289A (en) * 2001-05-21 2002-12-04 Toshiba Corp Sole plate for turbine and power generation plant apparatus using the sole plate
CN102345966A (en) * 2002-09-30 2012-02-08 Bp北美公司 Reduced carbon dioxide emission system and method
BR0306492A (en) * 2002-09-30 2004-10-13 Bp Corp North America Inc Methods to provide refrigerant compression power, refrigerant compression power and shared electrical power for a low carbon, low carbon gas liquefaction gas process, and system to provide refrigerant compression power and shared electric power for a hydrocarbon gas liquefaction process with low carbon dioxide emissions
JP4274846B2 (en) * 2003-04-30 2009-06-10 三菱重工業株式会社 Carbon dioxide recovery method and system
US6872867B1 (en) * 2003-07-17 2005-03-29 Uop Llc Start-up of a methanol-to-olefin process
IL157887A (en) * 2003-09-11 2006-08-01 Ormat Ind Ltd Method and apparatus for augmenting the pressure head of gas flowing in a pipeline

Also Published As

Publication number Publication date
JP5241719B2 (en) 2013-07-17
RU2009114164A (en) 2010-10-20
JP2010503790A (en) 2010-02-04
WO2008031810A3 (en) 2008-09-25
CN101517202A (en) 2009-08-26
NO20091367L (en) 2009-04-02
US20120324861A1 (en) 2012-12-27
EP2061954A2 (en) 2009-05-27
EP1903189A1 (en) 2008-03-26
NO339430B1 (en) 2016-12-12
WO2008031810A2 (en) 2008-03-20
RU2441988C2 (en) 2012-02-10

Similar Documents

Publication Publication Date Title
EP2061954B1 (en) Lng-system in combination with gas- and steam-turbines
EP1795725B1 (en) Gas turbine with controlled air cooling
WO2014191157A2 (en) Heat pump with a first thermal fluid energy machine and a second thermal fluid energy machine which are connected in a circuit
EP3400374B1 (en) Gas turbine section with starting motor
EP1711690A1 (en) Gas turbine, especially an aircraft engine
EP2440749B1 (en) Arrangement for liquefying natural gas, and method for starting said arrangement
DE102010042792A1 (en) System for generating mechanical and / or electrical energy
EP1937942B1 (en) Steam power plant and method for retrofitting a steam power plant
DE102008028883A1 (en) Gas turbine with at least one multi-stage compressor unit comprising a plurality of compressor modules
WO2016131920A1 (en) Steam power plant and method for operating same
AT12639U1 (en) Electric power station
DE102011102599A1 (en) Method for operating a small gas turbine arrangement, and small gas turbine arrangement itself
DE202011001111U1 (en) System for coupling Rankine processes to internal combustion engines and gas turbines
DE102008036100A1 (en) Wind power plant has tower, wind wheel and generator, which is operated in motor operation and drives in operating condition of air compressor with electrical net energy
EP2825737A1 (en) System for storing and outputting thermal energy having a heat accumulator and a cold accumulator and method for the operation thereof
EP1904731B1 (en) Combined gas and steam turbine installation and method of operating same
DE102012105470A1 (en) Systems and methods for wheel space cooling in steam turbines
EP2393708B1 (en) Internal combustion engine system having exhaust gas energy recapture for floating devices
DE102011008027A1 (en) System for recovering waste electrical and mechanical energy in organic Rankine cycle turbine and internal combustion engine, has electromotor exerting rotational torque on drive, where speed of generator is transmitted to electromotor
DE102018209054A1 (en) Power generating device for generating electrical power and power grid with such a power generating device
AT505597B1 (en) METHOD FOR OPERATING A WIND POWER PLANT
WO2013079294A1 (en) Method for operating a fixed gas turbine with a low-calorific or medium-calorific fuel as well as a fixed gas turbine therefor
DE102004041275A1 (en) Steam turbine arrangement, has high, medium and low pressure steam cylinders provided along combined shaft that is impelled with rated speed, and another high-pressure cylinder provided on separate shaft that is connected to compressor unit
EP2412951A1 (en) Gas turbine power plant
DE102017211117A1 (en) An engine assembly and method for providing propulsion power to an electrical device for providing electrical energy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090223

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007012114

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01K0013000000

Ipc: F25J0001020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 1/00 20060101ALI20130131BHEP

Ipc: F01K 23/06 20060101ALI20130131BHEP

Ipc: F01K 23/10 20060101ALI20130131BHEP

Ipc: F25J 1/02 20060101AFI20130131BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 624889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012114

Country of ref document: DE

Effective date: 20130926

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130731

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131101

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20140502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130911

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012114

Country of ref document: DE

Effective date: 20140502

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 624889

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130731

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070911

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20171207

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180924

Year of fee payment: 12

Ref country code: IT

Payment date: 20180926

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180911

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181119

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007012114

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190911

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190911

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930