NO332854B1 - Process for the re-concentration and recovery of monoethylene glycol - Google Patents

Process for the re-concentration and recovery of monoethylene glycol Download PDF

Info

Publication number
NO332854B1
NO332854B1 NO20090115A NO20090115A NO332854B1 NO 332854 B1 NO332854 B1 NO 332854B1 NO 20090115 A NO20090115 A NO 20090115A NO 20090115 A NO20090115 A NO 20090115A NO 332854 B1 NO332854 B1 NO 332854B1
Authority
NO
Norway
Prior art keywords
recovery
concentration
meg
water
stream
Prior art date
Application number
NO20090115A
Other languages
Norwegian (no)
Other versions
NO20090115L (en
Inventor
Lucie Addicks
Original Assignee
Aker Process Systems As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aker Process Systems As filed Critical Aker Process Systems As
Priority to NO20090115A priority Critical patent/NO332854B1/en
Priority to PCT/NO2010/000006 priority patent/WO2010080038A1/en
Publication of NO20090115L publication Critical patent/NO20090115L/en
Publication of NO332854B1 publication Critical patent/NO332854B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/86Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by liquid-liquid treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

Fremgangsmåte for re-konsentrasjon og gjenvinning av monoetylenglykol Procedure for the re-concentration and recovery of monoethylene glycol

OMRÅDE FOR OPPFINNELSEN FIELD OF THE INVENTION

Den foreliggende oppfinnelsen angår en fremgangsmåte for regenerering og gjenvinning av MonoEtylenGlykol. The present invention relates to a method for the regeneration and recovery of MonoEthylene Glycol.

BAKGRUNN FOR OPPFINNELSEN BACKGROUND OF THE INVENTION

Hydratinhibitorer slik som monoetylenglykol (MEG) blir brukt i hydrokarbon gass og/eller kondensat rørledninger for eksempel i gassfelt, for å absorbere fuktighet og forhindre hydratdannelse i rørledningen. Typisk blir MEGen injisert ved oppstrømsenden av rørledningen og blir separert fra hydrokarbonstrømmen ved nedstrømsenden. Den separerte MEGen (omtrent 50 % MEG, 50 % vann), betegnet som rik MEG, bærer det absorberte vannet. Denne rike MEGen blir rekonsentrert ved en vannfjerningsprosess for å produsere "mager MEG" (omtrent 90 % MEG, 10 %vann) for gjenbruk. MEGen er også forurenset med andre forbindelser fra brønnen og rørledningen. Rørlednings korrosjonsprodukter, avskalling og andre kontaminanter slik som hydrokarboner, salter fra formasjonsvann eller produksjonskjemikalier er tilstede, og disse urenhetene blir fullstendig eller delvis fjernes i gjenvinningsprosessen. Hydrate inhibitors such as monoethylene glycol (MEG) are used in hydrocarbon gas and/or condensate pipelines, for example in gas fields, to absorb moisture and prevent hydrate formation in the pipeline. Typically, the MEG is injected at the upstream end of the pipeline and is separated from the hydrocarbon stream at the downstream end. The separated MEG (approximately 50% MEG, 50% water), termed rich MEG, carries the absorbed water. This rich MEG is reconcentrated by a dewatering process to produce "lean MEG" (approximately 90% MEG, 10% water) for reuse. The MEG is also contaminated with other compounds from the well and the pipeline. Pipeline corrosion products, scale and other contaminants such as hydrocarbons, salts from formation water or production chemicals are present, and these impurities are completely or partially removed in the recovery process.

I industrien blir to hovedtyper av systemer vanligvis brukt for MEG gjenvinning og re-konsentrasjon: fullstrømskonseptet (the Full Stream concept) og delstrømskonseptet (the Slip Stream concept). Disse to konseptene er skjematisk vist i figur 2A og 2B henholdsvis. Også WO 2007/073204 Al og US 2005072663 Al omhandler henholdsvis et fullstrøms- og delstrømskonsept. In industry, two main types of systems are usually used for MEG recovery and re-concentration: the Full Stream concept and the Slip Stream concept. These two concepts are schematically shown in Figures 2A and 2B respectively. Also WO 2007/073204 A1 and US 2005072663 A1 deal respectively with a full flow and partial flow concept.

WO 2007/073204 Al beskriver en prosess og et anlegg for regenerering av glykol fra en blanding av glykol, vann og salter. Blandingen blir trykkfallsdestillert for å oppnå en saltfri løsning av glykol og vann. Denne løsningen blir så kondensert og destillert for å oppnå glykol med redusert vanninnhold. Saltene blir konsentrert i en vakuumkoker og fjernet fra en delstrøm tatt ut av returløpet til vakuumkokeren. WO 2007/073204 Al describes a process and a plant for the regeneration of glycol from a mixture of glycol, water and salts. The mixture is pressure drop distilled to obtain a salt-free solution of glycol and water. This solution is then condensed and distilled to obtain glycol with a reduced water content. The salts are concentrated in a vacuum cooker and removed from a partial stream taken out of the return pipe to the vacuum cooker.

US 2005072663 Al angir en metode for regenerering av glykol løsning som inneholder vann, hydrokarboner og salter. Glykol løsningen blir ekspandert i en tank, så destillert i en kolonne. Den konsentrerte glykolen som samles opp på kokernivå blir så satt under vakuum for å fordampe vannet og separere saltene. Saltene blir separert fra glykolen i en separasjonsanordning. Den avsaltede glykolen blir lagret for gjenbruk. US 2005072663 Al specifies a method for the regeneration of glycol solution containing water, hydrocarbons and salts. The glycol solution is expanded in a tank, then distilled in a column. The concentrated glycol collected at the boiler level is then put under vacuum to evaporate the water and separate the salts. The salts are separated from the glycol in a separation device. The desalted glycol is stored for reuse.

Med re-konsentrasjon er det ment konsentrasjon av den rike MEGen til mager MEG, og med gjenvinning er det ment fjerning av kontaminanter som salter og korrosjonsprodukter. Med delstrøm (Slip Stream) som brukt heri er ment at MEGen bare delvis blir gjenvunnet. Re-concentration means concentration of the rich MEG into lean MEG, and recycling means removal of contaminants such as salts and corrosion products. Slip Stream as used here means that the MEG is only partially recovered.

I fullstrømskonseptet blir først all den rike MEGen (C) ført inn i gjenvinningsdelen In the full-flow concept, all the rich MEG (C) is first fed into the recovery section

(A), hvori all den rike MEGen blir fordampet ved vakuumkoking og alle saltene (D) blir fjernet i et enkelt trinn. Den fordampede rike MEGen blir så rekonsentrert (B) (A), in which all the rich MEG is evaporated by vacuum boiling and all the salts (D) are removed in a single step. The evaporated rich ME is then reconcentrated (B)

til mager MEG (F) nedstrøms gjenvinningsdelen ved bruk av destillasjon under vakuum. Vann (E) blir destillert av i re-konsentrasjonsprosessen. Fullstrømmen er egnet for produksjon med høy belastning av faststoff, men har begrensninger med hensyn til kapasitet. Dette fører til parallelle prosesstog for håndtering av større volumer. Prosessen er også svært energi krevende siden både MEG og vann må fordampes. to lean MEG (F) downstream of the recovery section using distillation under vacuum. Water (E) is distilled off in the re-concentration process. The full flow is suitable for production with a high load of solids, but has limitations in terms of capacity. This leads to parallel process trains for handling larger volumes. The process is also very energy-intensive since both MEG and water must evaporate.

I delstrømskonseptet blir den rike MEGen (C) først re-konsentrert (B') til mager MEG (F') i re-konsentrasjonsdelen (B') ved destillasjon ved atmosfærisk trykk. I re-konsentrasjonsprosessen blir vann (E') destillert av. Nedstrøms re-konsentrasjonen blir en delstrøm fra den magre MEGen sent til gjenvinningsdel(A') for salt (D') fjerning. Dette betyr at i delstrømskonseptet blir MEGen bare delvis gjenvunnet. Den totale salt konsentrasjonen i den magre MEG sløyfen må imidlertid holdes under et visst maksimumsnivå som er akseptabelt for undervannsprosesseringen. Gjenvinningsdelen blir igjen utført ved bruk av vakuumkoking. Delstrømmen kan bygges for større kapasitet per prosesstog og den er mer energieffektiv, særlig dersom gjenvinningsdelen kan være frakoplet under lav salt produksjonsperioden. In the partial flow concept, the rich MEG (C) is first re-concentrated (B') to lean MEG (F') in the re-concentration section (B') by distillation at atmospheric pressure. In the re-concentration process, water (E') is distilled off. Downstream of the re-concentration, a part stream from the lean MEG is sent to the recovery part (A') for salt (D') removal. This means that in the partial flow concept, the MEG is only partially recovered. However, the total salt concentration in the lean MEG loop must be kept below a certain maximum level that is acceptable for the underwater processing. The recycling part is again carried out using vacuum boiling. The partial flow can be built for greater capacity per process train and it is more energy efficient, especially if the recycling part can be disconnected during the low salt production period.

MEG gjenvinningen og re-konsentrasjonen er energi krevende prosesser og å redusere energiforbruket ville føre til store besparelser. MEG recovery and re-concentration are energy-intensive processes and reducing energy consumption would lead to large savings.

KORT BESKRIVELSE AV TEGNINGENE BRIEF DESCRIPTION OF THE DRAWINGS

Figur 1 er en skjematisk illustrasjon av en utforming av den foreliggende oppfinnelsen. Figur 2A viser skjematisk teknikkens stilling av fullstrømskonseptet, og Figur 2B viser delstrømskonseptet. Figur 3 er en tabell som viser det elektriske kraftforbruket (arbeid) i det reelle simuleringstilfellet i eksempelet. Figur 4 er en tabell som viser varmemedium forbruket i det reelle simuleringstilfellet i eksempelet. Figur 5 er en tabell som viser kjølemedium forbruket i det reelle simuleringstilfellet i eksempelet. Figure 1 is a schematic illustration of a design of the present invention. Figure 2A schematically shows the technical position of the full flow concept, and Figure 2B shows the partial flow concept. Figure 3 is a table showing the electrical power consumption (work) in the real simulation case in the example. Figure 4 is a table showing the heating medium consumption in the real simulation case in the example. Figure 5 is a table showing the coolant consumption in the real simulation case in the example.

DETALJERT BESKRIVELSE AV OPPFINNELSEN DETAILED DESCRIPTION OF THE INVENTION

Den foreliggende oppfinnelsen angår en fremgangsmåte for re-konsentrasjon og gjenvinning av Mono Etylen Glykol omfattende trinnene av The present invention relates to a method for the re-concentration and recovery of Mono Ethylene Glycol comprising the steps of

a) å re-konsentrere den rike MEGen til mager MEG ved vannkoking; og a) re-concentrating the rich MEG into lean MEG by water boiling; and

b) å gjenvinne en del av den magre MEGen, b) to regain part of the meager ME,

hvori både re-konsentrasjons- og gjenvinningstrinnet blir utført ved in which both the re-concentration and recovery steps are carried out by

vakuumbetingelser, trinnene utføres i separate enheter der mengden av mager MEG som sendes som delstrømsandel til gjenvinningsenheten er regulert slik at saltkonsentrasjon i den fulle magre MEG strømmen er under maksimumsnivå akseptabelt for undervannsprosessering. vacuum conditions, the steps are carried out in separate units where the amount of lean MEG sent as sub-stream share to the recovery unit is regulated so that salt concentration in the full lean MEG stream is below the maximum level acceptable for underwater processing.

Konseptet ifølge oppfinnelsen tilveiebringer et energi effektivt system for stor kapasitet. I fullstrømmen blir hele innløpsstrømmen, rik MEG, fordampet under vakuum. Dette er en prosess med høyt energi krav ettersom den totale innløpsstrømmen, dvs. vann og MEG, må fordampes. I delstrømskonseptet blir hele innløpsstrømmen, rik MEG, re-konsentrert ved atmosfærisk vannkoking; dvs. bare vann, ikke MEG, blir kokt av fra hovedstrømmen. Siden kokingen utføres ved atmosfærisk trykk, dvs. ved høyere trykk enn i fullstrøm, er imidlertid koke temperaturen til væsken høyere enn i fullstrøm og energi besparelsen ved å bare koke av vann kan være relativt liten. The concept according to the invention provides an energy efficient system for large capacity. In the full flow, the entire inlet stream, rich in MEG, is evaporated under vacuum. This is a process with high energy requirements as the total inlet flow, i.e. water and MEG, must be evaporated. In the partial stream concept, the entire inlet stream, rich in MEG, is re-concentrated by atmospheric water boiling; i.e. only water, not ME, is boiled off from the main stream. However, since the boiling is carried out at atmospheric pressure, i.e. at a higher pressure than in full flow, the boiling temperature of the liquid is higher than in full flow and the energy saving by only boiling water can be relatively small.

I fremgangsmåten i henhold til den foreliggende oppfinnelsen blir den fulle rik MEG (3) strømmen først re-konsentrert (1) til mager MEG (6) i det vann (5) blir kokt av. Re-konsentrasjonsenheten er forbundet med vakuum og avkokingen blir utført ved vakuumbetingelser. Når vann blir kokt av under vakuum blir koketemperaturen senket og energibehovet for avkoking av vann blir betraktelig redusert. Dette vil tillate byggingen av høy kapasitets tog med svært lavt energi behov siden bare vannet blir kokt av ved lavt trykk og temperatur. In the method according to the present invention, the full rich MEG (3) stream is first re-concentrated (1) to lean MEG (6) in which water (5) is boiled off. The re-concentration unit is connected to a vacuum and the decoction is carried out under vacuum conditions. When water is boiled off under vacuum, the boiling temperature is lowered and the energy requirement for boiling water is considerably reduced. This will allow the construction of high capacity trains with very low energy requirements since only the water is boiled off at low pressure and temperature.

En del av den re-konsentrerte magre MEGen, delstrømmen, blir så sendt til gjenvinningsenheten (2) for fjerning av salter (4). Gjenvinningsenheten er forbundet med vakuum og gjenvinningen blir utført ved vakuumkoking. Mengden av mager MEG som sendes som delstrømsandel til gjenvinningsenheten blir regulert slik at saltkonsentrasjonen i den fulle magre MEG strømmen blir holdt under et visst maksimumsnivå som er akseptabelt for undervannsprosessering. Part of the re-concentrated lean MEG, the sub-stream, is then sent to the recovery unit (2) for the removal of salts (4). The recovery unit is connected to a vacuum and the recovery is carried out by vacuum boiling. The amount of lean MEG sent as sub-stream share to the recovery unit is regulated so that the salt concentration in the full lean MEG stream is kept below a certain maximum level that is acceptable for underwater processing.

Re-konsentrasjons- og gjenvinningsdelene kan være forbundet med separate eller felles vakuumsystemer. The re-concentration and recovery sections can be connected by separate or common vacuum systems.

I perioder med lav saltproduksjon når salt konsentrasjon i den fulle magre MEG strømmen som forlater re-konsentrasjonsenheten er under det visse maksimumsnivået som er akseptabelt for undervannsprosessering, kan gjenvinningsenheten bli frakoplet. Energibesparelsene er enda mer betydelige når gjenvinningsenheten er frakoplet. During periods of low salt production, when salt concentration in the full lean MEG stream leaving the re-concentration unit is below the certain maximum level acceptable for subsea processing, the recovery unit may be disconnected. The energy savings are even more significant when the recycling unit is disconnected.

Den akseptable salt konsentrasjon for undervannsprosessering varierer fra system til system, men ville typisk være omtrent 50 g/L maksimum, men varierer for hvert tilfelle. The acceptable salt concentration for underwater processing varies from system to system, but would typically be about 50 g/L maximum, but varies for each case.

EKSEMPEL: EXAMPLE:

Et eksempel ble laget for et system med en rik MEG strøm på 32 m<3>/t, regenerering og gjenvinning av MEG i An example was made for a system with a rich MEG stream of 32 m<3>/h, regeneration and recovery of MEG in

A) Fullstrømskonsept A) Full flow concept

B) Delstrømskonsept (med 25 % delstrøm gjenvinning, re-konsentrasjon ved atmosfærisk trykk, gjenvinning under vakuum) C) Vakuum delstrømskonsept (med 25 % delstrøm gjenvinning, både re-konsentrasjon og gjenvinning utført under vakuum) B) Partial flow concept (with 25% partial flow recovery, re-concentration at atmospheric pressure, recovery under vacuum) C) Vacuum partial flow concept (with 25% partial flow recovery, both re-concentration and recovery carried out under vacuum)

Tabellene i figur 3, 4 og 5 er basert på reelle simuleringstilfeller, ser på elektrisk kraftforbruk (arbeid), varmemedium forbruk og kjølemedium forbruk. The tables in Figures 3, 4 and 5 are based on real simulation cases, looking at electrical power consumption (work), heating medium consumption and cooling medium consumption.

Claims (6)

1. Fremgangsmåte for re-konsentrasjon og gjenvinning av Mono Etylen Glykol omfattende trinnene av a) å re-konsentrere den rike MEGen til mager MEG ved vannkoking; og b) å gjenvinne en del av den magre MEGen, karakterisert vedat både re-konsentrasjons- og gjenvinningstrinnet blir utført ved vakuumbetingelser , trinnene utføres i separate enheter der mengden av mager MEG som sendes som delstrømsandel til gjenvinningsenheten er regulert slik at saltkonsentrasjon i den fulle magre MEG strømmen er under maksimumsnivå akseptabelt for undervannsprosessering.1. Process for the re-concentration and recovery of Mono Ethylene Glycol comprising the steps of a) re-concentrating the rich MEG to lean MEG by water boiling; and b) to regain part of the meager ME, characterized in that both the re-concentration and recovery steps are carried out under vacuum conditions, the steps are carried out in separate units where the amount of lean MEG that is sent as a partial flow share to the recovery unit is regulated so that salt concentration in the full lean MEG flow is below the maximum level acceptable for underwater processing. 2. Fremgangsmåte i henhold til krav 1, karakterisert vedat re-konsentrasjonen blir gjort i en koker etterfulgt av en destillasjonskolonne.2. Procedure according to claim 1, characterized in that the re-concentration is done in a reboiler followed by a distillation column. 3. Fremgangsmåte i henhold til kravene 1 til 2, karakterisert vedat gjenvinningen blir gjort i en delstrøm.3. Procedure according to requirements 1 to 2, characterized by the recycling being done in a partial stream. 4. Fremgangsmåte i henhold til hvilket som helst av kravene 1 til 3,karakterisert vedat gjenvinningsdelstrømmen er frakoplet når saltkonsentrasjonen er akseptabel for undervannsprosesseringen.4. Method according to any one of claims 1 to 3, characterized in that the recovery partial flow is disconnected when the salt concentration is acceptable for the underwater processing. 5. Fremgangsmåte i henhold til hvilket som helst av kravene 1 til 4,karakterisert vedat gjenvinnings og re-konsentrasjonsdelene er forbundet til separate vakuumsystemer.5. Method according to any one of claims 1 to 4, characterized in that the recovery and re-concentration parts are connected to separate vacuum systems. 6. Fremgangsmåte i henhold til hvilket som helst av kravene 1 til 4,karakterisert vedgjenvinning og re- konsentrasjonsdelene er forbundet til et felles vakuumsystem.6. Method according to any one of claims 1 to 4, characterized by recovery and the re-concentration parts are connected to a common vacuum system.
NO20090115A 2009-01-08 2009-01-08 Process for the re-concentration and recovery of monoethylene glycol NO332854B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20090115A NO332854B1 (en) 2009-01-08 2009-01-08 Process for the re-concentration and recovery of monoethylene glycol
PCT/NO2010/000006 WO2010080038A1 (en) 2009-01-08 2010-01-07 Method for regeneration and reclamation of mono ethylene glycol using a vacuum slip stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20090115A NO332854B1 (en) 2009-01-08 2009-01-08 Process for the re-concentration and recovery of monoethylene glycol

Publications (2)

Publication Number Publication Date
NO20090115L NO20090115L (en) 2010-07-09
NO332854B1 true NO332854B1 (en) 2013-01-21

Family

ID=42062060

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20090115A NO332854B1 (en) 2009-01-08 2009-01-08 Process for the re-concentration and recovery of monoethylene glycol

Country Status (2)

Country Link
NO (1) NO332854B1 (en)
WO (1) WO2010080038A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790153B2 (en) * 2011-11-14 2017-10-17 Cameron International Corporation Process scheme to improve divalent metal salts removal from mono ethylene glycol (MEG)
WO2014191509A1 (en) 2013-05-31 2014-12-04 Shell Internationale Research Maatschappij B.V. Process for the separation of an alkylene glycol
US9932284B2 (en) 2013-05-31 2018-04-03 Shell Oil Company Process for the separation of 1,4-butanediol and co-products
MY173630A (en) 2013-05-31 2020-02-12 Shell Int Research Glycol recovery with solvent extraction
US20150104356A1 (en) 2013-10-10 2015-04-16 Cameron Solutions, Inc. System and Process For Removal Of Organic Carboxylates From Mono Ethylene Glycol (MEG) Water Streams By Acidification and Vaporization Under Vacuum
FR3013710B1 (en) * 2013-11-22 2016-01-01 Prosernat FLEXIBLE PROCESS FOR THE TREATMENT OF SOLVENT, SUCH AS MONOETHYLENE GLYCOL, FOR THE EXTRACTION OF NATURAL GAS
EP3126315B1 (en) 2014-04-02 2018-06-13 Shell International Research Maatschappij B.V. Process for the separation of monoethylene glycol and 1,2-butanediol
US9272972B2 (en) * 2014-06-17 2016-03-01 Cameron Solutions, Inc. Salt removal and transport system and method for use in a mono ethylene glycol reclamation process
US9150477B1 (en) 2014-06-17 2015-10-06 Cameron Solutions, Inc. System for removing salt from a rich mono ethylene glycol stream
US9926250B2 (en) 2014-06-27 2018-03-27 Reliance Industries Limited System for regenerating mono ethylene glycol and a method thereof
KR101652494B1 (en) * 2014-06-27 2016-08-30 삼성중공업 주식회사 Apparatus for recovering MEG
US9216934B1 (en) 2014-09-29 2015-12-22 Cameron Solutions, Inc. System and method for pH control of lean MEG product from MEG regeneration and reclamation packages
KR101670878B1 (en) * 2015-01-16 2016-10-31 대우조선해양 주식회사 MEG Regeneration System
KR20160095443A (en) 2015-02-03 2016-08-11 대우조선해양 주식회사 Salts Removing Method by Water Flushing of MEG Regeneration Process and System Thereof
KR101805491B1 (en) * 2015-11-23 2017-12-07 대우조선해양 주식회사 MEG Regeneration System
NO342676B1 (en) * 2016-12-23 2018-06-25 Nov Process & Flow Tech As Hydrate inhibitor recovery system
KR102097608B1 (en) * 2018-04-26 2020-04-06 삼성중공업 주식회사 Meg regeneration apparatus
KR102097609B1 (en) * 2018-04-30 2020-04-06 삼성중공업 주식회사 Meg regeneration apparatus
WO2020104004A1 (en) * 2018-11-19 2020-05-28 Nov Process & Flow Technologies As Hydrate inhibitor recovery system
RU2767520C1 (en) * 2020-10-26 2022-03-17 Публичное акционерное общество "Газпром" Method for regenerating aqueous solution of ethylene glycol and purifying thereof from salts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050072663A1 (en) * 2002-10-28 2005-04-07 Geraldine Laborie Method of regenerating an aqueous glycol solution containing salts
WO2007073204A1 (en) * 2005-12-21 2007-06-28 Statoilhydro Asa Process and plant for the regeneration of glycol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050072663A1 (en) * 2002-10-28 2005-04-07 Geraldine Laborie Method of regenerating an aqueous glycol solution containing salts
WO2007073204A1 (en) * 2005-12-21 2007-06-28 Statoilhydro Asa Process and plant for the regeneration of glycol

Also Published As

Publication number Publication date
NO20090115L (en) 2010-07-09
WO2010080038A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
NO332854B1 (en) Process for the re-concentration and recovery of monoethylene glycol
DK178720B1 (en) Method and apparatus for circulating a glycol stream, and method of producing a natural gas product stream
US9090813B2 (en) Process for hydrate inhibitor regeneration
RU2611499C2 (en) Process and plant for distillation of methanol with heat recuperation
JP6298464B2 (en) Treatment process of water produced in crude oil and natural gas treatment facility
RU2012151488A (en) SELECTION METHOD
JP2011050860A (en) Anhydrization method of hydrated organic substance
NO173540B (en) PROCEDURE FOR TREATING A GAS CONTAINING METHANE AND WATER
JP2011162502A (en) Method for producing absolute ethanol
RU2617506C2 (en) Method and apparatus for distillation of methanol and heat recovery
US20170306799A1 (en) Method And Arrangement For Operating A Steam Turbine Plant In Combination With Thermal Water Treatment
CN108409532B (en) System and process for recycling solvent for producing glyphosate by alkyl ester method based on secondary condensation
Bessa et al. Performance and cost evaluation of a new double-effect integration of multicomponent bioethanol distillation
RU2012143399A (en) WATER TREATMENT OF LIQUID HYDROCARBONS CONTAINING WATER
CN108358763B (en) Alkyl ester method glyphosate solvent recovery system and process based on three-stage condensation
JP7468587B2 (en) Method and apparatus for separating mixtures
RU2662809C1 (en) Nafta fractional separation tower heat recovery
BR112017001114B1 (en) WOOD ACETYLATION PROCESS
JP2009275019A (en) Method for refining water-alcohol composition
EP2563498B1 (en) Biogas upgrading
RU2464073C1 (en) Method of saturated amino solutions recovery
WO2016080531A1 (en) Method for concentrating and dehydrating butanol
JP5105295B2 (en) Component concentration plant and component concentration method
KR20160121992A (en) Method and apparatus for regenerating liquid desiccants of gas dehydration
BR102014025284B1 (en) integrated system to increase ethanol recovery and isoamyl alcohol coproduction, integrated process to increase ethanol recovery and isoamyl alcohol coproduction and, products thus obtained

Legal Events

Date Code Title Description
CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: FJORDS PROCESSING AS, NO

CHAD Change of the owner's name or address (par. 44 patent law, par. patentforskriften)

Owner name: NOV PROCESS & FLOW TECHNOLOGIES AS, NO

MM1K Lapsed by not paying the annual fees