NO322779B1 - Stock with permanent magnetic elements - Google Patents
Stock with permanent magnetic elements Download PDFInfo
- Publication number
- NO322779B1 NO322779B1 NO20043556A NO20043556A NO322779B1 NO 322779 B1 NO322779 B1 NO 322779B1 NO 20043556 A NO20043556 A NO 20043556A NO 20043556 A NO20043556 A NO 20043556A NO 322779 B1 NO322779 B1 NO 322779B1
- Authority
- NO
- Norway
- Prior art keywords
- accordance
- bearing
- permanent magnetic
- ring
- magnetic elements
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000010276 construction Methods 0.000 description 4
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B11/00—Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
- F03B11/06—Bearing arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
- F16C32/0423—Passive magnetic bearings with permanent magnets on both parts repelling each other
- F16C32/0427—Passive magnetic bearings with permanent magnets on both parts repelling each other for axial load mainly
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/0408—Passive magnetic bearings
- F16C32/0423—Passive magnetic bearings with permanent magnets on both parts repelling each other
- F16C32/0429—Passive magnetic bearings with permanent magnets on both parts repelling each other for both radial and axial load, e.g. conical magnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C39/00—Relieving load on bearings
- F16C39/06—Relieving load on bearings using magnetic means
- F16C39/063—Permanent magnets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/10—Application independent of particular apparatuses related to size
- F16C2300/14—Large applications, e.g. bearings having an inner diameter exceeding 500 mm
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/30—Ships, e.g. propelling shafts and bearings therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Description
Lager med permanentmagnetiske elementer Bearings with permanent magnetic elements
Oppfinnelsen gjelder et lager som angitt i innledningen til patentkrav 1, med permanetmagnetiske elementer, særlig for å ta opp aksielle krefter, for eksempel i en navløs skipspropell, generatorturbin eller ei pumpe. The invention relates to a bearing as stated in the introduction to patent claim 1, with permanent magnetic elements, in particular to take up axial forces, for example in a hubless ship propeller, generator turbine or a pump.
Bakgrunn Background
Det er ønskelig å bruke lager med permanentmagnetiske element eller passive magnetiske lager (PM-lager) i forskjellige sammenhenger hvor de ikke har vært egnet tidligere. Et eksempel er ved truster-propeller på båter. Det er foreslått bruk av vannsmurt glidelager ved slike propeller, som skal ta opp de aksielle kreftene under drift. Det er ønskelig å utvikle et lager med permanentmagneter, som kan brukes enten alene eller kombinert med et væskesmurt glidelager for dette og liknende formål, hvor lageret er neddykket i ei væske.. It is desirable to use bearings with permanent magnetic elements or passive magnetic bearings (PM bearings) in various contexts where they have not been suitable before. An example is truster propellers on boats. The use of water-lubricated sliding bearings has been proposed for such propellers, which will absorb the axial forces during operation. It is desirable to develop a bearing with permanent magnets, which can be used either alone or combined with a liquid-lubricated sliding bearing for this and similar purposes, where the bearing is immersed in a liquid.
Det er kjent passive magnetiske lager med permanente magneter (PM). Men ofte i sammenheng med aktive elektromagneter, ofte brukt i små applikasjoner med elektriske maskiner og høyt turtall og stort sett i radiell retning. Magnetiske lager er populære i sammenheng med svinghjul og roterende energilagre. Dette gir andre problemstillinger enn i denne løsningen hvor turtallet er relativt lavt og arealet som er tilgjengelig for magnetene er relativt stort. Passive magnetic bearings with permanent magnets (PM) are known. But often in conjunction with active electromagnets, often used in small applications with electrical machines and high speed and mostly in the radial direction. Magnetic bearings are popular in the context of flywheels and rotating energy bearings. This gives rise to different problems than in this solution where the speed is relatively low and the area available for the magnets is relatively large.
Dokument WO 99/37912 tar for seg en konstruksjon som ligner på oppfinnelsen og beskriver fordeler og utfordringer med konstruksjonen. Når det gjelder opplagring, så omhandler dokumentet en anordning med trekkende og aktivt styrte elektromagneter. Document WO 99/37912 deals with a construction similar to the invention and describes advantages and challenges with the construction. When it comes to storage, the document deals with a device with moving and actively controlled electromagnets.
Dokument WO 01/84693 omhandler et passivt magnetisk aksial/radiallager med statiske og roterende PM innrettet med alternerende polaritet. Her roterer en ferromagnetisk del sammen med rotoren. Document WO 01/84693 deals with a passive magnetic axial/radial bearing with static and rotating PM arranged with alternating polarity. Here, a ferromagnetic part rotates together with the rotor.
Patentskrift US S894181 omfatter et passivt magnetisk aksial/radiallager med aksielt roterende PM, hvor lageret er et kompromiss mellom aksiell- og radiell stivhet som motvirker hverandre. Patent document US S894181 includes a passive magnetic axial/radial bearing with an axially rotating PM, where the bearing is a compromise between axial and radial stiffness that oppose each other.
Fra japansk patentsøknad 59037332 (Mitshubishi 1984) er det kjent å innleire kranser av permanentmagnetisk materiale i en faststående og en roterbar bærer, slik at ved monterte lager blir de omsluttende flatene på den faststående og og den roterbare bæreren liggende overfor hverandre. Denne konstruksjonen gir ikke vesentlig forsterkning av feltet. From Japanese patent application 59037332 (Mitshubishi 1984) it is known to embed wreaths of permanent magnetic material in a stationary and a rotatable carrier, so that when bearings are mounted, the enclosing surfaces of the stationary and and the rotatable carrier lie opposite each other. This construction does not significantly strengthen the field.
Fra US 4180296 (Habermann 1979) er det kjent et magnetlager hvor det på motstående sider av ei roterende plate er anordnet en faststående krans av magnetelement. Denne konstruksjonen er beregnet for et spesielt formål, særlig som trustlager for skiver som roterer med høg hastighet. From US 4180296 (Habermann 1979) a magnetic bearing is known where a fixed ring of magnetic elements is arranged on opposite sides of a rotating plate. This construction is intended for a special purpose, in particular as a trust bearing for disks that rotate at high speed.
Formål Purpose
Hovedformålet med oppfinnelsen er å skape en lageranordning som primært tar opp aksielle krefter mer effektivt enn kjente magnetlager. Lageret skal gi optimal frastøtningskraft og stivhet. Det skal kunne tilpasses til ulike toleransekrav. The main purpose of the invention is to create a bearing device which primarily absorbs axial forces more effectively than known magnetic bearings. The bearing must provide optimal repulsion force and stiffness. It must be adaptable to different tolerance requirements.
Oppfinnelsen The invention
Oppfinnelsen er angitt i patentkrav 1. Det har vist seg at større antall spor og del-magneter gir et stivere lager enn ett spor og en enkelt magnetring. The invention is stated in patent claim 1. It has been shown that a larger number of tracks and sub-magnets gives a stiffer bearing than one track and a single magnet ring.
Lageret er et passivt magnetisk lager som kan f.eks. brukes til opplagring av et roterende maskinelement uten aksel. Lageret har en stasjonær og en roterende del. Magnetene er utformet som ringer, og er montert innbyrdes frastøtende. Vanligvis brukes trekkende magneter fordi tiltrekningskraften mellom ulike poler er sterkere enn frastøtningskraften mellom like poler ved samme avstand. Magneter med aksiell magnetisering i samme retning plasseres i konsentriske spor i et ferromagnetiske materialet for vekslende N/S polaritet, hvilket gir komprimering av flux og dermed større frastøtende magnetkraft. Dette gir økt stivhet i lageret. Magnetene som skal plasseres i det ferromagnetiske materialet, beregnes på forhånd mht. sporbredde, avstand og dybde, t forhold til magnetspesifikasjonen for å gi optimal frastøtningskraft og stivhet. Utførelsesformen og plassering av magnetene i lageret er avgjørende for kraften som lageret kan oppta, samt vekten og lengden til lageret. En fordel med lageret er blant annet at spaltedimensjonen kan optimaliseres, ved hjelp av moderne FEM-analyseverktøy i forhold til mediet som systemet arbeider i, og belastning for å redusere viskøse tap. En annen fordel med permanentmagneter i forhold til andre lagermaterialer i de aktuelle applikasjonsområdene, er at prisen på permanentmagneter er meget fordelaktig i forhold til komposittmaterialer som brukes til vannsmurte lager. The bearing is a passive magnetic bearing which can e.g. used for storage of a rotating machine element without a shaft. The bearing has a stationary and a rotating part. The magnets are designed as rings, and are mounted mutually repulsive. Generally, pulling magnets are used because the attractive force between different poles is stronger than the repulsive force between like poles at the same distance. Magnets with axial magnetization in the same direction are placed in concentric grooves in a ferromagnetic material for alternating N/S polarity, which gives compression of flux and thus greater repulsive magnetic force. This gives increased stiffness in the bearing. The magnets to be placed in the ferromagnetic material are calculated in advance with regard to track width, distance and depth, t relative to the magnet specification to provide optimum repulsion force and stiffness. The design and placement of the magnets in the bearing are decisive for the force that the bearing can absorb, as well as the weight and length of the bearing. An advantage of the bearing is, among other things, that the gap dimension can be optimised, using modern FEM analysis tools, in relation to the medium in which the system works, and load to reduce viscous losses. Another advantage of permanent magnets compared to other bearing materials in the relevant application areas is that the price of permanent magnets is very advantageous compared to composite materials used for water-lubricated bearings.
Forskjellen fra tidligere kjent teknikk som er vist i WO 99/37912, WO 01/84693 og US 5894181 er bl. a. at den foreliggende oppfinnelsen er et passivt system basert på permanente magneter med frastøtende polaritet, hvilke er lagt inn i spor i et ferromagnetisk materiale som generer motsatt rettede krefter over lagerflaten og på denne måten komprimerer flukstettheten. Oppfinnelsen gir betydelig økt stivhet i lageret. The difference from prior art which is shown in WO 99/37912, WO 01/84693 and US 5894181 is, among other things, a. that the present invention is a passive system based on permanent magnets with repulsive polarity, which are inserted into grooves in a ferromagnetic material that generate oppositely directed forces across the bearing surface and in this way compress the flux density. The invention provides significantly increased stiffness in the bearing.
Flere detaljer ved oppfinnelsen er angitt i den etterfølgende eksempelbeskrivelsen. More details of the invention are given in the following example description.
Eksempel Example
Oppfinnelsen er nedenfor beskrevet under henvisning til tegningene, hvor The invention is described below with reference to the drawings, where
Fig. 1 viser et skjematisk tverrsnitt gjennom gjennom et ringformet lager i samsvar med en første utførelsesform av oppfinnelsen, Fig. 1 shows a schematic cross-section through an annular bearing in accordance with a first embodiment of the invention,
Fig. 2 viser et planriss av en magnetring ved lageret i Fig. 1, Fig. 2 shows a plan view of a magnetic ring at the bearing in Fig. 1,
Fig. 3-4 viser tverrsnitt gjennom tre ytterligere varianter av ringformete lager i samsvar med oppfinnelsen, mens Fig. 5 viser et perspektivriss av en delvis åpnet en elektrisk periferidrevet propell, hvor lageret er utformet i samsvar med oppfinnelsen. Fig. 3-4 show cross-sections through three further variants of annular bearings in accordance with the invention, while Fig. 5 shows a perspective view of a partially opened, electrically peripherally driven propeller, where the bearing is designed in accordance with the invention.
Alle lagrene er i figurene 1 og 3 - 4 er vist med åpen magnetspalte, som vil reduseres betydelig ved belastning. Fig. 1 og 2 viser et lager 11 med to lagerringer 12,13, der den nedre lagerringen 12 er faststående med vertikal akse 14. Den øvre lagerringen 13 blir dermed lastbærende. Hver lagerring 12, 13 omfatter en krans 15 av bløtjern med et ringspor 16 med rektangulært tverrsnitt som danner en bunn eller åk 17.1 ringsporet 16 er det innleiret, for eksempel ved klebing, en krans av magnetsegmenter 18, i eksemplet seksten. Magnetsegmentene 18 kan være hensiktsmessige permanentmagneter, f.eks. av sintrert neodym-jern-bor-legering eller samarium-kobolt-legering.En grunnleggende parameter for dimensjonering av bredden av de to aksiale flensene 19 og 20 av bløtjern, som dannes av ringsporet 16, synes å være at de skal ligge like under metning Figur 3 viser snitt gjennom en alternativ utførelsesform, der to lagerringer 22,23 hver har to spor 24, 25 for opptak av segmenter 26 av permanentmagneter på tilsvarende måte som ved sporene 16 i utførelsesformen i fig. 1 og 2. Det dannes på den måten tre steg 27, 28, 29 i det magnetisk ledende bløtjernet. Her vil en få mer bærekraft desto tynnere det magnetisk ledende materialet er, ned til en viss grense hvor materialet går i metning. Figur 4 viser en ytterligere alternativ utførelsesform med to lagerringer 30, 31, hver med tre parallelle ringformete spor 32, 33, 34.1 tillegg til et radialt indre steg 35, og to mellomsteg 36, 37 som alle ender i magnetsegmentenes grenseplan, har den øvre lagerringen 31 en utvendig flens 38 som strekker seg ned utvendig i forhold til den nedre lagerringen 30, slik at det dannes en luftspalte 39 som er lagerets spalte ved nominell last. Dette lageret har en viss radiell stivhet. All the bearings in Figures 1 and 3 - 4 are shown with an open magnetic gap, which will be significantly reduced under load. Fig. 1 and 2 show a bearing 11 with two bearing rings 12,13, where the lower bearing ring 12 is fixed with vertical axis 14. The upper bearing ring 13 thus becomes load-bearing. Each bearing ring 12, 13 comprises a wreath 15 of soft iron with an annular groove 16 of rectangular cross-section which forms a bottom or yoke 17.1 the annular groove 16 is embedded, for example by gluing, a wreath of magnet segments 18, in example sixteen. The magnet segments 18 can be suitable permanent magnets, e.g. of sintered neodymium-iron-boron alloy or samarium-cobalt alloy. A basic parameter for dimensioning the width of the two axial flanges 19 and 20 of soft iron, which are formed by the annular groove 16, seems to be that they should lie just below saturation Figure 3 shows a section through an alternative embodiment, where two bearing rings 22, 23 each have two grooves 24, 25 for receiving segments 26 of permanent magnets in a similar way to the grooves 16 in the embodiment in fig. 1 and 2. Three steps 27, 28, 29 are thus formed in the magnetically conductive soft iron. Here, you will get more carrying capacity the thinner the magnetically conductive material is, down to a certain limit where the material reaches saturation. Figure 4 shows a further alternative embodiment with two bearing rings 30, 31, each with three parallel annular grooves 32, 33, 34.1 in addition to a radial inner step 35, and two intermediate steps 36, 37 which all end in the boundary plane of the magnetic segments, the upper bearing ring has 31 an external flange 38 which extends down externally in relation to the lower bearing ring 30, so that an air gap 39 is formed which is the bearing's gap at nominal load. This bearing has a certain radial stiffness.
I fig. 5 er det vist en utførelsesform av et lager i samsvar med oppfinnelsen brukt for opplagring av en elektrisk periferidrevet propell 48. Propellen 48 er omgitt av et sylindrisk rørformet hus 49 med en oppragende, sentralt plassert rørstuss 50, som delvis tjener for tilførsel av elektriske kabler, delvis for montering til et fartøy ved hjelp av en monteringsflens 51. In fig. 5 shows an embodiment of a bearing in accordance with the invention used for storage of an electrically peripherally driven propeller 48. The propeller 48 is surrounded by a cylindrical tubular housing 49 with a protruding, centrally located pipe socket 50, which partly serves for the supply of electrical cables , partly for mounting to a vessel by means of a mounting flange 51.
Ved hver ende av huset 49 er det opptil propellen 48 utformet et ringspor 52. Innerst i ringsporet 52 er det plassert en indre lagerring 53 i samsvar med oppfinnelsen, for eksempel som vist i Fig. 3. Lagerringen 53 har en bærekrans 54 av bløttstål, med to magnetringer 55, 56 satt sammen av segmenter montert inn i ringspor. Symmetrisk mot lagerringen 53 er det plassert en identisk ytre lagerring 57. Lagerringen 53 er skrudd fast til propellen 48 med skruer i bunnen av ringsporet 52. At each end of the housing 49, an annular groove 52 is formed up to the propeller 48. Inside the annular groove 52, an inner bearing ring 53 is placed in accordance with the invention, for example as shown in Fig. 3. The bearing ring 53 has a bearing ring 54 of mild steel, with two magnetic rings 55, 56 assembled from segments fitted into ring grooves. An identical outer bearing ring 57 is placed symmetrically to the bearing ring 53. The bearing ring 53 is screwed to the propeller 48 with screws at the bottom of the ring groove 52.
En tilsvarende lagerring er plassert ved den andre enden av det rørformete huset 49. Hver av de to lagerringene holdes på plass av en klemring 58 som presser den ytre lagerringen 57 fast mot en avtrapning 59 i ringsporet 52. Klemringene 58 monteres med ei rekke festeskruer. rundt omkretsen. A corresponding bearing ring is placed at the other end of the tubular housing 49. Each of the two bearing rings is held in place by a clamping ring 58 which presses the outer bearing ring 57 firmly against a taper 59 in the ring groove 52. The clamping rings 58 are mounted with a series of fastening screws. around the perimeter.
Lagerringene kan dekkes med et belegg som hindrer korrosjon når lagrene brukes nedsenket i vann. The bearing rings can be covered with a coating that prevents corrosion when the bearings are used submerged in water.
Oppfinnelsen er blitt utviklet for en lOOkW truster som er montert på en båt. Utgangspunktet for lageret var at det skullel yte en kraft (støte fra) på ISOOkg med en avstand på 2mm mellom lagerflatene. Dimensjonene på lageret var: The invention has been developed for a lOOkW truster which is mounted on a boat. The starting point for the bearing was that it should produce a force (impact) of ISOOkg with a distance of 2mm between the bearing surfaces. The dimensions of the warehouse were:
Det ble brukt permanentmagneter av en neodym-Iegering. Permanent magnets of a neodymium Iegering were used.
Modifikasjon Modification
Det kan anordnes flere rekker magneter limet inn ende mot ende i ringspor enn det som er vist.. De ringformete magnetene kan videre være sammensatte av færre eller flere segmenter en det som er vist i eksemplene. More rows of magnets can be arranged glued end to end in ring grooves than what is shown. The ring-shaped magnets can also be composed of fewer or more segments than what is shown in the examples.
Stegene eller tennene mellom og ved siden av magnetringene er i eksemplene vist med avslutning jevnt med magnetringene. Det kan også lages utførelsesformer der disse stegene og endeflensene rager litt ut fra permanentmagnetene, for å ta av for støt og for å kompensere for unøyaktighet i sammenstillingen. Disse vil da fortrinnsvis bli utformet som et belegg i komposittmateriale. The steps or teeth between and next to the magnet rings are shown in the examples with a finish flush with the magnet rings. Designs can also be made where these steps and end flanges protrude slightly from the permanent magnets, to absorb shocks and to compensate for assembly inaccuracies. These will then preferably be designed as a coating in composite material.
Claims (9)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20043556A NO322779B1 (en) | 2004-08-25 | 2004-08-25 | Stock with permanent magnetic elements |
PCT/NO2005/000306 WO2006022554A1 (en) | 2004-08-25 | 2005-08-24 | Bearing with permanent magnetic elements |
EP05779375A EP1817505A4 (en) | 2004-08-25 | 2005-08-24 | Bearing with permanent magnetic elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20043556A NO322779B1 (en) | 2004-08-25 | 2004-08-25 | Stock with permanent magnetic elements |
Publications (3)
Publication Number | Publication Date |
---|---|
NO20043556D0 NO20043556D0 (en) | 2004-08-25 |
NO20043556L NO20043556L (en) | 2006-02-27 |
NO322779B1 true NO322779B1 (en) | 2006-12-11 |
Family
ID=35044506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20043556A NO322779B1 (en) | 2004-08-25 | 2004-08-25 | Stock with permanent magnetic elements |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1817505A4 (en) |
NO (1) | NO322779B1 (en) |
WO (1) | WO2006022554A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO331651B1 (en) * | 2009-05-20 | 2012-02-13 | Rolls Royce Marine As | Storage of propeller unit for a vessel |
CN103629232A (en) * | 2013-11-18 | 2014-03-12 | 钱坤喜 | Permanent-magnetic de-loading radial roller bearing |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007032443A1 (en) | 2007-07-10 | 2009-01-15 | Voith Patent Gmbh | Hybrid bearing and method for its production |
IT1390881B1 (en) * | 2008-07-17 | 2011-10-19 | Zeta Camini S R L | FUME EXTRACTOR FIXTURE FOR CHIMNEY, CHIMNEYS, SMOKE AND SIMILAR CANES |
DE102008038067A1 (en) * | 2008-08-16 | 2010-02-18 | Schaeffler Kg | Storage arrangement for a machine table with magnetic discharge |
GB2479367A (en) * | 2010-04-06 | 2011-10-12 | Donald Robertson | Hubless turbine tube |
CA2797735A1 (en) | 2010-04-30 | 2011-11-03 | Clean Current Limited Partnership | Unidirectional hydro turbine with enhanced duct, blades and generator |
CH707582B1 (en) | 2013-02-04 | 2018-12-14 | Montres Breguet Sa | Watch sub-assembly with magnetic or electrostatic pivoting. |
CN103629233A (en) * | 2013-11-18 | 2014-03-12 | 钱坤喜 | Permanent-magnetic de-loading axial roller bearing |
EP2886890B1 (en) * | 2013-12-18 | 2019-06-26 | Skf Magnetic Mechatronics | Thrust disc, magnetic bearing and apparatus |
DE102021111401A1 (en) * | 2021-05-03 | 2022-11-03 | Rosen Swiss Ag | Propulsion device for propelling a watercraft |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4180296A (en) * | 1978-01-06 | 1979-12-25 | Societe Europeenne De Propulsion | Axial electromagnetic bearing for a shaft rotating at high speed |
JPS5937332A (en) * | 1982-08-25 | 1984-02-29 | Mitsubishi Electric Corp | Thrust bearing device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2136371A1 (en) * | 1971-07-21 | 1973-02-01 | Braun Karl | MAGNETIC STORAGE OF SHAFTS OR THE LIKE |
JPS50145750A (en) * | 1974-05-17 | 1975-11-22 | ||
US4379598A (en) * | 1980-12-22 | 1983-04-12 | North American Philips Corporation | Magnetic bearing |
JPS5883552A (en) * | 1981-11-12 | 1983-05-19 | Hitachi Koki Co Ltd | Rotary machine |
DE3638129A1 (en) * | 1986-11-08 | 1988-05-11 | Licentia Gmbh | Large diameter turbogenerator for generating electrical energy at high power |
DE10062065A1 (en) * | 2000-12-13 | 2002-03-28 | Siemens Ag | Magnetic bearing device e.g. for electrical machine shaft, uses opposing magnets for supporting rotating part relative to stationary part in both axial and radial directions |
US7679245B2 (en) * | 2001-09-17 | 2010-03-16 | Beacon Power Corporation | Repulsive lift systems, flywheel energy storage systems utilizing such systems and methods related thereto |
-
2004
- 2004-08-25 NO NO20043556A patent/NO322779B1/en not_active IP Right Cessation
-
2005
- 2005-08-24 WO PCT/NO2005/000306 patent/WO2006022554A1/en active Application Filing
- 2005-08-24 EP EP05779375A patent/EP1817505A4/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4180296A (en) * | 1978-01-06 | 1979-12-25 | Societe Europeenne De Propulsion | Axial electromagnetic bearing for a shaft rotating at high speed |
JPS5937332A (en) * | 1982-08-25 | 1984-02-29 | Mitsubishi Electric Corp | Thrust bearing device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO331651B1 (en) * | 2009-05-20 | 2012-02-13 | Rolls Royce Marine As | Storage of propeller unit for a vessel |
US9592897B2 (en) | 2009-05-20 | 2017-03-14 | Rolls-Royce Marine As | Support of propeller unit for a vessel |
CN103629232A (en) * | 2013-11-18 | 2014-03-12 | 钱坤喜 | Permanent-magnetic de-loading radial roller bearing |
Also Published As
Publication number | Publication date |
---|---|
NO20043556D0 (en) | 2004-08-25 |
WO2006022554A1 (en) | 2006-03-02 |
NO20043556L (en) | 2006-02-27 |
EP1817505A1 (en) | 2007-08-15 |
EP1817505A4 (en) | 2012-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2112370B1 (en) | A hydro-electric turbine having a magnetic bearing | |
CA2894788C (en) | Permanent magnet machine with segmented sleeve for magnets | |
EP2472117B1 (en) | Disposable magnetic-suspension centrifugal pump | |
NO322779B1 (en) | Stock with permanent magnetic elements | |
EP2536009A1 (en) | Magnetic levitation supporting structure for vertical shaft disc-type motor | |
US8134264B2 (en) | Large capacity hollow-type flywheel energy storage device | |
JP2010527224A5 (en) | ||
CA2691202C (en) | A hybrid bearing and a method for its production | |
CA2819035C (en) | Water flow electricity generating device | |
US20090146515A1 (en) | Magnetic axial bearing and a spindle motor having this kind of magnetic axial bearing | |
KR101350514B1 (en) | Contra rotating propeller marine propulsion device with super conductor bearing and a ship having the same | |
JP2013519044A (en) | Magnetic Levitation Support Structure for Vertical Axis Generator and Vertical Axis Generator Using It | |
US20210140402A1 (en) | Submerged electrical machines | |
US11732684B2 (en) | Ocean current vortex-induced vibration power generation device | |
ATE412826T1 (en) | PUMP WITH MAGNETIC BEARINGS | |
CN202111544U (en) | Rotor of permanent magnet synchronous motor | |
KR100751588B1 (en) | A high speed motor with embedded permanent magnets | |
CN112003418A (en) | Magnetic suspension bearing, assembling method thereof and motor | |
CN203481988U (en) | Magnetic suspension flywheel motor | |
JPWO2006106647A1 (en) | Rotating mechanism | |
CN204794617U (en) | Synchronous submersible electric motor of two poles of earth permanent magnetism | |
US10804782B2 (en) | Energy conserving power generator | |
KR101971096B1 (en) | Motor for improving power | |
JP2010004609A (en) | Motor | |
CN204794616U (en) | Magnet steel is fixed towards piece and two poles of earth permanent magnetism motor of diving in step |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
CB | Opposition filed (par. 26,5 patents act) |
Opponent name: SWAY AS, FANAVEIEN 96, RADAL, 5239, NO Effective date: 20070911 |
|
CHAD | Change of the owner's name or address (par. 44 patent law, par. patentforskriften) |
Owner name: BERTEL O. STEEN POWER SOLUTIONS NORWAY AS, NO |
|
MM1K | Lapsed by not paying the annual fees |