NO320950B1 - Device for algae production - Google Patents

Device for algae production Download PDF

Info

Publication number
NO320950B1
NO320950B1 NO20042425A NO20042425A NO320950B1 NO 320950 B1 NO320950 B1 NO 320950B1 NO 20042425 A NO20042425 A NO 20042425A NO 20042425 A NO20042425 A NO 20042425A NO 320950 B1 NO320950 B1 NO 320950B1
Authority
NO
Norway
Prior art keywords
gas
manifold
foil
pipe
foil bag
Prior art date
Application number
NO20042425A
Other languages
Norwegian (no)
Other versions
NO20042425L (en
NO20042425D0 (en
Inventor
Leiv M Mortensen
Original Assignee
Priforsk Partners As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Priforsk Partners As filed Critical Priforsk Partners As
Priority to NO20042425A priority Critical patent/NO320950B1/en
Publication of NO20042425D0 publication Critical patent/NO20042425D0/en
Priority to EP05752394A priority patent/EP1765973A1/en
Priority to PCT/NO2005/000196 priority patent/WO2005121309A1/en
Publication of NO20042425L publication Critical patent/NO20042425L/en
Publication of NO320950B1 publication Critical patent/NO320950B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/06Tubular
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/56Floating elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management

Description

ANORDNING FOR ALGEPRODUKSJON DEVICE FOR ALGAE PRODUCTION

Denne oppfinnelse vedrører en anordning for algeproduksjon. Nærmere bestemt dreier det seg om en anordning for algeproduksjon hvor gasser sirkuleres gjennom en i det minste delvis væskefylt beholder hvor beholderen er utformet for å oppvise vekstfremmende trekk, for eksempel ved at den er transparent. Fremgangsmåten er like velegnet for produksjon av såkalte mikroalger både på land og i sjø. This invention relates to a device for algae production. More specifically, it concerns a device for algae production where gases are circulated through an at least partially liquid-filled container, where the container is designed to exhibit growth-promoting features, for example by being transparent. The method is equally suitable for the production of so-called microalgae both on land and in the sea.

Behovet for mikroalger til for er stadig økende innen akvakultur, som helsekost for mennesker og som fortilskudd til dyr. Innen akvakultur anvendes mikroalger direkte eller inn-direkte som for for fisk og skjell. Det er for eksempel for-delaktig å fore torskeyngel med mikroalger i en periode hvor torskeyngelen er særlig følsom overfor miljømessige forhold. Skjellproduksjon fremstår også som en næring som vil ha behov for for av denne art. Innen fjørfeproduksjon anvendes allere-de mikroalger som fortilskudd. Mikroalger anvendes for øvrig til en rekke formål innen forskning og industriell virksom-het. The need for microalgae is constantly increasing in aquaculture, as a health food for humans and as a supplement for animals. In aquaculture, microalgae are used directly or in-directly as feed for fish and shellfish. It is, for example, advantageous to feed cod fry with microalgae during a period when the cod fry are particularly sensitive to environmental conditions. Shell production also appears as an industry that will need food of this kind. Within poultry production, microalgae are already used as supplements. Microalgae are also used for a number of purposes in research and industrial activity.

Ifølge kjent teknikk produseres mikroalger i transparente rør og beholdere som er anbrakt i drivhuslignende bygninger. Dette gjøres for å utnytte sollyset best mulig samtidig som temperaturen i vannet må kunne styres. Produksjonsanlegg av denne art er relativt kostbare og plasskrevende. According to known technology, microalgae are produced in transparent tubes and containers which are placed in greenhouse-like buildings. This is done to make the best possible use of the sunlight, while the temperature in the water must be able to be controlled. Production facilities of this kind are relatively expensive and require space.

Det er foreslått å anvende sammensveiset plastfolie som beholdere for å redusere anleggskostnadene i forbindelse med algeproduksjon. US patent 5534417 beskriver således en fremgangsmåte for å produsere mikroalger hvor mikroalgene befinner seg i av plastmateriale fremstilte lommer, og hvor gass bobles inn i lommene. It has been proposed to use welded together plastic foil as containers to reduce construction costs in connection with algae production. US patent 5534417 thus describes a method for producing microalgae where the microalgae are located in pockets made of plastic material, and where gas is bubbled into the pockets.

GB dokument 2192195 beskriver en bioreaktor hvor biomassen sirkulerer gjennom en gassutbytter hvor gass tilsettes via rør som er forsynt med mikroskopiske åpninger hvorigjennom gassen diffunderes inn i biomassen. GB document 2192195 describes a bioreactor where the biomass circulates through a gas exchanger where gas is added via pipes that are equipped with microscopic openings through which the gas is diffused into the biomass.

Karbondioksyd, C02, er en viktig ingrediens i mikroalgenes næringstilførsel og C02 blandes derfor inn i luft før den bobles inn i lommene. Imidlertid opptas bare en mindre del av den innboblede C02 av algene i lommen. Den overskytende C02 strømmer ut til atmosfæren. Denne ifølge kjent teknikk van-lige praksis innebærer en kostnadsdrivende og unødvendig slø-sing med C02. Carbon dioxide, C02, is an important ingredient in the microalgae's nutrient supply and C02 is therefore mixed into air before it is bubbled into the pockets. However, only a small part of the bubbled C02 is taken up by the algae in the pocket. The excess C02 flows out to the atmosphere. This common practice according to known technology involves a cost-driving and unnecessary waste of C02.

Oppfinnelsen har til formål å avhjelpe ulempene ved kjent teknikk. The purpose of the invention is to remedy the disadvantages of known technology.

Formålet oppnås i henhold til oppfinnelsen ved de trekk som er angitt i nedenstående beskrivelse og i de etterfølgende patentkrav. The purpose is achieved according to the invention by the features indicated in the description below and in the subsequent patent claims.

Gjennom et antall sammenknyttede lukkede vekstbeholdere sirkuleres en gassblanding som omfatter oksygen, 02, og C02. Den C02 som ikke opptas av alger i vekstbeholderne, trekkes ut til et gassbehandlingsapparat som er innrettet til blant annet å kunne regulere andelen av C02i den sirkulerende gass, før-gassen igjen ledes inn i vekstbeholderne. A gas mixture comprising oxygen, 02 and C02 is circulated through a number of interconnected closed growth containers. The C02 that is not taken up by algae in the growth containers is extracted to a gas treatment device which is designed, among other things, to be able to regulate the proportion of C02 in the circulating gas, before the gas is again led into the growth containers.

Den sirkulerende gassblanding reguleres også med hensyn til 02 for å sikre at 02-nivået ikke overstiger kritiske verdier for mikroalgene. The circulating gas mixture is also regulated with regard to 02 to ensure that the 02 level does not exceed critical values for the microalgae.

I en foretrukket utførelsesform er beholderne fremstilt av en dobbel plastfolie hvor de to folielagene er sammensveiset langs sin omkretskant og langs parallelle linjer slik at folielagene danner en foliepose. Sammensveisingen langs de parallelle linjer er ved linjenes endepartier avsluttet på en avstand til foliens kantsveis. Mellomrommene mellom de parallelle sveiselinjer kommuniserer således med hverandre ved sine endepartier. In a preferred embodiment, the containers are made from a double plastic foil where the two foil layers are welded together along their circumferential edge and along parallel lines so that the foil layers form a foil bag. The welding along the parallel lines is finished at the ends of the lines at a distance from the edge weld of the foil. The spaces between the parallel welding lines thus communicate with each other at their end portions.

Ved å henge opp den sammensveisede foliepose i et stativ på en slik måte at de parallelle linjer inntar en vertikal ret-ning, utgjor rommet i folien et antall vekstbeholdere som er lukket i forhold til omgivelsene. By hanging the welded foil bag in a stand in such a way that the parallel lines assume a vertical direction, the space in the foil forms a number of growth containers which are closed in relation to the surroundings.

Et rør for tilførsel og drenering av væske er koplet til folieposen. Det er også anordnet en tilførsel og et avløp for den gass som sirkuleres gjennom folieposen. Det er fordelak-tig at gassen tilføres via et perforert rør som befinner seg i folieposens nedre parti. Gassen kan derved bobles gjennom vekstbeholderne og opp til folieposens øvre parti hvor den trekkes ut til gassbehandlingsapparatet. A tube for supplying and draining liquid is connected to the foil bag. There is also a supply and an outlet for the gas that is circulated through the foil bag. It is advantageous that the gas is supplied via a perforated tube located in the lower part of the foil bag. The gas can thereby be bubbled through the growth containers and up to the upper part of the foil bag, where it is extracted to the gas treatment device.

Den nevnte foliepose kan med fordel forsynes med ytterligere folielag hvor det for eksempel kan sirkuleres et fluid for temperaturregulering av væsken i vekstbeholderne, eller at lysspekteret til algene reguleres ved hjelp av et fluid som befinner seg mellom tilstøtende folielag. The mentioned foil bag can advantageously be supplied with further foil layers where, for example, a fluid can be circulated for temperature regulation of the liquid in the growth containers, or that the light spectrum of the algae is regulated by means of a fluid located between adjacent foil layers.

Det er også mulig å mellomlagre gassen i en beholder før den behandles og tilbakeføres til folieposen. It is also possible to temporarily store the gas in a container before it is processed and returned to the foil bag.

I en alternativ utførelsesform som er velegnet for mikroalge-produksjon i sjø anbringes den sammensveisede foliepose hori-sontalt flytende i vannoverflaten. Det er anordnet en perforert tilførselskanal for gass langsetter hver vekstbeholder i vekstbeholderens nedre parti. Gass trekkes av fra vekstbehol-dernes øvre parti som er gassfylt. In an alternative embodiment which is suitable for microalgae production in the sea, the welded foil bag is placed horizontally floating in the water surface. A perforated supply channel for gas is arranged along each growing container in the lower part of the growing container. Gas is withdrawn from the upper part of the growth containers, which is full of gas.

Fremgangsmåten og anordningen ifølge oppfinnelsen tilrette-legger for storskalaproduksjon av alger hvor investerings- og driftskostnader er relativt beskjedne sammenlignet med kjent teknikk. The method and device according to the invention facilitates large-scale production of algae where investment and operating costs are relatively modest compared to known technology.

I det etterfølgende beskrives et ikke-begrensende eksempel på en foretrukket fremgangsmåte og utførelsesform som er anskue-liggjort på medfølgende tegninger, hvor: Fig. 1 viser et sideriss av en foliepose som er koplet til et gassbehandlingsapparat; Fig. 2 viser et snitt I-l i fig. 1; Fig. 3 viser et tilsvarende snitt som i fig. 2 hvor folieposen er forsynt med ytterligere folielag; og Fig. 4 viser et sideriss av en foliepose som er anbrakt i vannoverflaten; og In what follows, a non-limiting example of a preferred method and embodiment is described which is visualized in the accompanying drawings, where: Fig. 1 shows a side view of a foil bag which is connected to a gas treatment apparatus; Fig. 2 shows a section I-1 in fig. 1; Fig. 3 shows a corresponding section as in fig. 2 where the foil bag is provided with additional foil layers; and Fig. 4 shows a side view of a foil bag placed in the water surface; and

Fig. 5 viser et snitt IV-IV av folieposen i fig. 4. Fig. 5 shows a section IV-IV of the foil bag in fig. 4.

På tegningene betegner henvisningstallet 1 en foliepose som omfatter en første folie 2 og en andre fole 4. Foliene 2 og 4 er sveist sammen langs sin omkretskant 6 og langs parallelle linjer 8. Sveisen langs de parallelle linjer 8 avsluttes på en avstand fra omkretskanten 6. In the drawings, the reference number 1 denotes a foil bag comprising a first foil 2 and a second foil 4. The foils 2 and 4 are welded together along their circumferential edge 6 and along parallel lines 8. The welding along the parallel lines 8 ends at a distance from the circumferential edge 6.

Folieposen 1 holdes i en hovedsakelig vertikal stilling ved hjelp av opphengskroker 10 som komplementært passer i opp-hengsåpninger 12 i folieposens 1 festeparti 14. The foil bag 1 is held in a mainly vertical position by means of suspension hooks 10 which complementarily fit into suspension openings 12 in the fastening part 14 of the foil bag 1.

En første manifold 16 er tildannet ved folieposens 1 øvre parti i området over de parallelle sveiselinjer 8 og avgren-ses av omkretskanten 6. På tilsvarende måte er det ved folieposens nedre parti tildannet en andre manifold 18. A first manifold 16 is formed at the upper part of the foil bag 1 in the area above the parallel welding lines 8 and is delimited by the peripheral edge 6. In a similar way, a second manifold 18 is formed at the lower part of the foil bag.

Et første rør 20 er via en ventil 22 koplet til den andre manifold 18. A first pipe 20 is via a valve 22 connected to the second manifold 18.

Et gassbehandlingsapparat 24 kommuniserer med den første manifold 16 ved hjelp av et andre rør 26, og med et perforert rør 28, som befinner seg i den andre manifold 18, via et tredje rør 30. Gassbehandlingsapparatet 24 kan på i og for seg kjent måte omfatte følgende ikke viste komponenter: en Unitronic PLS styreenhet som styrer en ventil for åpning og lukking for C02-gass basert på måleverdier fra en Valsala GMT 222-sensor. A gas processing apparatus 24 communicates with the first manifold 16 by means of a second pipe 26, and with a perforated pipe 28, which is located in the second manifold 18, via a third pipe 30. The gas processing apparatus 24 can in a manner known per se include the following components not shown: a Unitronic PLC control unit that controls a valve to open and close for C02 gas based on readings from a Valsala GMT 222 sensor.

Det perforerte rør 28 forløper i den andre manifolds 18 leng-deretning . The perforated pipe 28 extends in the longitudinal direction of the second manifold 18.

Folieposen 1 fylles med væske, som blant annet inneholder alger, via ventilen 22 og det første rør 20 opp til et nivå 32. Mellomrommene innbyrdes mellom de parallelle linjer 8, og mellom de parallelle linjer 8 og de vertikale deler av omkretskanten 6, utgjør nå vekstbeholdere 34, se fig. 2. The foil bag 1 is filled with liquid, which, among other things, contains algae, via the valve 22 and the first pipe 20 up to a level 32. The spaces between the parallel lines 8, and between the parallel lines 8 and the vertical parts of the peripheral edge 6, now form growth containers 34, see fig. 2.

Gass som er korrigert til ønsket innhold av 02 og C02 og even-tuelt øvrige gasser, strømmer fra gassbehandlingsapparatet 24 gjennom det tredje rør 30 og til det perforerte rør 28 hvorfra gassen bobler opp gjennom vekstbeholderne 34. Gas that has been corrected to the desired content of 02 and C02 and possibly other gases flows from the gas processing apparatus 24 through the third pipe 30 and to the perforated pipe 28 from where the gas bubbles up through the growth containers 34.

Gass som strømmer ut fra vekstbeholderne 34 og inn i den første manifold 16 strømmer videre til gassbehandlingsappara- Gas that flows out of the growth containers 34 and into the first manifold 16 flows on to the gas processing apparatus

tet 24 via det andre rør 26. tet 24 via the other pipe 26.

Vekstbeholderne 34 sammen med den første manifold 16, den andre manifold 18, gassbehandlingsapparatet 24, et andre rør 26, et tredje rør 30 og det perforerte rør 28 utgjør en sirkulasjonskrets. The growth containers 34 together with the first manifold 16, the second manifold 18, the gas treatment apparatus 24, a second pipe 26, a third pipe 30 and the perforated pipe 28 form a circulation circuit.

I et annet utførelseseksempel, se fig. 3, er folieposen 1 forsynt med ytterligere folielag 36, 38 som er anordnet for sirkulasjon av temperatur- og fargeregulerende fluid. In another embodiment, see fig. 3, the foil bag 1 is provided with further foil layers 36, 38 which are arranged for the circulation of temperature and color regulating fluid.

I en ytterligere utførelsesform, se fig. 4 og 5, er folieposen 1 anbrakt flytende i en vannoverflate 40. I denne utfø-relses form er det montert perforerte rør 28 langs hver vekst-beholders 34 nedre parti. Gassen strømmer fra de perforerte rør 28 gjennom vannet i vekstbehoIderen 34 og opp til en gasslomme 42 hvorfra gassen strømmer ut via det andre rør 26. In a further embodiment, see fig. 4 and 5, the foil bag 1 is placed floating in a water surface 40. In this embodiment, perforated tubes 28 are mounted along the lower part of each growing container 34. The gas flows from the perforated pipes 28 through the water in the growth container 34 and up to a gas pocket 42 from which the gas flows out via the second pipe 26.

Elementene 20, 26, 28 og 30 er benevnt rør, men kan i den praktiske utførelse utgjøres av for eksempel integrerte kana-ler i folieposen, slanger eller andre hulelement. The elements 20, 26, 28 and 30 are referred to as pipes, but in the practical embodiment can be made up of, for example, integrated channels in the foil bag, hoses or other hollow elements.

Claims (7)

1. Anordning for algeproduksjon omfattende vekstbeholdere (34) som er fremstilt av plastfolie (2, 4), karakterisert ved at plastfoliens (2, 4) hulrom (16, 18, 34) utgjør en del av et lukket system som omfatter et gassbehandlingsapparat (24), og hvor gassbehandlingsapparatet (24) er innrettet til i det minste å kunne justere C02-innholdet i en overskudds-gass som samles opp, før gassen strømmer inn i vekstbeholderne (34) .1. Device for algae production comprising growth containers (34) which are made of plastic foil (2, 4), characterized in that the cavity (16, 18, 34) of the plastic foil (2, 4) forms part of a closed system comprising a gas treatment device ( 24), and where the gas treatment device (24) is designed to at least adjust the C02 content in an excess gas that is collected, before the gas flows into the growth containers (34). 2. Anordning i henhold til krav 1, karakterisert ved at en foliepose (1) omfatter minst to vekstbeholdere (34).2. Device according to claim 1, characterized in that a foil bag (1) comprises at least two growth containers (34). 3. Anordning i henhold til krav 2, karakterisert ved at vekstbeholderne (34) kommuniserer med minst en av en første eller en andre manifold (16, 18) .3. Device according to claim 2, characterized in that the growth containers (34) communicate with at least one of a first or a second manifold (16, 18). 4. Anordning i henhold til krav 2, karakterisert ved at vekstbeholderne (34) ved sitt nedre parti kommuniserer med et perforert rør (28).4. Device according to claim 2, characterized in that the growth containers (34) at their lower part communicate with a perforated pipe (28). 5. Anordning i henhold til krav 4, karakterisert ved at det perforerte rør (2 8) kommuniserer med et gassbehandlingsapparatet (24).5. Device according to claim 4, characterized in that the perforated pipe (2 8) communicates with a gas treatment device (24). 6. Anordning i henhold til krav 3 og 5, karakterisert ved at gassbehandlingsapparatet (24) kommuniserer med den første manifold (16).6. Device according to claims 3 and 5, characterized in that the gas treatment device (24) communicates with the first manifold (16). 7. Anordning i henhold til krav 1, karakteri- sert ved at vekstbeholderne (34) sammen med en første manifold (16), en andre manifold (18), gassbehandlingsapparatet (24), et andre rør (26), et tredje rør (30) og et minst ene perforerte rør (28) utgjør en sirkulasjonskrets.7. Device according to claim 1, charac- characterized in that the growth containers (34) together with a first manifold (16), a second manifold (18), the gas treatment apparatus (24), a second pipe (26), a third pipe (30) and at least one perforated pipe (28) constitutes a circulation circuit.
NO20042425A 2004-06-11 2004-06-11 Device for algae production NO320950B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NO20042425A NO320950B1 (en) 2004-06-11 2004-06-11 Device for algae production
EP05752394A EP1765973A1 (en) 2004-06-11 2005-06-10 Device for algae production
PCT/NO2005/000196 WO2005121309A1 (en) 2004-06-11 2005-06-10 Device for algae production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20042425A NO320950B1 (en) 2004-06-11 2004-06-11 Device for algae production

Publications (3)

Publication Number Publication Date
NO20042425D0 NO20042425D0 (en) 2004-06-11
NO20042425L NO20042425L (en) 2005-12-12
NO320950B1 true NO320950B1 (en) 2006-02-20

Family

ID=35005918

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20042425A NO320950B1 (en) 2004-06-11 2004-06-11 Device for algae production

Country Status (3)

Country Link
EP (1) EP1765973A1 (en)
NO (1) NO320950B1 (en)
WO (1) WO2005121309A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167911A1 (en) 2012-05-11 2013-11-14 Glycomar Limited Polysaccharides from prasinococcales

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2425702A (en) * 2005-05-04 2006-11-08 Questor Ltd C Photosynthetic apparatus and method using algae
DE102005062726A1 (en) * 2005-12-22 2007-07-05 Mikrobiologisch-Analytisches Labor Gmbh Procedure for utilization of gaseous of carbon sources for the production of algae biomass, comprises passing input gas through gas-tightly closed photo-bioreactor by closed gas cycle
EP1801197A1 (en) * 2005-12-22 2007-06-27 Mikrobiologisch-analytisches Labor GmbH Process for the valorization of gaseous sources of carbon and a photobioreactor
CN100419066C (en) * 2006-04-14 2008-09-17 中国科学院武汉植物园 Arrangement for supplementing CO2 to micro-algae culture pond
GB2438155A (en) * 2006-05-17 2007-11-21 Oliver Frank Dennis Carter Apparatus for farming algae
US8372632B2 (en) 2006-06-14 2013-02-12 Malcolm Glen Kertz Method and apparatus for CO2 sequestration
US8415142B2 (en) 2006-06-14 2013-04-09 Malcolm Glen Kertz Method and apparatus for CO2 sequestration
WO2008134010A2 (en) * 2007-04-27 2008-11-06 Greenfuel Technologies Corp. Photobioreactor systems positioned on bodies of water
KR20100039846A (en) * 2007-06-14 2010-04-16 닉콜라오스 미트로포울로스 Algae growth for biofuels
EP2242834B1 (en) * 2008-01-18 2013-08-21 Aveston Grifford Ltd. Photobioreactor
DE102008022676A1 (en) * 2008-05-07 2009-11-12 Phyton Energy Gmbh Device for increasing carbon and/or oil containing microorganisms in nutrient fluid, comprises a self-supporting, vertically passing nutrient fluid chamber formed by line adhering connection of two foils
US20090305389A1 (en) * 2008-06-09 2009-12-10 Willson Bryan Dennis Permeable membranes in film photobioreactors
WO2010017002A1 (en) * 2008-08-08 2010-02-11 Diversified Energy Corp. Algae production systems and associated methods
NO20092980A1 (en) * 2009-09-09 2011-03-07 Microa As Photobioreactor
EP2496684A4 (en) * 2009-11-02 2015-04-15 William R Kassebaum Photobioreactor system and method of using the same
DE102010008093A1 (en) * 2010-02-15 2011-08-18 Phytolutions GmbH, 28759 Design and use of an endless-chamber bioreactor for the use of CO2 from flue gases and for the production of biomass from algae and prokaryotes
AU2011226608B2 (en) * 2010-03-12 2015-10-29 Colorado State University Research Foundation Systems and methods for positioning flexible floating photobioreactors
CN102373150B (en) * 2010-08-24 2015-02-11 新奥科技发展有限公司 Photobioreactor and photobiology culture system
CN102373149B (en) * 2010-08-24 2014-12-24 新奥科技发展有限公司 Photobioreactor, its preparation method, photo-biological culture system and method
CN102373151B (en) * 2010-08-24 2015-11-25 新奥科技发展有限公司 Bioreactor and photo bio culture systems
WO2014074772A1 (en) 2012-11-09 2014-05-15 Heliae Development, Llc Mixotrophic, phototrophic, and heterotrophic combination methods and systems
WO2014074770A2 (en) 2012-11-09 2014-05-15 Heliae Development, Llc Balanced mixotrophy methods
DE202013011727U1 (en) * 2013-01-29 2014-05-08 Pateffect Schutzrechtsmanagement Gbr (Vertretungsberechtigte Gesellschafter: Dr. Volker Linden, 73430 Aalen Und Klaus Kunze, 88250 Weingarten) Bioreactor element
CN103396938A (en) * 2013-08-05 2013-11-20 青岛恒生源生态农业有限公司 Suspended type batch pipeline cultivation apparatus for photosynthetic bacterium
US9896652B2 (en) 2014-08-28 2018-02-20 Algenol Biofuels Switzerland GmbH Photobioreactor, system and method of use
EP3069602A1 (en) * 2015-03-17 2016-09-21 Linde Aktiengesellschaft Method for dissolving co2 and stripping o2 by using a perforated hose with low pressure in algal ponds

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL102189A (en) * 1992-06-12 1995-07-31 Univ Ben Gurion Microorganism growth apparatus
JP3510929B2 (en) * 1994-12-28 2004-03-29 小糸工業株式会社 Mass culture system for microalgae
JP2002027972A (en) * 2000-07-12 2002-01-29 Kansai Electric Power Co Inc:The Method for cultivating sterile ulva pertusa

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167911A1 (en) 2012-05-11 2013-11-14 Glycomar Limited Polysaccharides from prasinococcales

Also Published As

Publication number Publication date
NO20042425L (en) 2005-12-12
EP1765973A1 (en) 2007-03-28
NO20042425D0 (en) 2004-06-11
WO2005121309A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
NO320950B1 (en) Device for algae production
US8409845B2 (en) Algae bioreactor using submerged enclosures with semi-permeable membranes
MX2010007568A (en) Photobioreactor.
WO2012000057A1 (en) Method and apparatus for growing photosynthetic organisms
MX2009013735A (en) Algae growth for biofuels.
TWI436729B (en) An apparatus for culturing aquatic organisms
NO20092980A1 (en) Photobioreactor
CN110760439B (en) Algae cultivation photo-biological reaction kettle and continuous culture reaction system containing same
CN108975615A (en) A kind of improved biogas slurry Ecological Disposal cultivating system
EP2725092A1 (en) Device for breeding phototropic micro-organisms
CN206101330U (en) Intergrowth farming systems of aquaculture water circulating system and aquatic livestock and little algae
JP2008072922A (en) Autoconvection generating device
KR101503240B1 (en) Apparatus for adjusting water temperature of fishfarm
JPH02219530A (en) Incubating device for fish and lobster
CN108124814A (en) For cultivation dual sink and be set to its air lift unit
NO320949B1 (en) Ceiling device for drilling rig for handling drill bits
BRPI1011102B1 (en) groundwater purification unit based on biological oxidation and reduction processes
CN207201751U (en) A kind of multi-functional aquaculture pond
NO312236B1 (en) Oxygenation of seawater
RU139711U1 (en) INSTALLATION FOR CULTIVATION OF MICROWEEDS
JP2000334488A (en) Device and method for water purification
JP6052482B2 (en) Aquaculture device and culture method
CN104004644B (en) A kind of waste water microbial cultivation device and application
JP2014212723A (en) Apparatus and method for aquaculture of aquatic organism, and apparatus and method for hydroponic culture of plant
CN106718807A (en) Ship, submarine, off-lying sea platform, the fresh vegetables implant system on island

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees