NO332854B1 - Process for the re-concentration and recovery of monoethylene glycol - Google Patents
Process for the re-concentration and recovery of monoethylene glycol Download PDFInfo
- Publication number
- NO332854B1 NO332854B1 NO20090115A NO20090115A NO332854B1 NO 332854 B1 NO332854 B1 NO 332854B1 NO 20090115 A NO20090115 A NO 20090115A NO 20090115 A NO20090115 A NO 20090115A NO 332854 B1 NO332854 B1 NO 332854B1
- Authority
- NO
- Norway
- Prior art keywords
- recovery
- concentration
- meg
- water
- stream
- Prior art date
Links
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 title claims description 62
- 238000011084 recovery Methods 0.000 title claims description 29
- 238000000034 method Methods 0.000 title claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 150000003839 salts Chemical class 0.000 claims description 19
- 238000009835 boiling Methods 0.000 claims description 11
- 238000004064 recycling Methods 0.000 claims description 5
- 238000004821 distillation Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 9
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- AEDZKIACDBYJLQ-UHFFFAOYSA-N ethane-1,2-diol;hydrate Chemical compound O.OCCO AEDZKIACDBYJLQ-UHFFFAOYSA-N 0.000 description 1
- 239000008398 formation water Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
- C07C29/86—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by liquid-liquid treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Description
Fremgangsmåte for re-konsentrasjon og gjenvinning av monoetylenglykol Procedure for the re-concentration and recovery of monoethylene glycol
OMRÅDE FOR OPPFINNELSEN FIELD OF THE INVENTION
Den foreliggende oppfinnelsen angår en fremgangsmåte for regenerering og gjenvinning av MonoEtylenGlykol. The present invention relates to a method for the regeneration and recovery of MonoEthylene Glycol.
BAKGRUNN FOR OPPFINNELSEN BACKGROUND OF THE INVENTION
Hydratinhibitorer slik som monoetylenglykol (MEG) blir brukt i hydrokarbon gass og/eller kondensat rørledninger for eksempel i gassfelt, for å absorbere fuktighet og forhindre hydratdannelse i rørledningen. Typisk blir MEGen injisert ved oppstrømsenden av rørledningen og blir separert fra hydrokarbonstrømmen ved nedstrømsenden. Den separerte MEGen (omtrent 50 % MEG, 50 % vann), betegnet som rik MEG, bærer det absorberte vannet. Denne rike MEGen blir rekonsentrert ved en vannfjerningsprosess for å produsere "mager MEG" (omtrent 90 % MEG, 10 %vann) for gjenbruk. MEGen er også forurenset med andre forbindelser fra brønnen og rørledningen. Rørlednings korrosjonsprodukter, avskalling og andre kontaminanter slik som hydrokarboner, salter fra formasjonsvann eller produksjonskjemikalier er tilstede, og disse urenhetene blir fullstendig eller delvis fjernes i gjenvinningsprosessen. Hydrate inhibitors such as monoethylene glycol (MEG) are used in hydrocarbon gas and/or condensate pipelines, for example in gas fields, to absorb moisture and prevent hydrate formation in the pipeline. Typically, the MEG is injected at the upstream end of the pipeline and is separated from the hydrocarbon stream at the downstream end. The separated MEG (approximately 50% MEG, 50% water), termed rich MEG, carries the absorbed water. This rich MEG is reconcentrated by a dewatering process to produce "lean MEG" (approximately 90% MEG, 10% water) for reuse. The MEG is also contaminated with other compounds from the well and the pipeline. Pipeline corrosion products, scale and other contaminants such as hydrocarbons, salts from formation water or production chemicals are present, and these impurities are completely or partially removed in the recovery process.
I industrien blir to hovedtyper av systemer vanligvis brukt for MEG gjenvinning og re-konsentrasjon: fullstrømskonseptet (the Full Stream concept) og delstrømskonseptet (the Slip Stream concept). Disse to konseptene er skjematisk vist i figur 2A og 2B henholdsvis. Også WO 2007/073204 Al og US 2005072663 Al omhandler henholdsvis et fullstrøms- og delstrømskonsept. In industry, two main types of systems are usually used for MEG recovery and re-concentration: the Full Stream concept and the Slip Stream concept. These two concepts are schematically shown in Figures 2A and 2B respectively. Also WO 2007/073204 A1 and US 2005072663 A1 deal respectively with a full flow and partial flow concept.
WO 2007/073204 Al beskriver en prosess og et anlegg for regenerering av glykol fra en blanding av glykol, vann og salter. Blandingen blir trykkfallsdestillert for å oppnå en saltfri løsning av glykol og vann. Denne løsningen blir så kondensert og destillert for å oppnå glykol med redusert vanninnhold. Saltene blir konsentrert i en vakuumkoker og fjernet fra en delstrøm tatt ut av returløpet til vakuumkokeren. WO 2007/073204 Al describes a process and a plant for the regeneration of glycol from a mixture of glycol, water and salts. The mixture is pressure drop distilled to obtain a salt-free solution of glycol and water. This solution is then condensed and distilled to obtain glycol with a reduced water content. The salts are concentrated in a vacuum cooker and removed from a partial stream taken out of the return pipe to the vacuum cooker.
US 2005072663 Al angir en metode for regenerering av glykol løsning som inneholder vann, hydrokarboner og salter. Glykol løsningen blir ekspandert i en tank, så destillert i en kolonne. Den konsentrerte glykolen som samles opp på kokernivå blir så satt under vakuum for å fordampe vannet og separere saltene. Saltene blir separert fra glykolen i en separasjonsanordning. Den avsaltede glykolen blir lagret for gjenbruk. US 2005072663 Al specifies a method for the regeneration of glycol solution containing water, hydrocarbons and salts. The glycol solution is expanded in a tank, then distilled in a column. The concentrated glycol collected at the boiler level is then put under vacuum to evaporate the water and separate the salts. The salts are separated from the glycol in a separation device. The desalted glycol is stored for reuse.
Med re-konsentrasjon er det ment konsentrasjon av den rike MEGen til mager MEG, og med gjenvinning er det ment fjerning av kontaminanter som salter og korrosjonsprodukter. Med delstrøm (Slip Stream) som brukt heri er ment at MEGen bare delvis blir gjenvunnet. Re-concentration means concentration of the rich MEG into lean MEG, and recycling means removal of contaminants such as salts and corrosion products. Slip Stream as used here means that the MEG is only partially recovered.
I fullstrømskonseptet blir først all den rike MEGen (C) ført inn i gjenvinningsdelen In the full-flow concept, all the rich MEG (C) is first fed into the recovery section
(A), hvori all den rike MEGen blir fordampet ved vakuumkoking og alle saltene (D) blir fjernet i et enkelt trinn. Den fordampede rike MEGen blir så rekonsentrert (B) (A), in which all the rich MEG is evaporated by vacuum boiling and all the salts (D) are removed in a single step. The evaporated rich ME is then reconcentrated (B)
til mager MEG (F) nedstrøms gjenvinningsdelen ved bruk av destillasjon under vakuum. Vann (E) blir destillert av i re-konsentrasjonsprosessen. Fullstrømmen er egnet for produksjon med høy belastning av faststoff, men har begrensninger med hensyn til kapasitet. Dette fører til parallelle prosesstog for håndtering av større volumer. Prosessen er også svært energi krevende siden både MEG og vann må fordampes. to lean MEG (F) downstream of the recovery section using distillation under vacuum. Water (E) is distilled off in the re-concentration process. The full flow is suitable for production with a high load of solids, but has limitations in terms of capacity. This leads to parallel process trains for handling larger volumes. The process is also very energy-intensive since both MEG and water must evaporate.
I delstrømskonseptet blir den rike MEGen (C) først re-konsentrert (B') til mager MEG (F') i re-konsentrasjonsdelen (B') ved destillasjon ved atmosfærisk trykk. I re-konsentrasjonsprosessen blir vann (E') destillert av. Nedstrøms re-konsentrasjonen blir en delstrøm fra den magre MEGen sent til gjenvinningsdel(A') for salt (D') fjerning. Dette betyr at i delstrømskonseptet blir MEGen bare delvis gjenvunnet. Den totale salt konsentrasjonen i den magre MEG sløyfen må imidlertid holdes under et visst maksimumsnivå som er akseptabelt for undervannsprosesseringen. Gjenvinningsdelen blir igjen utført ved bruk av vakuumkoking. Delstrømmen kan bygges for større kapasitet per prosesstog og den er mer energieffektiv, særlig dersom gjenvinningsdelen kan være frakoplet under lav salt produksjonsperioden. In the partial flow concept, the rich MEG (C) is first re-concentrated (B') to lean MEG (F') in the re-concentration section (B') by distillation at atmospheric pressure. In the re-concentration process, water (E') is distilled off. Downstream of the re-concentration, a part stream from the lean MEG is sent to the recovery part (A') for salt (D') removal. This means that in the partial flow concept, the MEG is only partially recovered. However, the total salt concentration in the lean MEG loop must be kept below a certain maximum level that is acceptable for the underwater processing. The recycling part is again carried out using vacuum boiling. The partial flow can be built for greater capacity per process train and it is more energy efficient, especially if the recycling part can be disconnected during the low salt production period.
MEG gjenvinningen og re-konsentrasjonen er energi krevende prosesser og å redusere energiforbruket ville føre til store besparelser. MEG recovery and re-concentration are energy-intensive processes and reducing energy consumption would lead to large savings.
KORT BESKRIVELSE AV TEGNINGENE BRIEF DESCRIPTION OF THE DRAWINGS
Figur 1 er en skjematisk illustrasjon av en utforming av den foreliggende oppfinnelsen. Figur 2A viser skjematisk teknikkens stilling av fullstrømskonseptet, og Figur 2B viser delstrømskonseptet. Figur 3 er en tabell som viser det elektriske kraftforbruket (arbeid) i det reelle simuleringstilfellet i eksempelet. Figur 4 er en tabell som viser varmemedium forbruket i det reelle simuleringstilfellet i eksempelet. Figur 5 er en tabell som viser kjølemedium forbruket i det reelle simuleringstilfellet i eksempelet. Figure 1 is a schematic illustration of a design of the present invention. Figure 2A schematically shows the technical position of the full flow concept, and Figure 2B shows the partial flow concept. Figure 3 is a table showing the electrical power consumption (work) in the real simulation case in the example. Figure 4 is a table showing the heating medium consumption in the real simulation case in the example. Figure 5 is a table showing the coolant consumption in the real simulation case in the example.
DETALJERT BESKRIVELSE AV OPPFINNELSEN DETAILED DESCRIPTION OF THE INVENTION
Den foreliggende oppfinnelsen angår en fremgangsmåte for re-konsentrasjon og gjenvinning av Mono Etylen Glykol omfattende trinnene av The present invention relates to a method for the re-concentration and recovery of Mono Ethylene Glycol comprising the steps of
a) å re-konsentrere den rike MEGen til mager MEG ved vannkoking; og a) re-concentrating the rich MEG into lean MEG by water boiling; and
b) å gjenvinne en del av den magre MEGen, b) to regain part of the meager ME,
hvori både re-konsentrasjons- og gjenvinningstrinnet blir utført ved in which both the re-concentration and recovery steps are carried out by
vakuumbetingelser, trinnene utføres i separate enheter der mengden av mager MEG som sendes som delstrømsandel til gjenvinningsenheten er regulert slik at saltkonsentrasjon i den fulle magre MEG strømmen er under maksimumsnivå akseptabelt for undervannsprosessering. vacuum conditions, the steps are carried out in separate units where the amount of lean MEG sent as sub-stream share to the recovery unit is regulated so that salt concentration in the full lean MEG stream is below the maximum level acceptable for underwater processing.
Konseptet ifølge oppfinnelsen tilveiebringer et energi effektivt system for stor kapasitet. I fullstrømmen blir hele innløpsstrømmen, rik MEG, fordampet under vakuum. Dette er en prosess med høyt energi krav ettersom den totale innløpsstrømmen, dvs. vann og MEG, må fordampes. I delstrømskonseptet blir hele innløpsstrømmen, rik MEG, re-konsentrert ved atmosfærisk vannkoking; dvs. bare vann, ikke MEG, blir kokt av fra hovedstrømmen. Siden kokingen utføres ved atmosfærisk trykk, dvs. ved høyere trykk enn i fullstrøm, er imidlertid koke temperaturen til væsken høyere enn i fullstrøm og energi besparelsen ved å bare koke av vann kan være relativt liten. The concept according to the invention provides an energy efficient system for large capacity. In the full flow, the entire inlet stream, rich in MEG, is evaporated under vacuum. This is a process with high energy requirements as the total inlet flow, i.e. water and MEG, must be evaporated. In the partial stream concept, the entire inlet stream, rich in MEG, is re-concentrated by atmospheric water boiling; i.e. only water, not ME, is boiled off from the main stream. However, since the boiling is carried out at atmospheric pressure, i.e. at a higher pressure than in full flow, the boiling temperature of the liquid is higher than in full flow and the energy saving by only boiling water can be relatively small.
I fremgangsmåten i henhold til den foreliggende oppfinnelsen blir den fulle rik MEG (3) strømmen først re-konsentrert (1) til mager MEG (6) i det vann (5) blir kokt av. Re-konsentrasjonsenheten er forbundet med vakuum og avkokingen blir utført ved vakuumbetingelser. Når vann blir kokt av under vakuum blir koketemperaturen senket og energibehovet for avkoking av vann blir betraktelig redusert. Dette vil tillate byggingen av høy kapasitets tog med svært lavt energi behov siden bare vannet blir kokt av ved lavt trykk og temperatur. In the method according to the present invention, the full rich MEG (3) stream is first re-concentrated (1) to lean MEG (6) in which water (5) is boiled off. The re-concentration unit is connected to a vacuum and the decoction is carried out under vacuum conditions. When water is boiled off under vacuum, the boiling temperature is lowered and the energy requirement for boiling water is considerably reduced. This will allow the construction of high capacity trains with very low energy requirements since only the water is boiled off at low pressure and temperature.
En del av den re-konsentrerte magre MEGen, delstrømmen, blir så sendt til gjenvinningsenheten (2) for fjerning av salter (4). Gjenvinningsenheten er forbundet med vakuum og gjenvinningen blir utført ved vakuumkoking. Mengden av mager MEG som sendes som delstrømsandel til gjenvinningsenheten blir regulert slik at saltkonsentrasjonen i den fulle magre MEG strømmen blir holdt under et visst maksimumsnivå som er akseptabelt for undervannsprosessering. Part of the re-concentrated lean MEG, the sub-stream, is then sent to the recovery unit (2) for the removal of salts (4). The recovery unit is connected to a vacuum and the recovery is carried out by vacuum boiling. The amount of lean MEG sent as sub-stream share to the recovery unit is regulated so that the salt concentration in the full lean MEG stream is kept below a certain maximum level that is acceptable for underwater processing.
Re-konsentrasjons- og gjenvinningsdelene kan være forbundet med separate eller felles vakuumsystemer. The re-concentration and recovery sections can be connected by separate or common vacuum systems.
I perioder med lav saltproduksjon når salt konsentrasjon i den fulle magre MEG strømmen som forlater re-konsentrasjonsenheten er under det visse maksimumsnivået som er akseptabelt for undervannsprosessering, kan gjenvinningsenheten bli frakoplet. Energibesparelsene er enda mer betydelige når gjenvinningsenheten er frakoplet. During periods of low salt production, when salt concentration in the full lean MEG stream leaving the re-concentration unit is below the certain maximum level acceptable for subsea processing, the recovery unit may be disconnected. The energy savings are even more significant when the recycling unit is disconnected.
Den akseptable salt konsentrasjon for undervannsprosessering varierer fra system til system, men ville typisk være omtrent 50 g/L maksimum, men varierer for hvert tilfelle. The acceptable salt concentration for underwater processing varies from system to system, but would typically be about 50 g/L maximum, but varies for each case.
EKSEMPEL: EXAMPLE:
Et eksempel ble laget for et system med en rik MEG strøm på 32 m<3>/t, regenerering og gjenvinning av MEG i An example was made for a system with a rich MEG stream of 32 m<3>/h, regeneration and recovery of MEG in
A) Fullstrømskonsept A) Full flow concept
B) Delstrømskonsept (med 25 % delstrøm gjenvinning, re-konsentrasjon ved atmosfærisk trykk, gjenvinning under vakuum) C) Vakuum delstrømskonsept (med 25 % delstrøm gjenvinning, både re-konsentrasjon og gjenvinning utført under vakuum) B) Partial flow concept (with 25% partial flow recovery, re-concentration at atmospheric pressure, recovery under vacuum) C) Vacuum partial flow concept (with 25% partial flow recovery, both re-concentration and recovery carried out under vacuum)
Tabellene i figur 3, 4 og 5 er basert på reelle simuleringstilfeller, ser på elektrisk kraftforbruk (arbeid), varmemedium forbruk og kjølemedium forbruk. The tables in Figures 3, 4 and 5 are based on real simulation cases, looking at electrical power consumption (work), heating medium consumption and cooling medium consumption.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20090115A NO332854B1 (en) | 2009-01-08 | 2009-01-08 | Process for the re-concentration and recovery of monoethylene glycol |
PCT/NO2010/000006 WO2010080038A1 (en) | 2009-01-08 | 2010-01-07 | Method for regeneration and reclamation of mono ethylene glycol using a vacuum slip stream |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20090115A NO332854B1 (en) | 2009-01-08 | 2009-01-08 | Process for the re-concentration and recovery of monoethylene glycol |
Publications (2)
Publication Number | Publication Date |
---|---|
NO20090115L NO20090115L (en) | 2010-07-09 |
NO332854B1 true NO332854B1 (en) | 2013-01-21 |
Family
ID=42062060
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20090115A NO332854B1 (en) | 2009-01-08 | 2009-01-08 | Process for the re-concentration and recovery of monoethylene glycol |
Country Status (2)
Country | Link |
---|---|
NO (1) | NO332854B1 (en) |
WO (1) | WO2010080038A1 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9790153B2 (en) * | 2011-11-14 | 2017-10-17 | Cameron International Corporation | Process scheme to improve divalent metal salts removal from mono ethylene glycol (MEG) |
AU2014274278B2 (en) | 2013-05-31 | 2017-05-04 | Shell Internationale Research Maatschappij B.V. | Glycol recovery with solvent extraction |
WO2014191509A1 (en) | 2013-05-31 | 2014-12-04 | Shell Internationale Research Maatschappij B.V. | Process for the separation of an alkylene glycol |
US9932284B2 (en) | 2013-05-31 | 2018-04-03 | Shell Oil Company | Process for the separation of 1,4-butanediol and co-products |
US20150104356A1 (en) | 2013-10-10 | 2015-04-16 | Cameron Solutions, Inc. | System and Process For Removal Of Organic Carboxylates From Mono Ethylene Glycol (MEG) Water Streams By Acidification and Vaporization Under Vacuum |
FR3013710B1 (en) | 2013-11-22 | 2016-01-01 | Prosernat | FLEXIBLE PROCESS FOR THE TREATMENT OF SOLVENT, SUCH AS MONOETHYLENE GLYCOL, FOR THE EXTRACTION OF NATURAL GAS |
CN106132912B (en) | 2014-04-02 | 2018-05-11 | 国际壳牌研究有限公司 | Method for separating monoethylene glycol and 1,2- butanediols |
US9150477B1 (en) * | 2014-06-17 | 2015-10-06 | Cameron Solutions, Inc. | System for removing salt from a rich mono ethylene glycol stream |
US9272972B2 (en) | 2014-06-17 | 2016-03-01 | Cameron Solutions, Inc. | Salt removal and transport system and method for use in a mono ethylene glycol reclamation process |
WO2015198212A1 (en) * | 2014-06-27 | 2015-12-30 | Reliance Industries Limited | A system for regenerating mono ethylene glycol and a method thereof |
KR101652494B1 (en) * | 2014-06-27 | 2016-08-30 | 삼성중공업 주식회사 | Apparatus for recovering MEG |
US9216934B1 (en) * | 2014-09-29 | 2015-12-22 | Cameron Solutions, Inc. | System and method for pH control of lean MEG product from MEG regeneration and reclamation packages |
KR101670878B1 (en) * | 2015-01-16 | 2016-10-31 | 대우조선해양 주식회사 | MEG Regeneration System |
KR20160095443A (en) | 2015-02-03 | 2016-08-11 | 대우조선해양 주식회사 | Salts Removing Method by Water Flushing of MEG Regeneration Process and System Thereof |
KR101805491B1 (en) * | 2015-11-23 | 2017-12-07 | 대우조선해양 주식회사 | MEG Regeneration System |
NO20162051A1 (en) * | 2016-12-23 | 2018-06-25 | Nov Process & Flow Tech As | Hydrate inhibitor recovery system |
KR102097608B1 (en) * | 2018-04-26 | 2020-04-06 | 삼성중공업 주식회사 | Meg regeneration apparatus |
KR102097609B1 (en) * | 2018-04-30 | 2020-04-06 | 삼성중공업 주식회사 | Meg regeneration apparatus |
WO2020104004A1 (en) | 2018-11-19 | 2020-05-28 | Nov Process & Flow Technologies As | Hydrate inhibitor recovery system |
RU2767520C1 (en) * | 2020-10-26 | 2022-03-17 | Публичное акционерное общество "Газпром" | Method for regenerating aqueous solution of ethylene glycol and purifying thereof from salts |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050072663A1 (en) * | 2002-10-28 | 2005-04-07 | Geraldine Laborie | Method of regenerating an aqueous glycol solution containing salts |
WO2007073204A1 (en) * | 2005-12-21 | 2007-06-28 | Statoilhydro Asa | Process and plant for the regeneration of glycol |
-
2009
- 2009-01-08 NO NO20090115A patent/NO332854B1/en not_active IP Right Cessation
-
2010
- 2010-01-07 WO PCT/NO2010/000006 patent/WO2010080038A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050072663A1 (en) * | 2002-10-28 | 2005-04-07 | Geraldine Laborie | Method of regenerating an aqueous glycol solution containing salts |
WO2007073204A1 (en) * | 2005-12-21 | 2007-06-28 | Statoilhydro Asa | Process and plant for the regeneration of glycol |
Also Published As
Publication number | Publication date |
---|---|
NO20090115L (en) | 2010-07-09 |
WO2010080038A1 (en) | 2010-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO332854B1 (en) | Process for the re-concentration and recovery of monoethylene glycol | |
DK178720B1 (en) | Method and apparatus for circulating a glycol stream, and method of producing a natural gas product stream | |
US9090813B2 (en) | Process for hydrate inhibitor regeneration | |
RU2611499C2 (en) | Process and plant for distillation of methanol with heat recuperation | |
JP6298464B2 (en) | Treatment process of water produced in crude oil and natural gas treatment facility | |
RU2012151488A (en) | SELECTION METHOD | |
JP2011050860A (en) | Anhydrization method of hydrated organic substance | |
RU2617506C2 (en) | Method and apparatus for distillation of methanol and heat recovery | |
US20170306799A1 (en) | Method And Arrangement For Operating A Steam Turbine Plant In Combination With Thermal Water Treatment | |
CN108409532B (en) | System and process for recycling solvent for producing glyphosate by alkyl ester method based on secondary condensation | |
JP7468587B2 (en) | Method and apparatus for separating mixtures | |
Bessa et al. | Performance and cost evaluation of a new double-effect integration of multicomponent bioethanol distillation | |
RU2400282C2 (en) | New method of alcohol dehydration and device to this end | |
RU2012143399A (en) | WATER TREATMENT OF LIQUID HYDROCARBONS CONTAINING WATER | |
RU2662809C1 (en) | Nafta fractional separation tower heat recovery | |
JP2009275019A (en) | Method for refining water-alcohol composition | |
EP2563498B1 (en) | Biogas upgrading | |
BR112017001008B1 (en) | RECOVERY AND USE OF WOOD ACETYLATION FLUID | |
RU2464073C1 (en) | Method of saturated amino solutions recovery | |
CN216986356U (en) | Lightness removing device for pharmaceutical-grade beta-mercaptopropionic acid double-coproduction production | |
WO2016080531A1 (en) | Method for concentrating and dehydrating butanol | |
BR102014025284B1 (en) | integrated system to increase ethanol recovery and isoamyl alcohol coproduction, integrated process to increase ethanol recovery and isoamyl alcohol coproduction and, products thus obtained | |
JP6329044B2 (en) | Concentrated can system | |
TW202404929A (en) | Systems and methods for enhancing the recovery of styrene | |
JP2009154117A (en) | Ethylene glycol extraction method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CHAD | Change of the owner's name or address (par. 44 patent law, par. patentforskriften) |
Owner name: FJORDS PROCESSING AS, NO |
|
CHAD | Change of the owner's name or address (par. 44 patent law, par. patentforskriften) |
Owner name: NOV PROCESS & FLOW TECHNOLOGIES AS, NO |
|
MM1K | Lapsed by not paying the annual fees |