JP6329044B2 - Concentrated can system - Google Patents

Concentrated can system Download PDF

Info

Publication number
JP6329044B2
JP6329044B2 JP2014190601A JP2014190601A JP6329044B2 JP 6329044 B2 JP6329044 B2 JP 6329044B2 JP 2014190601 A JP2014190601 A JP 2014190601A JP 2014190601 A JP2014190601 A JP 2014190601A JP 6329044 B2 JP6329044 B2 JP 6329044B2
Authority
JP
Japan
Prior art keywords
concentration
pressure
pipe
control valve
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014190601A
Other languages
Japanese (ja)
Other versions
JP2016059883A (en
Inventor
裕介 牧野
裕介 牧野
顕寛 小山
顕寛 小山
寛 江川
寛 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2014190601A priority Critical patent/JP6329044B2/en
Publication of JP2016059883A publication Critical patent/JP2016059883A/en
Application granted granted Critical
Publication of JP6329044B2 publication Critical patent/JP6329044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、少なくとも2種類の溶液が混合された混合液を蒸発濃縮することで分離する濃縮缶システムに関するものである。   The present invention relates to a concentration can system that separates by evaporating and concentrating a mixed solution in which at least two kinds of solutions are mixed.

一般に、複数の溶液が混合された状態にある混合液から特定の溶液を抽出する場合には蒸留が利用されることが多い。   In general, when a specific solution is extracted from a mixed solution in a state where a plurality of solutions are mixed, distillation is often used.

蒸留では、気液平衡の状態において溶液それぞれの蒸気圧の差を利用し、取り出したい特定の溶液の濃度が高い状態での気体として抽出することで特定の溶液の濃度を高める。   In distillation, the concentration of a specific solution is increased by utilizing the difference in vapor pressure of each solution in a gas-liquid equilibrium state and extracting it as a gas in a state where the concentration of the specific solution to be taken out is high.

またこの作業を複数回行うことで、取り出したい溶液を所定の濃度まで濃縮することができる。   Further, by performing this operation a plurality of times, the solution to be taken out can be concentrated to a predetermined concentration.

ここで例えばエチレンやプロピレンなどの化学品からポリマーを製造する場合には99%以上の高い濃度が必要であり、この濃度を達成するために連続蒸留を前提とした蒸留塔の中でも精留塔などと呼ばれる多段蒸留塔が利用される。   Here, for example, when a polymer is produced from a chemical such as ethylene or propylene, a high concentration of 99% or more is necessary, and a rectifying column or the like among distillation columns premised on continuous distillation in order to achieve this concentration. A multistage distillation column called is used.

しかし例えば工場の廃液の減容や、混合液の粗精製を目的とした場合には取り出したい溶液にはそれほど高い濃度が求められず、この場合にはバッチ処理の濃縮缶を利用した単蒸留が用いられることが多い。   However, for example, for the purpose of volume reduction of factory waste liquid or rough purification of the mixed solution, the solution to be removed is not required to have a very high concentration, and in this case, simple distillation using a batch processing concentration canister is required. Often used.

ここで濃縮缶による単蒸留とは、濃縮缶内部に貯蔵された混合液を加熱することで蒸発濃縮し、蒸発した気体と残った液体を分離するという最も簡単な蒸留方法であり、現在も廃液処理や粗精製で広く用いられている。   Here, simple distillation with a concentration canister is the simplest distillation method in which the liquid mixture stored in the concentration canister is heated to evaporate and separate the evaporated gas from the remaining liquid. Widely used in processing and crude purification.

単蒸留で可能な限り分離後の溶液の濃度を高めようとした場合には特許文献1に記載の様に減圧状態で蒸発濃縮することで沸点の低い溶液の濃度を高める方法が提案されている。   When trying to increase the concentration of the solution after separation as much as possible by simple distillation, a method for increasing the concentration of a solution having a low boiling point by evaporating and concentrating under reduced pressure as described in Patent Document 1 has been proposed. .

再公表特許2004−000734号公報Republished Patent 2004-000734

しかし特許文献1に記載の含フッ素乳化剤の回収方法では、1種類の混合液には効率よく対応できるが、複数種類の混合された溶液が存在する場合への対応は記載されておらず、複数の廃液が存在する工場では十分に対処できないという課題がある。   However, in the method for recovering a fluorine-containing emulsifier described in Patent Document 1, it is possible to efficiently cope with one type of mixed solution, but there is no description for dealing with a case where a plurality of types of mixed solutions exist. There is a problem that it cannot be adequately dealt with in a factory where there is a waste liquid.

本発明はこの課題に鑑み、複数種類の混合液が存在する場合であっても効率よく単一の濃縮缶で単蒸留を行う濃縮缶システムを提供することを目的とする。   In view of this problem, an object of the present invention is to provide a concentration can system that performs simple distillation efficiently with a single concentration can even when a plurality of types of mixed liquids are present.

(1)本発明に係る濃縮缶システムは、少なくとも2種類の溶液が混合された混合液を、内部に備えられた伝熱管により蒸発濃縮する濃縮缶を備えた濃縮缶システムにおいて、前記濃縮缶に設置され、前記濃縮缶内部の圧力を計測する圧力センサと、前記伝熱管に接続され、前記伝熱管に蒸気を供給する蒸気供給管と、前記蒸気供給管上に備えられた圧力制御弁と、前記濃縮缶の上部に一方が接続され、他方は前記蒸気供給管上であって前記圧力制御弁と前記伝熱管の間に接続された、前記濃縮缶内部で生成された蒸気を回収する蒸気回収管と、前記蒸気回収管上に設置されたヒートポンプと、前記圧力センサの計測値に応じて前記圧力制御弁の開度を制御する制御部と、を備え、前記制御部は、前記濃縮缶の圧力が前記混合液に応じて予め設定された値の範囲内となるように前記圧力制御弁の開度を絞ることを特徴とする。   (1) A concentration can system according to the present invention is a concentration can system comprising a concentration can for evaporating and concentrating a mixed solution in which at least two kinds of solutions are mixed with a heat transfer tube provided therein. A pressure sensor installed to measure the pressure inside the concentrator, a steam supply pipe connected to the heat transfer pipe and supplying steam to the heat transfer pipe, and a pressure control valve provided on the steam supply pipe; Steam recovery for recovering the steam generated inside the concentration can, one connected to the upper part of the concentration can and the other connected to the steam supply pipe between the pressure control valve and the heat transfer pipe A heat pump installed on the steam recovery pipe, and a control unit that controls the opening of the pressure control valve according to the measured value of the pressure sensor, the control unit of the concentration can Depending on the liquid mixture And wherein the throttling the opening degree of the pressure control valve so as to be in the range of constant values.

(2)また本発明に係る濃縮缶システムは(1)に記載の濃縮缶システムにおいて、前記ヒートポンプは前記制御部にて制御可能なように接続され、前記制御部は、前記圧力センサの計測値が予め設定された範囲の上限値を超えると前記ヒートポンプを作動させ、前記圧力センサの計測値が予め設定された範囲の下限値を下回らない範囲で前記圧力制御弁の開度を絞る制御を行うことを特徴とする。   (2) Moreover, the concentration can system which concerns on this invention is a concentration can system as described in (1), The said heat pump is connected so that control is possible in the said control part, The said control part is a measured value of the said pressure sensor. When the value exceeds the upper limit value of the preset range, the heat pump is activated, and the opening of the pressure control valve is controlled so that the measured value of the pressure sensor does not fall below the lower limit value of the preset range. It is characterized by that.

(3)また本発明に係る濃縮缶システムは(1)または(2)に記載の濃縮缶システムにおいて、前記蒸気回収管上であって前記濃縮缶と前記ヒートポンプの間に接続された脱圧管と、前記脱圧管上に設置された脱圧制御弁と、を備え、前記制御部は前記脱圧制御弁の開閉を制御可能なように接続され、前記制御部は前記圧力センサの計測値が予め設定された範囲の上限値を超える場合には、前記ヒートポンプの作動に加えて、前記脱圧制御弁を開ける制御を行うことを特徴とする。   (3) Moreover, the concentration can system which concerns on this invention is a concentration can system as described in (1) or (2), The decompression pipe | tube connected on the said vapor | steam recovery pipe | tube between the said concentration can and the said heat pump, A depressurization control valve installed on the depressurization pipe, and the control unit is connected so as to be able to control the opening and closing of the depressurization control valve. When the upper limit value of the set range is exceeded, in addition to the operation of the heat pump, control for opening the depressurization control valve is performed.

(4)また本発明に係る濃縮缶システムは(1)から(3)のいずれかに記載の濃縮缶システムにおいて、前記濃縮缶には、前記伝熱管内部で生成した凝縮水を排出するドレン管が設置され、前記ドレン管は少なくとも2つ以上の分岐管と、前記分岐管上のそれぞれに弁を備えることを特徴とする。   (4) The concentration can system according to the present invention is the concentration can system according to any one of (1) to (3), wherein the concentration can is a drain pipe for discharging condensed water generated inside the heat transfer tube. The drain pipe is provided with at least two or more branch pipes and a valve on each of the branch pipes.

(5)また本発明に係る濃縮缶システムは(1)から(4)のいずれかに記載の濃縮缶システムにおいて、前記混合液が複数種類存在する場合において、前記制御部は、前記混合液に応じて予め設定された前記濃縮缶の圧力の値の範囲が、前記混合液それぞれに応じて設定されていることを特徴とする。   (5) Further, in the concentration can system according to any one of (1) to (4), in the concentration can system according to the present invention, when there are a plurality of types of the mixed solution, the control unit controls the mixed solution. The range of the pressure value of the concentrating can set in advance is set in accordance with each of the liquid mixtures.

(1)に記載の濃縮缶システムによれば、濃縮缶による単蒸留であっても混合されている溶液の蒸気圧の違いを利用して効率よく特定の溶液を蒸発濃縮により抽出することが可能となる。   According to the concentration can system described in (1), it is possible to efficiently extract a specific solution by evaporation concentration using the difference in vapor pressure of the mixed solution even in simple distillation using the concentration can. It becomes.

(2)に記載の濃縮缶システムによれば、溶液の蒸発にはヒートポンプで回収した蒸気を可能な限り利用することで新たな蒸気の供給を削減し、ランニングコストを削減することが可能となる。   According to the concentration can system described in (2), it is possible to reduce the supply of new steam and reduce running costs by using the steam collected by the heat pump as much as possible for the evaporation of the solution. .

(3)に記載の濃縮缶システムによれば、ヒートポンプを利用した濃縮缶システムでは濃縮缶内部の混合液の量が徐々に減少する上に、ヒートポンプからの入熱があるので徐々に濃縮缶内部の圧力は上昇する。しかし脱圧制御弁を開けることで濃縮缶内部の圧力を予め設定した範囲に長時間にわたって維持することが可能となり、より効率的な蒸発濃縮が可能となる。   According to the concentration can system described in (3), in the concentration can system using a heat pump, the amount of the liquid mixture inside the concentration can gradually decreases and the heat input from the heat pump gradually increases. The pressure increases. However, by opening the depressurization control valve, the pressure inside the concentrator can be maintained within a preset range for a long time, and more efficient evaporation and concentration can be achieved.

(4)に記載の濃縮缶システムによれば、一つの濃縮缶システムで異なった複数の混合液を蒸発濃縮する場合であっても、蒸発した溶液をそれぞれ別の分岐管により別のタンク等に保管することが可能となる。   According to the concentration can system described in (4), even when a plurality of different mixed liquids are evaporated and concentrated in one concentration can system, the evaporated solution is respectively transferred to another tank or the like by a separate branch pipe. It can be stored.

(5)に記載の濃縮缶システムによれば、複数の混合液を一つの濃縮缶システムで蒸発濃縮する場合であっても、混合液それぞれの性状に応じた最適な圧力範囲で運転することが可能となる。   According to the concentration can system described in (5), even when a plurality of mixed liquids are evaporated and concentrated in one concentration can system, the operation can be performed in an optimum pressure range according to the properties of each of the mixed liquids. It becomes possible.

第一実施形態に係る濃縮缶システムの模式図を示す図である。It is a figure which shows the schematic diagram of the concentration can system which concerns on 1st embodiment. 第一実施形態に係る濃縮缶システムの運転時の運転時間と圧力センサの計測値を示す模式図である。It is a schematic diagram which shows the operation time at the time of operation | movement of the concentration can system which concerns on 1st embodiment, and the measured value of a pressure sensor. 第二実施形態に係る濃縮缶システムの模式図を示す図である。It is a figure which shows the schematic diagram of the concentration can system which concerns on 2nd embodiment. 第二実施形態に係る濃縮缶システムの運転時の運転時間と圧力センサの計測値を示す模式図である。It is a schematic diagram which shows the operation time at the time of operation | movement of the concentration can system which concerns on 2nd embodiment, and the measured value of a pressure sensor.

以下に添付図面を参照しながら本発明の好適な実施形態について説明する。かかる実施形態は発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. Such an embodiment is merely an example for facilitating understanding of the invention, and does not limit the present invention unless otherwise specified.

なお本明細書及び図面において実質的に同一の機能、構成を有する要素については同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   In the present specification and drawings, elements having substantially the same functions and configurations are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not shown.

(第一実施形態)   (First embodiment)

まず、第一実施形態に係る濃縮缶システム100の構成について説明する。   First, the structure of the concentration can system 100 which concerns on 1st embodiment is demonstrated.

濃縮缶システム100は内部に混合液を貯蔵する濃縮缶10と、濃縮缶10に接続され蒸気を供給する蒸気供給管12を備えている。   The concentrating can system 100 includes a concentrating can 10 that stores the mixed liquid therein, and a steam supply pipe 12 that is connected to the concentrating can 10 and supplies steam.

また混合液は混合液供給管14により濃縮缶10の内部に送られる。   Further, the mixed solution is sent into the concentration can 10 through the mixed solution supply pipe 14.

濃縮缶10の内部には伝熱管16が設置されており、伝熱管16の内部には蒸気供給管12からの蒸気が送気されるように接続されている。   A heat transfer tube 16 is installed inside the concentration can 10, and is connected to the inside of the heat transfer tube 16 so that steam from the steam supply tube 12 is sent.

濃縮缶10の下部には循環管18の一端が接続され、他端は濃縮缶10の上部に接続されている。循環管18には循環ポンプが備えられており、循環ポンプにより蒸発缶10の下部から混合液を蒸発缶10の上部に送り、伝熱管16の上でシャワーリングさせることが可能である。   One end of the circulation pipe 18 is connected to the lower portion of the concentration can 10, and the other end is connected to the upper portion of the concentration can 10. The circulation pipe 18 is provided with a circulation pump, and the mixture liquid can be sent from the lower part of the evaporator 10 to the upper part of the evaporator 10 and showered on the heat transfer pipe 16 by the circulation pump.

また循環管18には濃縮後の溶液を排出するための溶液排出管20が接続され、濃縮後の溶液を溶液排出管20から排出することが可能なように循環管18と溶液排出管20の接続部の下流側にはそれぞれ弁が設置されている。   The circulation pipe 18 is connected to a solution discharge pipe 20 for discharging the concentrated solution, and the circulation pipe 18 and the solution discharge pipe 20 can be discharged from the solution discharge pipe 20. A valve is installed on each downstream side of the connecting portion.

伝熱管16の下流側であって濃縮缶10の外側に設置された、蒸気の凝縮水を集める部分には真空ポンプを備える真空管22が接続されている。   A vacuum tube 22 provided with a vacuum pump is connected to a portion of the steam collecting condensate collected downstream of the heat transfer tube 16 and outside the concentration can 10.

濃縮缶10の上部には濃縮缶内部の圧力を計測する圧力センサ24が設置されており、圧力センサ24の計測値は制御部26に送られ、制御部26はその計測値に応じて蒸気供給管12上に設置された圧力制御弁28の開度を調節可能なように設置されている。   A pressure sensor 24 for measuring the pressure inside the concentration can is installed above the concentration can 10. The measurement value of the pressure sensor 24 is sent to the control unit 26, and the control unit 26 supplies steam according to the measurement value. It is installed so that the opening degree of the pressure control valve 28 installed on the pipe 12 can be adjusted.

伝熱管16の下流側であって濃縮缶10の外側に設置された、蒸気の凝縮水を集める部分には真空管22の他にドレン管30が接続されており、ドレン管30の下流側は配管が分岐しており、分岐した配管それぞれに第一ドレン弁32および第二ドレン弁34が設置されている。   In addition to the vacuum tube 22, a drain pipe 30 is connected to a portion of the steam collecting water collected downstream of the heat transfer pipe 16 and outside the concentration can 10. Are branched, and a first drain valve 32 and a second drain valve 34 are installed in each branched pipe.

濃縮缶10の上部には蒸気回収管36の一端が接続され、他端は蒸気供給管12上であって濃縮缶10と圧力制御弁28の間に接続されている。また蒸気回収管36上にはヒートポンプ38が備えられている。   One end of a steam recovery pipe 36 is connected to the upper part of the concentration can 10, and the other end is connected to the steam supply pipe 12 between the concentration can 10 and the pressure control valve 28. A heat pump 38 is provided on the steam recovery pipe 36.

なおヒートポンプ38はブロアやコンプレッサーであるが、要は蒸気を圧縮して送気できるものであれば何でもよい。   The heat pump 38 is a blower or a compressor. However, the heat pump 38 may be anything as long as it can compress and send air.

次に濃縮缶システム100の動作について図2を参照しながら説明する。   Next, operation | movement of the concentration can system 100 is demonstrated, referring FIG.

図2は圧力センサ24で計測された濃縮缶10の缶内圧力を縦軸、濃縮缶システム100の運転時間を横軸として、圧力の変化を表した模式図である。   FIG. 2 is a schematic diagram showing changes in pressure with the internal pressure of the concentration can 10 measured by the pressure sensor 24 as the vertical axis and the operation time of the concentration can system 100 as the horizontal axis.

濃縮缶システム100の運転を開始すると、まず混合液が混合液供給管14を通じて濃縮缶10に送られる。   When the operation of the concentrated can system 100 is started, first, the mixed solution is sent to the concentrated can 10 through the mixed solution supply pipe 14.

次に真空ポンプを備える真空管22により濃縮缶10の圧力が所定のレベルまで減圧された後、混合液は循環ポンプを備える循環管18により循環され伝熱管16の上部からシャワーリングされる。   Next, after the pressure in the concentration can 10 is reduced to a predetermined level by the vacuum tube 22 having a vacuum pump, the mixed solution is circulated by a circulation tube 18 having a circulation pump and showered from the upper part of the heat transfer tube 16.

蒸気が蒸気供給管12を通って伝熱管16の内側に送気され、伝熱管16の外側に上部からシャワーリングされている混合液を加熱することで混合液の一部は蒸発する。一方、伝熱管16の内部の蒸気は凝縮し、ドレン管30を通って排出される。   Steam is sent to the inside of the heat transfer pipe 16 through the steam supply pipe 12, and a part of the mixed liquid evaporates by heating the mixed liquid showered from the top to the outside of the heat transfer pipe 16. On the other hand, the steam inside the heat transfer tube 16 is condensed and discharged through the drain tube 30.

混合液の一部が蒸発して生成された蒸気は濃縮缶10の内部に蓄積され、徐々に濃縮缶10の内部の圧力が上昇する(図2のA点からB点)。   Vapor generated by evaporation of a part of the mixed liquid is accumulated inside the concentration can 10 and the pressure inside the concentration can 10 gradually increases (from point A to point B in FIG. 2).

制御部26は圧力センサ24で計測された蒸発缶10の内部の圧力値が予め設定された圧力の下限値を超えた場合、圧力制御弁28の開度を徐々に絞る制御を行う。その結果、蒸発缶10の内部の圧力上昇は緩やかになる(図2のB点からC点)。   The control unit 26 performs control to gradually reduce the opening degree of the pressure control valve 28 when the pressure value inside the evaporator 10 measured by the pressure sensor 24 exceeds a preset lower limit value of the pressure. As a result, the pressure increase inside the evaporator 10 becomes moderate (from point B to point C in FIG. 2).

次に圧力センサ24で計測された圧力値が予め設定された上限値を超えると、制御部26はヒートポンプ38を起動するとともに、圧力制御弁28の開度を圧力センサ24で計測された圧力が予め設定された下限値を下回らない範囲で徐々に絞る制御を行う。   Next, when the pressure value measured by the pressure sensor 24 exceeds the preset upper limit value, the control unit 26 activates the heat pump 38, and the pressure measured by the pressure sensor 24 determines the opening degree of the pressure control valve 28. Control is performed to gradually reduce the pressure within a range that does not fall below a preset lower limit value.

これにより濃縮缶システム100の外部からの蒸気供給量は削減され、混合液の濃縮に使用する蒸気はヒートポンプ38により回収した蒸気が主となる。このため圧力センサ24で計測した圧力値は低下する(図2のC点からD点)。   As a result, the amount of steam supplied from the outside of the concentrating can system 100 is reduced, and the steam used for concentrating the liquid mixture is mainly the steam recovered by the heat pump 38. For this reason, the pressure value measured by the pressure sensor 24 decreases (from point C to point D in FIG. 2).

制御部26は圧力制御弁28の開度を絞る制御を行うが、濃縮缶システム100の運転時間が経過すると、ヒートポンプ38からの入熱のため圧力センサ24で計測された圧力値は徐々に上昇する(図2のD点からE点)。   The control unit 26 performs control to reduce the opening degree of the pressure control valve 28, but when the operation time of the concentrating can system 100 elapses, the pressure value measured by the pressure sensor 24 gradually increases due to heat input from the heat pump 38. (D point to E point in FIG. 2).

圧力センサ24で計測された圧力値が予め設定された上限値を超えそうになると、濃縮缶システム100は運転を停止し、混合液の濃縮を終了する(図2のE点)。   When the pressure value measured by the pressure sensor 24 is likely to exceed the preset upper limit value, the concentration can system 100 stops operating and ends the concentration of the mixed solution (point E in FIG. 2).

この第一実施形態の効果としては、圧力センサ24で計測された圧力値、すなわち濃縮缶10の内部の圧力を予め設定された範囲に維持することで、混合液に混合されている溶液の蒸気圧の違いを最大限利用することにより単蒸留であっても高い効率で濃縮することが可能となる点である。   The effect of this first embodiment is that the pressure of the solution mixed with the liquid mixture is maintained by maintaining the pressure value measured by the pressure sensor 24, that is, the pressure inside the concentration can 10 within a preset range. By making maximum use of the difference in pressure, it is possible to concentrate with high efficiency even with simple distillation.

またヒートポンプ38による回収蒸気を、外部から供給される蒸気に優先して利用することで高いエネルギー効率を実現することが可能となる。   In addition, it is possible to realize high energy efficiency by using the recovered steam by the heat pump 38 in preference to the steam supplied from the outside.

(第二実施形態)   (Second embodiment)

第二実施形態の構成について第一実施形態と異なる点について説明する。   The difference of the configuration of the second embodiment from the first embodiment will be described.

第二実施形態に係る濃縮缶システム200では、蒸気回収管36上であって濃縮缶10との接続部からヒートポンプ38の間に脱圧管40が接続されており、脱圧管40上には脱圧制御弁42が設置されている。   In the concentrating can system 200 according to the second embodiment, the depressurizing pipe 40 is connected to the heat pump 38 from the connection portion with the concentrating can 10 on the steam recovery pipe 36, and the depressurizing pipe 40 is depressurized. A control valve 42 is installed.

脱圧制御弁42は制御部26により開度が制御可能なように制御部26と接続されている。   The decompression control valve 42 is connected to the control unit 26 so that the opening degree can be controlled by the control unit 26.

また脱圧管40は濃縮缶10が減圧状態にあっても濃縮缶10の内部の圧力を脱圧可能なようにコンデンサや真空ポンプに接続されている(コンデンサや真空ポンプは図示せず。)。   The decompression pipe 40 is connected to a condenser and a vacuum pump so that the pressure inside the concentration can 10 can be released even when the concentration can 10 is in a reduced pressure state (the condenser and the vacuum pump are not shown).

次に第二実施形態の動作について第一実施形態と異なる点について図4を参照しながら説明する。   Next, the operation of the second embodiment will be described with reference to FIG.

第二実施形態に係る図4と第一実施形態と係る図2はD点までは同一であるが、第二実施形態では
ヒートポンプ38による入熱により圧力センサ24の圧力が上昇し、予め設定された圧力の上限値を超えた場合(E1点)、制御部26は脱圧制御弁42を開けて濃縮缶10の内部の圧力を低下させ、濃縮缶10の缶内圧力を予め設定した範囲内に維持しながら濃縮缶システム200の運転を継続する(図4のE1点からE2点)。
FIG. 4 according to the second embodiment and FIG. 2 according to the first embodiment are the same up to point D, but in the second embodiment, the pressure of the pressure sensor 24 rises due to heat input by the heat pump 38 and is set in advance. When the pressure exceeds the upper limit value (point E1), the control unit 26 opens the depressurization control valve 42 to reduce the pressure inside the concentration can 10, and the pressure inside the concentration can 10 is within a preset range. The operation of the concentration can system 200 is continued while maintaining the temperature (point E1 to point E2 in FIG. 4).

これにより溶液それぞれの蒸気圧の違いを利用するために効率的な圧力下でより長い時間、混合液の濃縮を行うことが可能となり、更に効率的な濃縮缶システムの運転が可能となる。   This makes it possible to concentrate the mixed solution for a longer time under an efficient pressure in order to use the difference in vapor pressure of each solution, and to enable the operation of the more efficient concentration can system.

なお第一実施形態および第二実施形態ともに、濃縮缶システムは複数の種類の混合液から異なる溶液を分離し、別々のタンク等に保管可能なように(タンク等は図示せず。)複数のドレン配管の分岐を持ち、それぞれ使い分けることが可能なように弁を持つことが好ましい。   In both the first embodiment and the second embodiment, the concentration can system separates different solutions from a plurality of types of mixed liquids and can be stored in separate tanks (tanks and the like are not shown). It is preferable to have a drain pipe branch and a valve so that each can be used properly.

図1および図2では第一ドレン弁32および第二ドレン弁34を持つ二つのドレン管が記載されているが、必要に応じて更に多くのドレン管およびそれぞれの弁を持つことが好ましい。   1 and 2 show two drain pipes having a first drain valve 32 and a second drain valve 34, it is preferable to have more drain pipes and respective valves as necessary.

また第一実施形態および第二実施形態ともに、複数の性状の異なる混合液を効率的に濃縮することが可能なように、圧力センサ24で計測される圧力値は、混合液の性状に合わせた上限値および下限値を設定することが好ましい。   In both the first embodiment and the second embodiment, the pressure value measured by the pressure sensor 24 is matched to the properties of the mixed solution so that a plurality of mixed solutions having different properties can be efficiently concentrated. It is preferable to set an upper limit value and a lower limit value.

以上、添付図面を参照しながら本発明の好適な実施形態について説明した。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings.

当業者であれば、特許請求の範囲に記載された範囲内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、混合液を減圧下で濃縮する濃縮缶システムとして利用することができる。   The present invention can be used as a concentration can system for concentrating a mixture under reduced pressure.

10:濃縮缶、12:蒸気供給管、14:混合液供給管、16:伝熱管、18:循環管、20:溶液排出管、22:真空管、24:圧力センサ、26:制御部、28:圧力制御弁、30:ドレン管、32:第一ドレン弁、34:第二ドレン弁、36:蒸気回収管、38:ヒートポンプ、40:脱圧管、42:脱圧制御弁、100:濃縮缶システム、200:濃縮缶システム 10: Concentration can, 12: Steam supply pipe, 14: Mixture supply pipe, 16: Heat transfer pipe, 18: Circulation pipe, 20: Solution discharge pipe, 22: Vacuum pipe, 24: Pressure sensor, 26: Control unit, 28: Pressure control valve, 30: Drain pipe, 32: First drain valve, 34: Second drain valve, 36: Steam recovery pipe, 38: Heat pump, 40: Pressure relief pipe, 42: Pressure relief control valve, 100: Concentration can system , 200: Concentrated can system

Claims (5)

少なくとも2種類の溶液が混合された混合液を、内部に備えられた伝熱管により蒸発濃縮する濃縮缶を備えた濃縮缶システムにおいて、
前記濃縮缶に設置され、前記濃縮缶内部の圧力を計測する圧力センサと、
前記伝熱管に接続され、前記伝熱管に蒸気を供給する蒸気供給管と、
前記蒸気供給管上に備えられた圧力制御弁と、
前記濃縮缶の上部に一方が接続され、他方は前記蒸気供給管上であって前記圧力制御弁と前記伝熱管の間に接続された、前記濃縮缶内部で生成された蒸気を回収する蒸気回収管と、
前記蒸気回収管上に設置されたヒートポンプと、
前記圧力センサの計測値に応じて前記圧力制御弁の開度を制御する制御部と、を備え、
前記制御部は、前記濃縮缶の圧力が前記混合液に応じて予め設定された値の範囲内となるように前記圧力制御弁の開度を絞ることを特徴とする濃縮缶システム。
In a concentration can system comprising a concentration can for evaporating and concentrating a mixed solution in which at least two kinds of solutions are mixed by a heat transfer tube provided therein,
A pressure sensor installed in the concentration canister and measuring the pressure inside the concentration can;
A steam supply pipe connected to the heat transfer pipe and supplying steam to the heat transfer pipe;
A pressure control valve provided on the steam supply pipe;
Steam recovery for recovering the steam generated inside the concentration can, one connected to the upper part of the concentration can and the other connected to the steam supply pipe between the pressure control valve and the heat transfer pipe Tube,
A heat pump installed on the steam recovery pipe;
A control unit for controlling the opening of the pressure control valve according to the measurement value of the pressure sensor,
The said control part restrict | squeezes the opening degree of the said pressure control valve so that the pressure of the said concentration canister may be in the range of the value preset according to the said liquid mixture, The concentration can system characterized by the above-mentioned.
前記ヒートポンプは前記制御部にて制御可能なように接続され、
前記制御部は、前記圧力センサの計測値が予め設定された範囲の上限値を超えると前記ヒートポンプを作動させ、前記圧力センサの計測値が予め設定された範囲の下限値を下回らない範囲で前記圧力制御弁の開度を絞る制御を行うことを特徴とする請求項1に記載の濃縮缶システム。
The heat pump is connected so as to be controllable by the control unit,
The control unit activates the heat pump when the measurement value of the pressure sensor exceeds an upper limit value of a preset range, and the measurement value of the pressure sensor is within a range that does not fall below a lower limit value of the preset range. The concentration can system according to claim 1, wherein control is performed to reduce the opening of the pressure control valve.
前記蒸気回収管上であって前記濃縮缶と前記ヒートポンプの間に接続された脱圧管と、
前記脱圧管上に設置された脱圧制御弁と、を備え、
前記制御部は前記脱圧制御弁の開閉を制御可能なように接続され、前記制御部は前記圧力センサの計測値が予め設定された範囲の上限値を超える場合には、前記ヒートポンプの作動に加えて、前記脱圧制御弁を開ける制御を行うことを特徴とする請求項1または請求項2に記載の濃縮缶システム。
A depressurization pipe on the steam recovery pipe and connected between the concentrating can and the heat pump;
A depressurization control valve installed on the depressurization pipe,
The control unit is connected so as to be able to control the opening and closing of the depressurization control valve, and the control unit operates the heat pump when the measured value of the pressure sensor exceeds an upper limit value of a preset range. In addition, the concentration can system according to claim 1 or 2, wherein control for opening the depressure control valve is performed.
前記濃縮缶には、前記伝熱管内部で生成した凝縮水を排出するドレン管が設置され、
前記ドレン管は少なくとも2つ以上の分岐管と、前記分岐管上のそれぞれに弁を備えることを特徴とする請求項1から請求項3のいずれか1項に記載の濃縮缶システム。
The concentration can is provided with a drain pipe for discharging condensed water generated inside the heat transfer pipe,
The concentration can system according to any one of claims 1 to 3, wherein the drain pipe includes at least two or more branch pipes and a valve on each of the branch pipes.
前記混合液が複数種類存在する場合において、
前記制御部は、前記混合液に応じて予め設定された前記濃縮缶の圧力の値の範囲が、前記混合液それぞれに応じて設定されていることを特徴とする請求項1から請求項4のいずれか1項に記載の濃縮缶システム。
In the case where there are a plurality of types of the mixed solution,
5. The control unit according to claim 1, wherein a range of the pressure value of the concentrating can set in advance according to the mixed liquid is set according to each of the mixed liquids. The concentration can system of any one of Claims.
JP2014190601A 2014-09-18 2014-09-18 Concentrated can system Active JP6329044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014190601A JP6329044B2 (en) 2014-09-18 2014-09-18 Concentrated can system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014190601A JP6329044B2 (en) 2014-09-18 2014-09-18 Concentrated can system

Publications (2)

Publication Number Publication Date
JP2016059883A JP2016059883A (en) 2016-04-25
JP6329044B2 true JP6329044B2 (en) 2018-05-23

Family

ID=55796632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014190601A Active JP6329044B2 (en) 2014-09-18 2014-09-18 Concentrated can system

Country Status (1)

Country Link
JP (1) JP6329044B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291202A (en) * 1985-10-17 1987-04-25 Kimura Kakoki Kk Vacuum concentration of low-temperature liquid
JPH0713763Y2 (en) * 1989-01-30 1995-04-05 株式会社ササクラ Vapor compression evaporator
JP4867722B2 (en) * 2007-03-07 2012-02-01 株式会社日立プラントテクノロジー Liquid concentrator
JP5036480B2 (en) * 2007-10-10 2012-09-26 株式会社ササクラ Concentration apparatus and concentration method

Also Published As

Publication number Publication date
JP2016059883A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
KR100827586B1 (en) Distillation apparatus
JP2011050860A (en) Anhydrization method of hydrated organic substance
CN203836931U (en) Centralized-packing closed type high temperature steam condensate water recovery system
KR20140109282A (en) Solution treatment device
JP2016521636A5 (en)
KR102308392B1 (en) Distillation apparatus including distillation column
US20170057834A1 (en) Water distilling and purifying unit and variants thereof
KR20130080421A (en) Pure liquid production device
WO2015124828A1 (en) Evaporator
CN107137946A (en) A kind of amine wastewater of sulphuric acid low-temperature evaporation crystallization apparatus and technique
JP6744868B2 (en) Multi-stage distillation system and its operating method
CN203090492U (en) Low-temperature normal pressure evaporation equipment
RU2018144549A (en) RECTIFICATION COLUMN FOR REFRIGERANT WITH ISSUE AND METHOD FOR INCREASING EFFICIENCY
JP6329044B2 (en) Concentrated can system
US10132153B2 (en) System and method for treating produced water having a flash vaporization system for removing dissolved gases from produced water
JP2016128746A (en) Superheated steam generator
CN206295614U (en) The MVR vaporising devices of low boiling volatile matter in evaporation material can be removed
CN211158626U (en) High-efficient single-effect evaporation process system
JP5486322B2 (en) Waste steam recovery device
JP5537165B2 (en) Waste steam recovery device
JP2010002057A (en) Clean steam generator
CN206730550U (en) Energy-saving continuous rectification system
JP6595855B2 (en) Distillation equipment with distillation tower
RU2494308C1 (en) General-purpose vacuum atmospheric deaeration plant
RU2015154018A (en) Autonomous installation for the purification of liquefied natural gas (options)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180419

R150 Certificate of patent or registration of utility model

Ref document number: 6329044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250