NO321014B1 - Hydrolysis tank for use in a hydrolysis process for raw materials from the fish and slaughterhouse industry - Google Patents

Hydrolysis tank for use in a hydrolysis process for raw materials from the fish and slaughterhouse industry Download PDF

Info

Publication number
NO321014B1
NO321014B1 NO20054754A NO20054754A NO321014B1 NO 321014 B1 NO321014 B1 NO 321014B1 NO 20054754 A NO20054754 A NO 20054754A NO 20054754 A NO20054754 A NO 20054754A NO 321014 B1 NO321014 B1 NO 321014B1
Authority
NO
Norway
Prior art keywords
tank
hydrolysis
raw materials
collagen
accordance
Prior art date
Application number
NO20054754A
Other languages
Norwegian (no)
Other versions
NO20054754D0 (en
NO20054754A (en
Inventor
Tony Wahl
Original Assignee
Wahl Process Systems As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Publication of NO20054754D0 publication Critical patent/NO20054754D0/en
Priority claimed from NO20051216A external-priority patent/NO320736B1/en
Application filed by Wahl Process Systems As filed Critical Wahl Process Systems As
Priority to NO20054754A priority Critical patent/NO321014B1/en
Publication of NO20054754A publication Critical patent/NO20054754A/en
Publication of NO321014B1 publication Critical patent/NO321014B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/001Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from waste materials, e.g. kitchen waste
    • A23J1/002Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from waste materials, e.g. kitchen waste from animal waste materials
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/04Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from fish or other sea animals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/10Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from hair, feathers, horn, skins, leather, bones, or the like
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/04Animal proteins
    • A23J3/06Gelatine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/341Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins
    • A23J3/342Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins of collagen; of gelatin

Abstract

Oppfinnelsen vedrører en hydrolysetank omfattende innløp for tilsetning av råvarer og utløp for produkter, en omdreibar røremekanisme, og en innrettning for varmeveksling, der en eller flere reverserbare skruer er innrettet i utløp i bunnen av tanken. Videre omfatter oppfinnelsen en fremgangsmåte for en enzymatisk hydrolyseprosess av kollagen og proteinholdige råstoffer, der råstoffene blandes ved at en røremekanisme roterer, og samtidig roterer en eller flere reverserbare transportskruer anordnet i tilknytning til tankens bunnparti i retning innover i tanken slik at råstoffet stadig bringes inn til sentrum av tanken. Oppfinnelsen vedrører også anvendelser av nevnte hydrolysetank i en enzymatisk hydrolyseprosess.The invention relates to a hydrolysis tank comprising inlets for adding raw materials and outlets for products, a rotatable stirring mechanism, and a device for heat exchange, where one or more reversible screws are arranged in outlets at the bottom of the tank. Furthermore, the invention comprises a method for an enzymatic hydrolysis process of collagen and proteinaceous raw materials, wherein the raw materials are mixed by a stirring mechanism rotating, and at the same time rotating one or more reversible transport screws arranged in connection with the bottom portion of the tank inwards towards the tank. center of thought. The invention also relates to uses of said hydrolysis tank in an enzymatic hydrolysis process.

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for en enzymatisk hydrolyseprosess av kollagen og proteinholdige råstoffer, omfattende de følgende trinn: (1) å hydrolysere råstoffene enzymatisk slik at tre følgende fraksjoner frembringes; The present invention relates to a method for an enzymatic hydrolysis process of collagen and proteinaceous raw materials, comprising the following steps: (1) to hydrolyze the raw materials enzymatically so that three following fractions are produced;

(a) en fettholdig toppfraksjon, (a) a fatty top fraction,

(b) en midtfraksjon omfattende vannløselige bestanddeler, deriblant vannløselige proteiner inkludert kollagen, og (c) en uløselig bunnfraksjon omfattende beinrester og uløselige proteiner; (b) a middle fraction comprising water-soluble constituents, including water-soluble proteins including collagen, and (c) an insoluble bottom fraction comprising bone debris and insoluble proteins;

og and

(2) å separere (a), (b) og (c). (2) to separate (a), (b) and (c).

Oppfinnelsen vedrører også en hydrolysetank omfattende innløp for tilsetning av råvarer og utløp for produkter, en omdreibar røremekanisme, og en innrettning for varmeveksling. The invention also relates to a hydrolysis tank comprising inlets for the addition of raw materials and outlets for products, a rotatable stirring mechanism, and an arrangement for heat exchange.

Oppfinnelsen vedrører også anvendelser av hydrolysetanken. The invention also relates to applications of the hydrolysis tank.

Introduksjon Introduction

Produksjon av matvarer, for eksempel innen fiskeindustrien og slakteindustrien, skaper store mengder biprodukter som er svært rike på verdifulle bestanddeler, blant annet proteiner, olje og kalsium. For å ivareta disse ressursene er det tidligere utviklet flere forskjellige prosesser som frigjør de verdifulle komponentene. Disse prosessene er ofte basert på ensilering eller enzymatisk hydrolyse. Dette resulterer imidlertid i proteiner og olje med en kvalitet som ikke tilfredsstiller kravene i næringsmiddelindustrien. De kan derfor kun benyttes til produksjon av dyrefor. The production of foodstuffs, for example in the fishing industry and the butchering industry, creates large quantities of by-products that are very rich in valuable components, including proteins, oil and calcium. In order to safeguard these resources, several different processes have previously been developed which release the valuable components. These processes are often based on ensiling or enzymatic hydrolysis. However, this results in proteins and oil with a quality that does not meet the requirements of the food industry. They can therefore only be used for the production of animal feed.

For å fremstille produkter som tilfredsstiller kvalitetskravene i næringsmiddelindustrien er det tidligere utviklet enzymer som kan spalte råmaterialet til sine enkelte bestanddeler. Disse enzymene muliggjør en enzymatisk hydrolyse av for eksempel slakteavskjær. Proteinene i råmaterialet løses da opp i vann slik at protein-, olje- og beinfraksjonene kan skilles fra hverandre. Disse enzymene er kommersielt tilgjengelige. In order to produce products that meet the quality requirements in the food industry, enzymes have previously been developed that can break down the raw material into its individual components. These enzymes enable an enzymatic hydrolysis of, for example, offal. The proteins in the raw material are then dissolved in water so that the protein, oil and bone fractions can be separated. These enzymes are commercially available.

Innen fiskeindustrien produseres det store mengder biprodukter med høyt innhold av verdifulle proteiner og oljer. I dag foregår det en viss virksomhet basert på ensilering for å ivareta dette. Det har også vært gjort forsøk med enzymatisk hydrolyse. Within the fishing industry, large quantities of by-products with a high content of valuable proteins and oils are produced. Today, there is a certain amount of activity based on ensiling to take care of this. Attempts have also been made with enzymatic hydrolysis.

Oppfinnelsen vedrører et trinn i en prosess for å drive hydrolyseprosessen ikke-kontinuerlig. Kontinuerlige hydrolyseprosesser eksisterer allerede, men de har imidlertid en rekke svakheter. Fordi de er kontinuerlige prosesser, er der en viss fri flyt mellom tankene/prosesstrinnene. Dette fører til at råstoffet blir ujevnt hydrolisert. Det ferdige hydrolysatproduktet inneholder kollagen, noe som gjør det til et blandingprodukt som har et begrenset bruksområde. Hydrolysat produsert ved slike prosesser er ikke egnet til mat for mennesker. The invention relates to a step in a process for operating the hydrolysis process non-continuously. Continuous hydrolysis processes already exist, but they have a number of weaknesses. Because they are continuous processes, there is a certain free flow between the thoughts/process steps. This leads to the raw material being unevenly hydrolysed. The finished hydrolyzate product contains collagen, which makes it a mixed product that has a limited area of use. Hydrolyzate produced by such processes is not suitable for human consumption.

Oppfinneren av den foreliggende oppfinnelsen har utviklet en "baten" prosess for å drive enzymatisk hydrolyse av råstoffer fra fiskeindustrien og slakterindustrien. Denne prosessen gir et produkt som også er egnet som mat for mennesker. The inventor of the present invention has developed a "baten" process to drive enzymatic hydrolysis of raw materials from the fishing industry and the butcher industry. This process produces a product that is also suitable as food for humans.

Hydrolyseprosessen ifølge den foreliggende oppfinnelsen gjennomføres med The hydrolysis process according to the present invention is carried out with

kommersielt tilgjengelige enzymer, men i en hydrolysetank som er nyutviklet av oppfinneren. Hydrolysetanken har en særdeles god sammenblandingskapasitet, fordi store skruer i bunnen av tanken dytter innholdet deri tilbake mot midten av tanken, slik at røremekanismen får maksimal effektivitet. God sammenblanding og store varmeflater fører til at temperaturen kan holdes svært jevn, slik at hydrolyseprosessen er optimalisert. Siden dette er et lukket "baten" system, i commercially available enzymes, but in a hydrolysis tank newly developed by the inventor. The hydrolysis tank has a particularly good mixing capacity, because large screws at the bottom of the tank push the contents back towards the center of the tank, so that the stirring mechanism achieves maximum efficiency. Good mixing and large heating surfaces mean that the temperature can be kept very even, so that the hydrolysis process is optimised. Since this is a closed "baten" system, i

motsetning til de kontinuerlige systemene som er mye i bruk i dag, kan ikke bare temperaturen reguleres svært bra men også tidsrommene hydrolysatet tilbringer ved ulike temperaturer. unlike the continuous systems that are widely used today, not only the temperature can be regulated very well but also the time periods the hydrolyzate spends at different temperatures.

Hydrolyseprosessen resulterer i tre fraksjoner, en av dem omfatter vannløselige proteiner, deriblant kollagen. Oppfinneren har utviklet en ny metode for å effektivt separere av kollagenet fra de resterende proteinene, som er omtalt i den norske patentsøknaden den foreliggende søknaden er avdelt fra; 20051216. Denne metoden omfatter å raskt kjøle ned de vannløselige proteinene uten agitasjon. Kollagenet, som var denaturert og derved flytende ved høye temperaturer, vil da skilles ut på bunnen av tanken i en renaturert, fast form. De resterende vannoppløste proteinene kan så pumpes ut, og kollagenet vil så oppvarmes til en denaturert flytende tilstand slik at det også kan fjernes fra klaringstanken. The hydrolysis process results in three fractions, one of which comprises water-soluble proteins, including collagen. The inventor has developed a new method to effectively separate the collagen from the remaining proteins, which is mentioned in the Norwegian patent application from which the present application is divided; 20051216. This method involves rapidly cooling down the water-soluble proteins without agitation. The collagen, which was denatured and therefore liquid at high temperatures, will then separate out at the bottom of the tank in a renatured, solid form. The remaining water-dissolved proteins can then be pumped out, and the collagen will then be heated to a denatured liquid state so that it can also be removed from the clarification tank.

For å gjennomføre en effektiv separasjon av kollagen fra de resterende vannoppløselige proteinene i hydrolysatet, har oppfinneren utviklet en ny type klaringstank, som også er beskrevet i norsk patentsøknad nr. 20051216. Denne tanken kan kjøle ned og varme opp veske, i dette tilfellet hydrolysat, svært fort og svært jevnt. Siden nedkjølingen må skje uten agitasjon, kan ikke omrøring anvendes for å få en jevn temperaturfordeling. Derfor inneholder tanken store kjøle/varmeflater, slik at kjøle/varmeflate arealet blir svært stort i forhold til veskevolumet, og vesken nedkjøles/varmes fort og jevnt. In order to carry out an effective separation of collagen from the remaining water-soluble proteins in the hydrolyzate, the inventor has developed a new type of clarification tank, which is also described in Norwegian patent application no. 20051216. This tank can cool down and heat up liquid, in this case hydrolyzate, very fast and very smooth. Since the cooling must take place without agitation, stirring cannot be used to obtain an even temperature distribution. Therefore, the tank contains large cooling/heating surfaces, so that the cooling/heating surface area is very large in relation to the bag volume, and the bag cools down/heats quickly and evenly.

Fremgangsmåten i følge oppfinnelsen er således kjennetegnet ved at trinn (1) omfatter å blande råstoffene under hydrolysen ved: The method according to the invention is thus characterized by step (1) comprising mixing the raw materials during the hydrolysis by:

å rotere en røremekanisme; og ved to rotate a stirring mechanism; and wood

å samtidig rotere én eller flere reverserbare transportskruer anordnet i tilknytning til tankens bunnparti i retning innover i tanken, hvorved råstoffet stadig bringes inn til sentrum av tanken. to simultaneously rotate one or more reversible transport screws arranged in connection with the bottom part of the tank in the direction inwards into the tank, whereby the raw material is constantly brought into the center of the tank.

Hydrolysetanken i følge oppfinnelsen er kjennetegnet ved at en eller flere reverserbare transportskruer er innrettet i utløp i bunnen av tanken. The hydrolysis tank according to the invention is characterized by the fact that one or more reversible transport screws are arranged in the outlet at the bottom of the tank.

Ytterligere utførelser av fremgangsmåten og hydrolysetanken i følge oppfinnelsen er angitt i underkravene 2-4 og 6-7. Further embodiments of the method and the hydrolysis tank according to the invention are specified in sub-claims 2-4 and 6-7.

Anvendelsene i følge oppfinnelsen er kjennetegnet ved anvendelse av hydrolysetanken i samsvar med ett eller flere av krav 1-4, i ensileringsprosesser og enzymatiske hydrolyseprosesser, og/eller i en prosess i samsvar med fremgangsmåten i følge ett eller flere av krav 5-7. The applications according to the invention are characterized by using the hydrolysis tank in accordance with one or more of claims 1-4, in ensiling processes and enzymatic hydrolysis processes, and/or in a process in accordance with the method according to one or more of claims 5-7.

Oppfinnelsen skal nå beskrives nærmere med henvisning til de vedlagte tegninger, hvori: Figur 1 viser et flytskjema for en enzymatisk hydrolysprosess i følge en foretrukket utførelse av oppfinnelsen: Figur 2 viser et tverrsnitt av en hydrolysetank i følge en foretrukket utførelse av oppfinnelsen. The invention will now be described in more detail with reference to the attached drawings, in which: Figure 1 shows a flow chart for an enzymatic hydrolysis process according to a preferred embodiment of the invention: Figure 2 shows a cross-section of a hydrolysis tank according to a preferred embodiment of the invention.

Figur 3 viser snittet A-A i figur 2 sett ifra siden av hydrolysetanken. Figure 3 shows the section A-A in Figure 2 seen from the side of the hydrolysis tank.

Figur 4 viser et toppsnitt av hydrolysetanken i figur 2. Figure 4 shows a top section of the hydrolysis tank in Figure 2.

Figur 5 viser hydrolysetanken i figur 2 sett ovenifra. Figure 5 shows the hydrolysis tank in Figure 2 seen from above.

Figur 6 viser et toppsnitt av en klaringstank ifølge norsk patentsøknad nr. 20051216 Figur 7 viser tverrsnittet B-B av klaringstanken i figur 6. Figure 6 shows a top section of a clarification tank according to Norwegian patent application no. 20051216 Figure 7 shows the cross-section B-B of the clarification tank in Figure 6.

Hydrolyseprosessen The hydrolysis process

Hydrolyseprosessen kan beskrives nærmere med henvisning til figur 1. Pilene på figur 1 viser hvor råstoff går inn og produkter kommer ut. Råstoff i form av biprodukter fra fiskeindustrien eller slakteindustrien fylles på en hydrolysetank (10). Råstoff fra fiskeindustrien kan være hel fisk eller deler av fisk som for eksempel fiskehoder, fiskeben, fiskeskinn eller fiskeinnvoller. Råstoff fra fiskeindustrien inkluderer også skalldyr. Tilsvarende råstoff fra slakterindustrien kan også benyttes, omfattende alle deler av et dyr, eller hele dyret Uttrykket "dyr" er her ment å inkludere fugler, som for eksempel høns. Prosessen ifølge oppfinnelsen kan tilpasses alle stags råstoffer som omfatter protein og kollagen, det vil si bein, brusk, bindevev, og hud/skinn. Råstoffet vil typisk være en blanding av ulike råstoff som er biprodukter fra videreforedling fra industriene, men det kan selvsagt bestå av ett enkelt råstoff. The hydrolysis process can be described in more detail with reference to figure 1. The arrows in figure 1 show where raw material goes in and products come out. Raw material in the form of by-products from the fishing industry or the butchering industry is filled into a hydrolysis tank (10). Raw material from the fishing industry can be whole fish or parts of fish such as fish heads, fish bones, fish skin or fish guts. Raw materials from the fishing industry also include shellfish. Corresponding raw material from the butcher industry can also be used, including all parts of an animal, or the whole animal. The term "animal" is intended here to include birds, such as chickens. The process according to the invention can be adapted to all strut raw materials that include protein and collagen, i.e. bone, cartilage, connective tissue, and skin/skin. The raw material will typically be a mixture of different raw materials which are by-products from further processing from the industries, but it can of course consist of a single raw material.

I hydrolysetanken(e) (10) blir råstoffet tilsatt varmt vann. Temperaturen reguleres slik at den er optimal for den enzymatiske hydrolysen. Den vil derfor variere alt etter hvilke enzym man velger å ta i bruk. Når den ønskede temperaturen er oppnådd tilsettes enzymene, og dette starter hydrolysereaksjonen. Enzymene katalyserer hydrolysen, og resultatet derav er at store deler av proteinene tilstedeværende i råstoffet løses opp i vannet. Foruten de vannløselige proteinene frigjøres da olje, ben og uløselige proteiner. In the hydrolysis tank(s) (10), the raw material is added to hot water. The temperature is regulated so that it is optimal for the enzymatic hydrolysis. It will therefore vary depending on which enzyme you choose to use. When the desired temperature is reached, the enzymes are added, and this starts the hydrolysis reaction. The enzymes catalyze the hydrolysis, and the result is that large parts of the proteins present in the raw material are dissolved in the water. In addition to the water-soluble proteins, oil, bones and insoluble proteins are then released.

Når råstoffet er tilstrekkelig hydrolysert, vil enzymene typisk bli deaktivert ved at temperaturen økes. Blandingen settes til henstand. Etter kort tid oppstår da klart avskilte fraksjoner. Øverst ligger en oljefraksjon, under denne ligger en vannløselig fraksjon med de oppløste proteinene, og i bunnen av tanken tigger den tyngste fraksjonen, som består av uløselige proteiner og beinrester. I resten av beskrivelsen er disse fraksjonene omtalt som henholdsvis oljefraksjonen, hydrolysatet og benfraksjonen. When the raw material is sufficiently hydrolysed, the enzymes will typically be deactivated by increasing the temperature. The mixture is set aside. After a short time, clearly separated fractions then arise. At the top is an oil fraction, below this is a water-soluble fraction with the dissolved proteins, and at the bottom of the tank lies the heaviest fraction, which consists of insoluble proteins and bone remains. In the rest of the description, these fractions are referred to as the oil fraction, the hydrolyzate and the bone fraction, respectively.

Totalt tar hydrolysen vanligvis 3-4 timer alt etter som hvor fort en tilsetter råstoffer og fjerner produkter. Oljen fjernest først fra hydrolysetanken, vanligvis ved tapping, og kan for eksempel separeres i en oljeseparator (11). Hydrolysatet tappes så ut av hydrolysetanken mens beinfraksjonen forblir i hydrolysetanken. Beinfraksjonen fjernes til slutt fra bunnen av hydrolysetanken. In total, the hydrolysis usually takes 3-4 hours, depending on how quickly you add raw materials and remove products. The oil is first removed from the hydrolysis tank, usually by tapping, and can, for example, be separated in an oil separator (11). The hydrolyzate is then drained from the hydrolysis tank while the bone fraction remains in the hydrolysis tank. The bone fraction is finally removed from the bottom of the hydrolysis tank.

Etter fjerning fra hydrolysetanken flitreres hydrolysatet gjennom et konvensjonelt filter (12). De siste restene av olje og ben fjernes så fra hydrolysatet i en kaskadetank (13), med påfølgende separator(14). After removal from the hydrolysis tank, the hydrolyzate is filtered through a conventional filter (12). The last remains of oil and bones are then removed from the hydrolyzate in a cascade tank (13), followed by a separator (14).

Fra separatoren strømmer hydrolysatet videre til en klaringstank (15). I denne tanken reduseres temperaturen uten agitasjon slik at kollagenet utfelles som gelatin, det vil si i en koagulert form. Hvilken temperatur som er tilstrekkelig lav nok til at kollagenet stivner vil variere med forskjellige råstoffer, og reflekterer ofte kroppstemperaturen til fisken/dyret/fuglen det stammer fra. Kollagen fra fisk stivner derfor ved lavere temperaturer enn kollagen fra dyr. Vanligvis må hydrolysatet avkjøles til 10-25'C for fisk, fortrinnsvis 20-22 °C, 25-40°C fordyr, fortrinnsvis 32-35<*>C, og 30-45°C for fugl, fortrinnsvis 33-40 °C, for at kollagenet skal stivne. Kollagenet har en høyere tetthet enn resten av hydrolysatet og vil derfor synke. I tanken oppstår da to klart avskilte faser. På bunnen ligger kollagenet i fast form, over dette ligger resten av hydrolysatet i en væskefase. Kollagenet stivner eller delvis stivner fordi temperaturen er redusert. From the separator, the hydrolyzate flows on to a clarification tank (15). In this tank, the temperature is reduced without agitation so that the collagen is precipitated as gelatin, i.e. in a coagulated form. Which temperature is sufficiently low enough for the collagen to harden will vary with different raw materials, and often reflects the body temperature of the fish/animal/bird it originates from. Collagen from fish therefore hardens at lower temperatures than collagen from animals. Usually the hydrolyzate must be cooled to 10-25°C for fish, preferably 20-22°C, 25-40°C for animals, preferably 32-35<*>C, and 30-45°C for birds, preferably 33-40° C, for the collagen to harden. The collagen has a higher density than the rest of the hydrolyzate and will therefore sink. Two clearly separated phases then occur in the tank. On the bottom is the collagen in solid form, above this is the rest of the hydrolyzate in a liquid phase. The collagen hardens or partially hardens because the temperature is reduced.

Etter avtapning av væskefasen til en buffertank (16) økes temperaturen i tanken slik at også kollagenet blir flytende og kan fjernes fra tanken, vanligvis ved at det pumpes og tappes ut. Hvor mye temperaturen økes kommer an på hva kollagenet skal anvendes til. Dersom det skal videre konserveres, tappes kollagenet ut så fort det blir flytende. Hvilken temperatur dette skjer ved varierer selvsagt alt etter hvilke råvarer som ble brukt til å fremstille kollagenet, vanligvis er denne temperaturen på 10-25°C mer enn temperaturen man nedkjølte hydrolysatet til for å separere kollagenet. Dersom kollagenet ikke skal konserveres, men anvendes til andre formål, må det oppvarmes til minst 65°C før tapping fra klaringstanken for å unngå mikrobiell oppblomstring. After decanting the liquid phase into a buffer tank (16), the temperature in the tank is increased so that the collagen also liquefies and can be removed from the tank, usually by pumping and draining it. How much the temperature is increased depends on what the collagen is to be used for. If it is to be further preserved, the collagen is drained as soon as it becomes liquid. The temperature at which this happens obviously varies according to the raw materials used to produce the collagen, usually this temperature is 10-25°C more than the temperature to which the hydrolyzate was cooled to separate the collagen. If the collagen is not to be preserved, but used for other purposes, it must be heated to at least 65°C before draining from the clarification tank to avoid microbial bloom.

Hydrolysatet med kollagen fjernet kan nå viderebehandles med metoder kjente fra andre anvendelsesområder. Fortrinnsvis blir hydrolysatet behandlet i en inndamper (17), slik at tørrstoffinnholdet økes til det nivået man ønsker. Når kollagenet er fjernet ligger tørrstoffnivået vanligvis på 3-15 %, gjerne rundt 7 %. Hvor mye man velger å inndampe kommer an på hva hydrolysatet skal anvendes for. Dersom et hydrolysat fra fisk for eksempel skal tilbakeføres til fisken ved å sprøyte det inn i fiskekjøttet, må det ha nøyaktig det samme tørrstoffinnholdet som kjøttet det skal sprøytes inn i, som normalt sett ligger på rundt 15 %. Dersom man inndamper hydrolysatet til rundt 60 % blir det selvkonserverende, som selvsagt er en fordel ved langtidslagring. Men dess mer man ønsker å inndampe hydrolysatet dess dyrere er det, og dette setter vanligvis grensen for hvor mye hydrolysatet blir inndampet. Det er avgjørende for inndampningsprosessen at kollagenet er skilt ut fra hydrolysatet. Hydrolysat uten kollagen fjernet har en viskositet som er for høy, slik at inndamperen ikke kan fungere. Ved å fjerne kollagenet ved prosessen i følge oppfinnelsen kan det proteinholdige hydrolysatet viderebehandles til et tørrstoff med bedre lagringsevne som er svært anvendbart på mange områder, inkludert i mat til mennesker og dyr. The hydrolyzate with collagen removed can now be further processed with methods known from other areas of application. Preferably, the hydrolyzate is processed in an evaporator (17), so that the dry matter content is increased to the desired level. When the collagen has been removed, the dry matter level is usually 3-15%, preferably around 7%. How much you choose to evaporate depends on what the hydrolyzate is to be used for. If, for example, a hydrolyzate from fish is to be returned to the fish by injecting it into the fish meat, it must have exactly the same dry matter content as the meat it is to be injected into, which is normally around 15%. If you evaporate the hydrolyzate to around 60%, it becomes self-preserving, which is of course an advantage for long-term storage. But the more you want to evaporate the hydrolyzate, the more expensive it is, and this usually sets the limit for how much the hydrolyzate is evaporated. It is crucial for the evaporation process that the collagen is separated from the hydrolyzate. Hydrolyzate without collagen removed has a viscosity that is too high, so the evaporator cannot work. By removing the collagen in the process according to the invention, the protein-containing hydrolyzate can be further processed into a dry substance with better storability which is very applicable in many areas, including food for humans and animals.

Hydrolysatet kan selvsagt anvendes omgående etter inndamping, og vil i så tilfelle overføres til en produktblander (18), der det blandes med andre bestanddeler. Kollagenet kan nå tilbakeføres til hydrolysatet dersom dette er ønskelig. Man oppnår da ikke det samme produktet som dersom kollagenet ikke var fjernet fra resten av hydrolysatet, fordi en stor andel av vannet ble fjernet i inndamperen. Produktet er derfor mye mer konsentrert og lettere å lagre og frakte. Kollagenet trenger selvsagt ikke å bli tilbakeført til hydrolysatet, idet det etter at det er fjernet fra tanken kan beholdes separat og anvendes til andre formål. The hydrolyzate can of course be used immediately after evaporation, and in that case will be transferred to a product mixer (18), where it is mixed with other ingredients. The collagen can now be returned to the hydrolyzate if this is desired. You then do not obtain the same product as if the collagen had not been removed from the rest of the hydrolyzate, because a large proportion of the water was removed in the evaporator. The product is therefore much more concentrated and easier to store and transport. The collagen does not of course need to be returned to the hydrolyzate, since after it has been removed from the tank it can be kept separately and used for other purposes.

Figur 1. viser en prosess omfattende to hydrolysetanker, to klaringstanker, og to buffertanker, men det er ingenting i veien for å bruke bare én eller flere av disse tankene. Tankene representerer områder der prosessvesken skal oppholde seg en tid, så det kan være fordelaktig, men ikke nødvendig, å ha flere tanker av de ulike typene for å maksimere kapasiteten til hydrolyseanlegget. Figure 1. shows a process comprising two hydrolysis tanks, two clarification tanks, and two buffer tanks, but there is nothing to prevent using only one or more of these tanks. The tanks represent areas where the process bag will stay for a time, so it may be beneficial, but not necessary, to have several tanks of the various types to maximize the capacity of the hydrolysis plant.

Hydrolysetanken The hydrolysis tank

For at hydrolysen skal bli så komplett som mulig, i løpet av minst mulig tid, er utformingen av hydrolysetanken viktig. Innholdet i tanken må kunne vannes opp jevnt og effektivt, og derfor er det viktig med agitasjon. Dette oppnås ved omrøring, slik at temperaturen er jevn i hele tanken. Omrøringen blir gjort mer effektiv ved at en skrue i bunnen av tanken dytter større bein osv. som har en tendens til å ville legge seg i bunnen inn i midten av tanken, der de bringes i kontakt med røremekanismen. I tilegg til å skape en jevn temperaturfordeling hjelper omrøringen også med å gi enzymene fysisk tilgang til alt råstoffet. For å oppnå dette, har oppfinneren konstruert en ny type hydrolysetank, nærmere beskrevet i figurene 2-6. In order for the hydrolysis to be as complete as possible, in the shortest possible time, the design of the hydrolysis tank is important. The contents of the tank must be able to be watered up evenly and effectively, which is why agitation is important. This is achieved by stirring, so that the temperature is uniform throughout the tank. Agitation is made more efficient by a screw at the bottom of the tank pushing larger bones, etc., which tend to settle at the bottom into the center of the tank, where they are brought into contact with the stirring mechanism. In addition to creating an even temperature distribution, the stirring also helps to give the enzymes physical access to all the raw material. To achieve this, the inventor has constructed a new type of hydrolysis tank, described in more detail in figures 2-6.

Hydrolysetanken (10) kan selvsagt variere i størrelse alt etter behov. I den utførelsen av oppfinnelsen som er beskrevet her, har tanken en kapasitet på 25.000 liter. Dette er en tank av en størrelse som kan konstrueres sentralt og så fraktes ut på smale veier. Men det er ingenting i veien for å lage mindre tanker for små fiskeoppdrettsanlegg, eller større tanker for andre typer frakt, eller svært store tanker for bruk der de konstrueres, og dimensjonene kan selvsagt forandres. The hydrolysis tank (10) can of course vary in size according to need. In the embodiment of the invention described here, the tank has a capacity of 25,000 litres. This is a tank of a size that can be constructed centrally and then transported out on narrow roads. But there is nothing in the way of making smaller tanks for small fish farms, or larger tanks for other types of shipping, or very large tanks for use where they are constructed, and the dimensions can of course be changed.

I bunnen av hydrolysetanken (10) er det ett eller flere utløp (20) for fjerning av beinfraksjonen. Utløpene (20) er fortrinnsvis plassert i fordypninger i tankbunnen, der de er skråstilt i forhold til horisontalplanet. Vinkelen fra utløpene til horisontalplanet kan være 5-45°, fortrinnsvis 15-30°, foretrukket 20°. Derved kan tyngdekraften hjelpe til når beinrester skal føres ut gjennom At the bottom of the hydrolysis tank (10) there are one or more outlets (20) for removing the bone fraction. The outlets (20) are preferably located in depressions in the tank bottom, where they are inclined in relation to the horizontal plane. The angle from the outlets to the horizontal plane can be 5-45°, preferably 15-30°, preferably 20°. In this way, gravity can help when bone remains are to be carried out through

utløpene, men vinkelen er også liten nok til at skruene (21) i utløpene kan hjelpe til med å dytte råvarene inn mot midten av tanken i løpet av oppvarmingen og blandingen av råvarer, enzymer og vann. Utløpene inneholder skruer (21) som kan kjøres i begge retninger. Ved enden av utløpene er der utløpsventiler (22). Utløpene er omsluttet av varmekapper (23). Størrelsen på utløpene kan selvsagt variere. De må være store nok til å transporter ut beinrestene, som kan variere i størrelse alt etter hvilke råvarer man anvender. I den foretrakte utførelsen vist i figurene 2-5, er et utløp på 200mm diameter anvendt. the outlets, but the angle is also small enough that the screws (21) in the outlets can help push the raw materials towards the center of the tank during the heating and mixing of raw materials, enzymes and water. The outlets contain screws (21) that can be driven in both directions. At the end of the outlets there are outlet valves (22). The outlets are enclosed by heating jackets (23). The size of the outlets can of course vary. They must be large enough to transport out the bone remains, which can vary in size depending on the raw materials used. In the preferred embodiment shown in Figures 2-5, an outlet of 200mm diameter is used.

Hydrolyseanken har én eller flere innganger for damp (24), og ett eller flere The hydrolysis anchor has one or more inlets for steam (24), and one or more inlets

uttak for damp og kondensasjon (25). Sideveggene (26), bunnen (27) og den innvendige sylinderen (28) er utstyrt med varmekapper (29). Det er derfor stor outlet for steam and condensation (25). The side walls (26), the bottom (27) and the inner cylinder (28) are equipped with heating jackets (29). It is therefore great

kontaktflate mellom prosessdamp og innholdet i tanken, som avgrenses av bunnen (27), sideveggene (26), den innvendige sylinderen (28) og taket (30) av tanken. contact surface between process steam and the contents of the tank, which is defined by the bottom (27), the side walls (26), the inner cylinder (28) and the roof (30) of the tank.

Hydrolyseanken kan monteres på forskjellige understell, men en foretrukket utførelse er 6 bein (31) med justerbar høyde. The hydrolysis anchor can be mounted on different undercarriages, but a preferred design is 6 legs (31) with adjustable height.

Temperatur- og nivåtransmitter (32) er montert for at man skal kunne følge temperaturen i selve hydrolysatet. En stigbøyle (33) er montert for å lette adgangen til taket av hydrolysetanken. Temperature and level transmitter (32) is installed so that you can monitor the temperature in the hydrolyzate itself. A stirrup (33) is fitted to facilitate access to the roof of the hydrolysis tank.

På taket (30) av tanken er det montert et innløpsdeksel (34) for tilgang til innsiden av tanken. Der er også et innløp (35) hvor råstoff, vann og enzymer blir tilsatt. På taket er det også montert en ventil med hette (36) for utlufting av tanken. Over tanken er en bro (37) anordnet, hvorpå der er montert en motor (38) som driver røremekanismen. Broen (37) er både for strukturell støtte og for påmontering av rørverk. An inlet cover (34) is mounted on the roof (30) of the tank for access to the inside of the tank. There is also an inlet (35) where raw material, water and enzymes are added. A valve with a hood (36) is also mounted on the roof for venting the tank. A bridge (37) is arranged above the tank, on which a motor (38) is mounted which drives the stirring mechanism. The bridge (37) is both for structural support and for fitting pipework.

Røremekanismen omfatter motoren (38) som driver en rotasjonsaksling (39) koblet til rotasjonsakslinger (40), og er viderekoblet til rørestag (41) som er koblet til selve rørebladene (42). Rørebladene (42) er montert i bunnen av tanken, slik at de stryker rett over bunnen når de er i bruk. Som man kan se av figur 5, har denne foretrukne utførelsen av oppfinnelsen tre røreblad, men man kan selvsagt anvende flere. En støtteaksling (43) kan også monteres fra rørestaget (41) til den innvendige sylinderen (28) for å gi ekstra støtte til røremekanismen. The stirring mechanism comprises the motor (38) which drives a rotary shaft (39) connected to rotary shafts (40), and is further connected to the stirring rod (41) which is connected to the stirring blades (42) themselves. The stirring blades (42) are mounted in the bottom of the tank, so that they stroke directly over the bottom when in use. As can be seen from figure 5, this preferred embodiment of the invention has three stirring blades, but one can of course use more. A support shaft (43) can also be fitted from the stirring rod (41) to the inner cylinder (28) to provide extra support for the stirring mechanism.

Under en normal arbeidssyklus fylles tanken først med varmt vann og råstoff via innløpet (35). Dette blandes ved at røremekanismen roterer, og samtidig roterer skruene (21) i bunnen av tanken i retning innover i tanken (det vil si i motsatt retning av retningen som anvendes for å tømme tanken) slik at råstoffet stadig bringes inn til sentrum av tanken. Skruene er nye, og har ikke tidligere vært anvendt i hydrolysetanker. Dette gir en meget effektiv blanding av vann og råstoff og jevn temperatur i hele volumet. During a normal work cycle, the tank is first filled with hot water and raw material via the inlet (35). This is mixed by the stirring mechanism rotating, and at the same time the screws (21) at the bottom of the tank rotate in the direction into the tank (that is, in the opposite direction to the direction used to empty the tank) so that the raw material is constantly brought into the center of the tank. The screws are new, and have not previously been used in hydrolysis tanks. This provides a very efficient mixture of water and raw material and a uniform temperature throughout the volume.

Mens blandingen pågår reguleres temperaturen ved at damp slippes inn i varmekappene. Når vann og råstoff er blandet, tilsettes enzymer, fremdeles under omrøring. Reaksjonen starter da umiddelbart. Når reaksjonen er fullført innaktiviseres enzymene ved at mer damp slippes inn i varmekappene og blandingen kommer opp i enzymenes innaktiviseringstemperatur. I tanken er det meget god temperaturkontroll. Dette oppnås ved en kombinasjon av store oppvarmingsflater og effektiv omrøring. While the mixing is in progress, the temperature is regulated by letting steam into the heating jackets. When water and raw material are mixed, enzymes are added, still stirring. The reaction then starts immediately. When the reaction is complete, the enzymes are inactivated by letting more steam into the heating mantles and the mixture reaches the enzyme's inactivation temperature. In the tank there is very good temperature control. This is achieved by a combination of large heating surfaces and efficient stirring.

Etter at innaktiviseringstemperaturen for de enzym anvendt er oppnådd, stanses omrøringen og fraksjonene skilles, basert på egenvekt. Utløp for oljetapping (44) er montert i forskjellige høyder, slik at man kan tappe ut av de utløp som er mest hensiktmessig. Ofte vil en først bruke utløp et stykke over overgangen mellom oljefraksjonen og hydrolysatet, for å forhindre at hydrolysatet virvles opp, og så mot slutten av tappingen bruke det utløpet som er nederst i oljefraksjonen. Avhengig av hva slags råstoff som anvendes vil oljemengden variere, slik det er ønskelig med utløp i forskjellige høyder, slik at så mye olje som mulig kan tappes av uten at hydrolysefraksjonen tappes. Figur 3 viser disse utløpene sett rett mot tanken, fra snitt A-A i figur 2. Figur 3 viser også vinduer (45) som man kan se inn i tanken gjennom. Derved kan man se hvor høyt oljenivået er, og ut i fra dette bestemme hvilke av utløpene (44) som det er mest hensiktsmessig å anvende. Et vindu med lyskilde (46) som er montert på lokket av tanken kan også anvendes for å se innsiden av tanken. After the inactivation temperature for the enzymes used has been reached, the stirring is stopped and the fractions are separated, based on specific gravity. Outlets for oil draining (44) are mounted at different heights, so that you can drain from the outlets that are most appropriate. Often, one will first use an outlet a little above the transition between the oil fraction and the hydrolyzate, to prevent the hydrolyzate from swirling up, and then towards the end of bottling use the outlet that is at the bottom of the oil fraction. Depending on the type of raw material used, the amount of oil will vary, as it is desirable to have outlets at different heights, so that as much oil as possible can be drained off without draining the hydrolysis fraction. Figure 3 shows these outlets seen directly towards the tank, from section A-A in Figure 2. Figure 3 also shows windows (45) through which one can see into the tank. Thereby, one can see how high the oil level is, and from this decide which of the outlets (44) it is most appropriate to use. A window with a light source (46) which is mounted on the lid of the tank can also be used to see the inside of the tank.

Etter oljetappingen tappes hydrolysatet av over beinfraksjonen. Er nivået i tanken veldig høyt, kan dette skje først gjennom de nedre utløpene for olje (44). Utløp for hydrolysatet (47) blir så benyttet. Det er ønskelig å anvende utløp høyest mulig på tanken, og ikke begynne med utløpene nær bunnen, fordi dette kan forstyrre separasjonen av sjiktene slik at beinrester fra bunnfraksjonen blir virvlet opp i hydrolysatet. Det samme gjelder for oljetappingen. Dersom det er lite beinrester, slik at hydrolysatet kommer nedenfor det nederste av utløpene (47), kan man eventuelt pumpe dette gjennom skruene (21). De større beinrestene kan da fungere som en sil og forhindre at små beinpartikler følger med hydrolysatet. Til slutt fjernes selve beinfraksjonen via skruene (21). Retningen skuren (21) roterer er da den motsatte av retningen under omrøringen, de skyver nå beinrestene ut av tanken. Når denne fraksjonen fjernes, er også omrøreren i gang slik at massen faller ned i åpningene der skruene er plassert. Dette er meget rasjonelt siden fraksjonen er meget krevende å pumpe. After the oil extraction, the hydrolyzate is drained off over the bone fraction. If the level in the tank is very high, this can happen first through the lower outlets for oil (44). Outlet for the hydrolyzate (47) is then used. It is desirable to use outlets as high as possible on the tank, and not start with the outlets near the bottom, because this can disrupt the separation of the layers so that bone remains from the bottom fraction are swirled up in the hydrolyzate. The same applies to the oil drain. If there is little bone residue, so that the hydrolyzate comes below the lowest of the outlets (47), this can possibly be pumped through the screws (21). The larger bone remains can then act as a sieve and prevent small bone particles from accompanying the hydrolyzate. Finally, the bone fraction itself is removed via the screws (21). The direction the shed (21) rotates is then the opposite of the direction during the stirring, they now push the bone remains out of the tank. When this fraction is removed, the stirrer is also running so that the mass falls into the openings where the screws are placed. This is very rational since the fraction is very demanding to pump.

Konvensjonelle hydrolysesystemer bruker også skruer, men til et helt annet formål. Skruene drives kontinuerlig i en retning for å hele tiden føre hydrolysatet videre. Hydrolysatet passerer således gjennom ulike temperatursoner, og tanken er at det skal gå jevnt gjennom systemet og tilbringe ønsket tid i de forskjellige temperatursonene. I praksis virker det imidlertid ikke helt slik, det er mye fri flyt inne i skruene, slik at hydrolysatet ikke går jevnt gjennom systemet, og ikke tilbringer optimal tid i de forskjellige temperatursonene. Conventional hydrolysis systems also use screws, but for a completely different purpose. The screws are continuously driven in one direction to constantly advance the hydrolyzate. The hydrolyzate thus passes through different temperature zones, and the idea is that it should pass evenly through the system and spend the desired time in the different temperature zones. In practice, however, it does not quite work that way, there is a lot of free flow inside the screws, so that the hydrolyzate does not pass evenly through the system, and does not spend optimal time in the different temperature zones.

Selv om denne tanken ble konstruert som del av en enzymatisk hydrolyseprosess, er anvendelse derav ikke begrenset til enzymatisk hydrolyse. Tanken er også svært egnet til hydrolyse ved ensilering. De samme råvarene anvendes da som beskrevet for enzymatisk hydrolyse, men i stedet for å tilsette vann og enzymer blir vann og syre tilsatt, eventuelt med tilleggskjemikalier. Hydrolyseprosessen foregår da under høye temperaturer, og i likhet med enzymatisk hydrolyse er det viktig med jevn temperatur og god blanding. Ved å anvende denne tanken får man en høy temperatur som kan holdes jevn under hele separasjonsfasen, i motsetning til i de systemer som anvendes i dag, der man får store temperatursvinginger fordi man anvender en forvarmer til å varme opp råvarene før de ensileres. Although this tank was constructed as part of an enzymatic hydrolysis process, its application is not limited to enzymatic hydrolysis. The tank is also very suitable for hydrolysis during ensiling. The same raw materials are then used as described for enzymatic hydrolysis, but instead of adding water and enzymes, water and acid are added, possibly with additional chemicals. The hydrolysis process then takes place under high temperatures, and like enzymatic hydrolysis, it is important to have a uniform temperature and good mixing. By using this tank, you get a high temperature that can be kept constant throughout the separation phase, in contrast to the systems used today, where you get big temperature fluctuations because you use a pre-heater to heat up the raw materials before they are ensiled.

Klaringstanken The clearance tank

Kollagenet i hydrolysefraksjonen blir separert fra de resterende vannløselige proteinene i klaringstanken ved utfelling. Denne prosessen er ny, og klaringstanken er nyutviklet for å gjennomføre prosessen. Klaringstanken og prosessen er ikke del av den foreliggende oppfinnelsen, men hører under norsk patentsøknad 20051216, som den foreliggende oppfinnelsen er avdelt fra. Beskrivelsen derav er allikevel beholdt heri, da det er mest optimalt å anvende både hydrolysetanken og klaringstanken i det samme systemet. Konseptet er enkelt: dersom hydrolysatet får stå i ro ved en temperatur lav nok til at kollagenet separeres og stivner i et bunnsjikt, kan resten av hydrolysatet, som vil forbli flytende etter at kollagenet har stivnet, tappes av og derved separeres fra kollagenet. Kollagensjiktet kan så varmes opp slik at det blir flytende igjen, og deretter tappes. The collagen in the hydrolysis fraction is separated from the remaining water-soluble proteins in the clarification tank by precipitation. This process is new, and the clarification tank has been newly developed to carry out the process. The clarification tank and the process are not part of the present invention, but belong to Norwegian patent application 20051216, from which the present invention is separated. The description thereof is nevertheless retained here, as it is most optimal to use both the hydrolysis tank and the clarification tank in the same system. The concept is simple: if the hydrolyzate is allowed to stand still at a temperature low enough for the collagen to separate and solidify in a bottom layer, the rest of the hydrolyzate, which will remain liquid after the collagen has solidified, can be drained off and thereby separated from the collagen. The collagen layer can then be heated so that it becomes liquid again, and then drained.

To faktorer er særdeles viktige for at separasjonen av kollagenet skal lykkes, og klaringstanken er konstruert med dette som formål. For det første er det viktig at hydrolysatet får stå helt i ro for at kollagenet skal stivne. Man kan derfor ikke bruke omrøring eller noen annen form for agitasjon for å oppnå den nødvendige temperaturfordelingen i hydrolysatet. Det er viktig at temperaturen er den samme gjennom hele tanken. Er temperaturfordelingen dårlig, vil kollagen i forskjellige områder av tanken stivne på ulike tidspunkt. Noe av det resterende hydrolysatet kan til og med fryse før alt kollagenet er stivnet, slik at det ikke kan tappes ut. For det andre er tidsperspektivet viktig, slik at prosessen ikke stopper opp på dette trinnet, men mest av alt fordi mikroorganismer lett kan blomstre opp og ødelegge produktet. For at prosessen skal kunne godkjennes for tilberedning av mat til mennesker, er det derfor svært viktig at nedkjølingen og oppvarmingen kan skje fort. Two factors are particularly important for the separation of the collagen to be successful, and the clarification tank is designed with this in mind. Firstly, it is important that the hydrolyzate is allowed to stand completely still for the collagen to solidify. One cannot therefore use stirring or any other form of agitation to achieve the necessary temperature distribution in the hydrolyzate. It is important that the temperature is the same throughout the tank. If the temperature distribution is poor, collagen in different areas of the tank will solidify at different times. Some of the remaining hydrolyzate may even freeze before all the collagen has solidified, so it cannot be drained. Secondly, the time perspective is important, so that the process does not stop at this stage, but most of all because microorganisms can easily flourish and destroy the product. In order for the process to be approved for the preparation of food for humans, it is therefore very important that the cooling and heating can take place quickly.

Klaringstanken er derfor konstruert med et stort antall hete/kjøleflater slik at innholdet av tanken kan nedkjøles hurtig uten agitasjon. Med flater menes de flater som er i kontakt med hydrolysatet. Figur 6 viser et snitt av klaringstanken sett ovenifra. Vann eller vanndamp ved forskjellige temperaturer brukes for å nedkjøle eller varme opp innholdet i tanken. Vannet strømmer inn innløpet (60) og ut igjen i utløpet (61). Vannet nedkjøler/varmer opp både en kappe på utsiden av klaringstanken (62), og vannfylte kjøle/varmeflater internt i tanken (63). Det er disse kjøle-/varmeflatene inne i tanken som gjør det mulig å oppnå en rask avkjøling og oppvarming av hydrolysatet og kollagenet. Figur 7 viser et snitt av klaringstanken sett ifra siden, der man kan se at kjøle-/varmeflatene (63) er store flater som strekker seg over store deler av høyden på tanken. The clarification tank is therefore constructed with a large number of hot/cooling surfaces so that the contents of the tank can be cooled down quickly without agitation. By surfaces is meant the surfaces that are in contact with the hydrolyzate. Figure 6 shows a section of the clarification tank seen from above. Water or steam at different temperatures is used to cool or heat the contents of the tank. The water flows into the inlet (60) and out again into the outlet (61). The water cools/heats both a jacket on the outside of the clarification tank (62), and water-filled cooling/heating surfaces inside the tank (63). It is these cooling/heating surfaces inside the tank that make it possible to achieve rapid cooling and heating of the hydrolyzate and collagen. Figure 7 shows a section of the clarification tank seen from the side, where you can see that the cooling/heating surfaces (63) are large surfaces that extend over a large part of the height of the tank.

Kjøle-/varmeflatene (63) er hule plater slik at vannet kan strømme gjennom dem, fortrinnsvis med riller eller ribben for å ytterligere øke overflaten. Derved oppnår man en stor overflate for varmeveksling mellom vannet som strømmer gjennom varmeflatene og hydrolysatet inne i tanken. Antall kjøle-/varmeflater kan selvsagt variere, og det kan også dimensjonene på disse og selve klaringstanken. Det som er viktig er at overflaten til kjøle-/varmeflatene er stor i forhold til volumet på hydrolysatet. Kjøle-/varmeflatene kan være bølgeformet for å øke flatearealet. Kjøle-/varmeflatene må stå vertikalt, dersom de er horisontale kan kollagenet legge seg oppå dem, i stedet for å fallet il bunnen av tanken. Ved bruk av bare varmekapper i sidene og bunnen på tanken, og ikke kjøle-/varmeflater inne i tanken, går nedkjølingen for seint. Man kan ikke bare bruke kaldere vann for å få nedkjølingen til å gå raskere, fordi vann selvsagt vil fryse, men selv om man bruker en annen kaldere veske eller gass, eller fører vannet fortere gjennom kappene, vill dette da føre til en ujevn temperaturfordeling, slik at tankinnholdet nær veggene blir for kaldt og fryser før det midt i tanken stivner. Problemet med å la nedkjølingen ta lengre tid, er at man da svært ofte får problemer med mikrobiell kontaminering, fordi innholdet i tanken da tilbringer for lang tid ved en temperatur som er gunstig for slik mikrobiell vekst. Ved bruk av klaringstanken i vil klaringsprosessen vanligvis ta under to timer, ofte omlag 1 Vfc time. The cooling/heating surfaces (63) are hollow plates so that the water can flow through them, preferably with grooves or ribs to further increase the surface area. This results in a large surface for heat exchange between the water flowing through the heating surfaces and the hydrolyzate inside the tank. The number of cooling/heating surfaces can of course vary, and so can the dimensions of these and the clarification tank itself. What is important is that the surface of the cooling/heating surfaces is large in relation to the volume of the hydrolyzate. The cooling/heating surfaces can be wavy to increase the surface area. The cooling/heating surfaces must be vertical, if they are horizontal the collagen can lie on top of them, instead of falling to the bottom of the tank. If only heating jackets are used on the sides and bottom of the tank, and no cooling/heating surfaces inside the tank, the cooling takes place too late. You can't just use colder water to make the cooling go faster, because water will of course freeze, but even if you use another colder bag or gas, or run the water faster through the jackets, this will then lead to an uneven temperature distribution, so that the tank contents near the walls become too cold and freeze before they solidify in the middle of the tank. The problem with allowing the cooling to take longer is that you very often have problems with microbial contamination, because the contents of the tank then spend too long at a temperature that is favorable for such microbial growth. When using the clarification tank i, the clarification process will usually take less than two hours, often around 1 Vfc hour.

Størrelsen på selve klaringstanken kan selvsagt variere på samme vis som størrelsen på hydrolysetanken kan variere. The size of the clarification tank itself can of course vary in the same way as the size of the hydrolysis tank can vary.

Når klaringstanken først fylles med hydrolysatet kan det holde høy temperatur. Temperaturen vil variere, avhengig av hvilken enzymdeaktiveringstemperatur som ble brukt under hydrolysen, hvor lang tid det tok fra hydrolysatet ble fjernet fra hydrolysetanken til det tilsettes klaringstanken osv. Men vanligvis vil den være høy, gjerne 80-100'C. For å kjøle hydrolysatet ned raskt sirkuleres kaldt vann gjennom kjølekappen og i kjøleplatene, og når temperaturen er tilstrekkelig lav forandrer kollagenet konsistens fra flytende til geleaktig og synker til bunnen av tanken. Når det er etablert en klar grense mellom kollagen og væske omfattende de resterende vannløselige proteinene, tappes væsken av. When the clarification tank is first filled with the hydrolyzate, it can maintain a high temperature. The temperature will vary, depending on which enzyme deactivation temperature was used during the hydrolysis, how long it took from the hydrolyzate being removed from the hydrolysis tank to the addition of the clarification tank, etc. But usually it will be high, preferably 80-100'C. To cool the hydrolyzate down quickly, cold water is circulated through the cooling jacket and in the cooling plates, and when the temperature is sufficiently low, the collagen changes consistency from liquid to gel-like and sinks to the bottom of the tank. When a clear boundary has been established between the collagen and the liquid comprising the remaining water-soluble proteins, the liquid is drained off.

I likhet med hydrolysetanken, har klaringstanken et innløp men flere utløp for væsker. Utløpene er i likhet med utløpene for olje og hydrolysat fra hydrolysetanken lokalisert ved forskjellige høyder på tanken. Når væsken omfattende de resterende vannløselige proteinene skal tappes anvendes utløp som er lokalisert over kollagenet. Når kollagenet tappes anvendes et utløp nær eller i bunnen av tanken, slik at den kan tømmes helt. Like the hydrolysis tank, the clarification tank has an inlet but several outlets for liquids. The outlets, like the outlets for oil and hydrolyzate from the hydrolysis tank, are located at different heights on the tank. When the liquid comprising the remaining water-soluble proteins is to be drained, an outlet is used which is located above the collagen. When the collagen is drained, an outlet is used near or at the bottom of the tank, so that it can be emptied completely.

Når væsken omfattende de resterende vannløselige proteinene er fjernet kan kollagenet varmes opp igjen ved at varmt vann sirkulerer i kjølekappen og kjøle/varmeflatene. Kollagenet går da tilbake til flytende form og kan pumpes ut av tanken for videre bearbeiding. When the liquid comprising the remaining water-soluble proteins has been removed, the collagen can be heated again by circulating hot water in the cooling jacket and the cooling/heating surfaces. The collagen then returns to liquid form and can be pumped out of the tank for further processing.

Claims (9)

1. En hydrolysetank omfattende innløp for tilsetning av råvarer og utløp for produkter, en omdreibar røremekanisme, og en innrettning for varmeveksling, karakterisert ved at en eller flere reverserbare transportskruer er innrettet i utløp i bunnen av tanken.1. A hydrolysis tank comprising an inlet for the addition of raw materials and an outlet for products, a rotatable stirring mechanism, and an arrangement for heat exchange, characterized in that one or more reversible transport screws are arranged in the outlet at the bottom of the tank. 2. Hydrolysetank i samsvar med krav 1, karakterisert ved at transportskruen(e) er anordnet i en nedfelling(er) i tankens bunnparti og forbundet med tankbunnen via en spalte(r).2. Hydrolysis tank in accordance with claim 1, characterized in that the transport screw(s) is arranged in a recess(es) in the bottom part of the tank and connected to the tank bottom via a slot(s). 3. Hydrolysetank i samsvar med ett eller flere av de foregående krav, karakterisert ved at de(n) reverserbare skruen(e)s rotasjonsretning er innrettet til å føre uløselige komponenter fra nedfellingen i skruen(e)s virkeområde(r) ut av hydrolysetanken.3. Hydrolysis tank in accordance with one or more of the preceding requirements, characterized in that the direction of rotation of the reversible screw(s) is designed to lead insoluble components from the precipitation in the screw(s)' operating area(s) out of the hydrolysis tank . 4. Hydrolysetank i samsvar med ett eller flere av de foregående krav, karakterisert ved at de(n) reverserbare skruen(e)s rotasjonsretning er innrettet til å reverseres for attføring av komponenter fra nedfellingen(e) i skruen(e)s virkeområde(r) tilbake til tankvolumet.4. Hydrolysis tank in accordance with one or more of the preceding requirements, characterized in that the direction of rotation of the reversible screw(s) is designed to be reversed for the return of components from the deposition(s) in the screw(s)' area of operation ( r) back to the tank volume. 5. Fremgangsmåte for en enzymatisk hydrolyseprosess av kollagen og proteinholdige råstoffer, omfattende de følgende trinn: (1) å hydrolysere råstoffene enzymatisk slik at tre følgende fraksjoner frembringes; (a) en fettholdig toppfraksjon, (b) en midtfraksjon omfattende vannløselige bestanddeler, deriblant vannløselige proteiner inkludert kollagen, og (c) en uløselig bunnfraksjon omfattende beinrester og uløselige proteiner; og (2) å separere (a), (b) og (c); karakterisert ved at trinn (1) omfatter å blande råstoffene under hydrolysen ved: å rotere en røremekanisme; og ved å samtidig rotere én eller flere reverserbare transportskruer anordnet i tilknytning til tankens bunnparti i retning innover i tanken, hvorved råstoffet stadig bringes inn til sentrum av tanken. 5. Method for an enzymatic hydrolysis process of collagen and proteinaceous raw materials, comprising the following steps: (1) hydrolyzing the raw materials enzymatically so that three following fractions are produced; (a) a fat-containing top fraction, (b) a middle fraction comprising water-soluble constituents, including water-soluble proteins including collagen, and (c) an insoluble bottom fraction comprising bone debris and insoluble proteins; and (2) to separate (a), (b) and (c); characterized in that step (1) comprises mixing the raw materials during the hydrolysis by: rotating a stirring mechanism; and by simultaneously rotating one or more reversible transport screws arranged in connection with the bottom part of the tank in the direction inwards into the tank, whereby the raw material is constantly brought into the center of the tank. 6. Fremgangsmåte i samsvar med krav 5, karakterisert ved at trinn (2) omfatter å fjerne den uløselige fraksjon (c) ved å reversere omdreiningsretningen til transportskruen(e) i retning ut av tanken. 6. Method in accordance with claim 5, characterized in that step (2) comprises removing the insoluble fraction (c) by reversing the direction of rotation of the transport screw(s) in the direction out of the tank. 7. Fremgangsmåte i samsvar med krav 5, karakterisert ved at råstoffene er biprodukter fra fiskeindustrien og/eller slakteindustrien. 7. Method in accordance with claim 5, characterized in that the raw materials are by-products from the fishing industry and/or the butchering industry. 8. Anvendelse av hydrolysetanken i samsvar med ett eller flere av krav 1 -4, i ensileringsprosesser og enzymatiske hydrolyseprosessen 8. Application of the hydrolysis tank in accordance with one or more of claims 1 -4, in ensiling processes and the enzymatic hydrolysis process 9. Anvendelse av hydrolysetanken i samsvar med ett eller flere av krav 1-4, i en prosess i samsvar med fremgangsmåten i følge ett eller flere av krav 5-7.9. Use of the hydrolysis tank in accordance with one or more of claims 1-4, in a process in accordance with the method according to one or more of claims 5-7.
NO20054754A 2005-03-08 2005-10-14 Hydrolysis tank for use in a hydrolysis process for raw materials from the fish and slaughterhouse industry NO321014B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO20054754A NO321014B1 (en) 2005-03-08 2005-10-14 Hydrolysis tank for use in a hydrolysis process for raw materials from the fish and slaughterhouse industry

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20051216A NO320736B1 (en) 2005-03-08 2005-03-08 Enzymatic hydrolysis process for collagen and proteinaceous resins and a clarification tank for collagen separation, and applications thereof.
NO20054754A NO321014B1 (en) 2005-03-08 2005-10-14 Hydrolysis tank for use in a hydrolysis process for raw materials from the fish and slaughterhouse industry

Publications (3)

Publication Number Publication Date
NO20054754D0 NO20054754D0 (en) 2005-03-08
NO20054754A NO20054754A (en) 2006-02-27
NO321014B1 true NO321014B1 (en) 2006-02-27

Family

ID=38093066

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20054754A NO321014B1 (en) 2005-03-08 2005-10-14 Hydrolysis tank for use in a hydrolysis process for raw materials from the fish and slaughterhouse industry

Country Status (1)

Country Link
NO (1) NO321014B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1007505A (en) * 1962-05-23 1965-10-13 I C P M Ind Chimiche Porto Mar Extracting material from a container
FR2480778A1 (en) * 1980-04-21 1981-10-23 Dedenon Jean Marie IMPROVEMENTS IN FACILITIES AND PROCESSES FOR THE PREPARATION OF COMBUSTIBLE GASES BY FERMENTATION

Also Published As

Publication number Publication date
NO20054754D0 (en) 2005-03-08
NO20054754A (en) 2006-02-27

Similar Documents

Publication Publication Date Title
NO320736B1 (en) Enzymatic hydrolysis process for collagen and proteinaceous resins and a clarification tank for collagen separation, and applications thereof.
NO332921B1 (en) Apparatus for hydrolysis of proteinaceous raw material
CA2983390C (en) Method and device for delaying rigor mortis in fish
US8080270B1 (en) Low temperature rendering process
NO337521B1 (en) System and method for separating proteins from connective tissue
Park et al. Manufacture of Surimi
NO321014B1 (en) Hydrolysis tank for use in a hydrolysis process for raw materials from the fish and slaughterhouse industry
DK176132B1 (en) Plant for enzymatic hydrolysis of a batch of animal or vegetable constituents and process for using the plant
EP1893037B1 (en) A process and a process unit for separating at least proteins from an organic raw material
NO20190995A1 (en)
NO20190802A1 (en) Procedure for preserving a residual raw material from slaughter
NO305851B1 (en) Method and apparatus for producing a proteinaceous product
NO160856B (en) PROCEDURE FOR EXPOSURE OF Grease from ANIMAL RAW MATERIALS AND INSTALLATIONS FOR EXECUTING THE PROCEDURE.
UA57212C2 (en) Method of making feed fish meal and a set of equipment for heat treatment of raw fish material
NO179475B (en) Method and apparatus for removing connective tissue membranes and parasites from fish liver

Legal Events

Date Code Title Description
CREP Change of representative

Representative=s name: CURO AS, INDUSTRIVEIEN 53, 7080 HEIMDAL, NO

MM1K Lapsed by not paying the annual fees