NO313667B1 - Process for making a light, strong and heat-insulating clay-based ceramic - Google Patents

Process for making a light, strong and heat-insulating clay-based ceramic Download PDF

Info

Publication number
NO313667B1
NO313667B1 NO20011807A NO20011807A NO313667B1 NO 313667 B1 NO313667 B1 NO 313667B1 NO 20011807 A NO20011807 A NO 20011807A NO 20011807 A NO20011807 A NO 20011807A NO 313667 B1 NO313667 B1 NO 313667B1
Authority
NO
Norway
Prior art keywords
clay
ceramic
stone
calcite
firing
Prior art date
Application number
NO20011807A
Other languages
Norwegian (no)
Other versions
NO20011807D0 (en
NO20011807L (en
Inventor
Haakon G Rueslaatten
Ole Sivert Hembre
Ola Torstensen
Original Assignee
Ola Torstensen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ola Torstensen filed Critical Ola Torstensen
Priority to NO20011807A priority Critical patent/NO313667B1/en
Publication of NO20011807D0 publication Critical patent/NO20011807D0/en
Priority to PCT/NO2002/000133 priority patent/WO2002081409A1/en
Publication of NO20011807L publication Critical patent/NO20011807L/en
Publication of NO313667B1 publication Critical patent/NO313667B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/064Natural expanding materials, e.g. clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

Oppfinnelsen angår en fremgangsmåte til fremstilling av et lett, sterkt og varmeisolerende leirebasert keram, som er laget etter mønster av bl.a murstein, teglstein, isolasjonsstein, o.l., ved bruk av leire og kalk, og påfølgende etterfukting og eksponering i karbondioksid. The invention relates to a method for the production of a light, strong and heat-insulating clay-based ceramic, which is made according to the pattern of, among other things, brick, brick, insulating stone, etc., using clay and lime, and subsequent moistening and exposure in carbon dioxide.

BAKGRUNN FOR OPPFINNELSEN BACKGROUND OF THE INVENTION

Tidligere kjent teknikk ved fremstilling av bygningsstein, f.eks teglstein, vedrører brenning av kun leire, men man kjenner til at det i noen tilfeller er blitt blandet inn små mengder av kalk for å justere fargen på steinen, og brenningen skjer da ved 1100-1200°C. Dette medfører et høyt energiforbruk. Tradisjonell fremstilling av stein, f.eks. teglstein, innebærer at brenningen medfører sintringsprosesser i leira, noe som igjen innebærer en kraftig krymping av steinen under brenningen. Den tradisjonelle teglstein har høy volumvekt( dvs. den er tung) og har relativt dårlig termisk isolasjonsevne. Previously known technique for the production of building stone, e.g. brick, concerns the firing of only clay, but it is known that in some cases small amounts of lime have been mixed in to adjust the color of the stone, and the firing then takes place at 1100- 1200°C. This results in high energy consumption. Traditional manufacture of stone, e.g. brick, means that the firing causes sintering processes in the clay, which in turn means a strong shrinkage of the stone during firing. The traditional brick has a high volume weight (i.e. it is heavy) and has relatively poor thermal insulation.

Nærliggende fremgangsmåter innen fagområdet er kjent fra bl.a DE patentskrift nr. 898 269, DE utlegningsskrift nr. 1 571 301 og DE 40 21 028 Al, som omfatter brenning av forskjellige blandinger av leire og kalk. Related methods in the field are known from, among other things, DE patent document no. 898 269, DE explanatory document no. 1 571 301 and DE 40 21 028 A1, which include burning different mixtures of clay and lime.

DE patentskrift nr. 898 269 beskriver en fremgangsmåte til fremstilling av keramisk varmeisolasjonsstykker med en romvekt på under 1,3, hvor en leireinneholdende masse tilsettes jordalkalioksid-inneholdende råstoffer i finfordelt form, for økning av deres naturlige porøsitet, og brenntemperaturen ligger i området 1000-1100°C. DE patent no. 898 269 describes a method for the production of ceramic heat insulation pieces with a bulk density of less than 1.3, where a clay-containing mass is added to alkaline earth oxide-containing raw materials in finely divided form, to increase their natural porosity, and the firing temperature is in the range of 1000- 1100°C.

DE utlegningsskrift nr. 1 571 301 beskriver en fremgangsmåte til fremstilling av delvis ildfaste isolasjonssteiner, dvs. steiner og andre formstykker som kan tåle temperaturer opptil 1200°C, under anvendelse av en kalsiumkarbonat-inneholdende leireblanding, som etter tilsetning av vann og organiske fyllstoffer, som sikrer porøsiteten nødvendig for oppnåelse av isolasjonsevne, formes til steiner og brennes. DE laying-out document no. 1 571 301 describes a method for the production of partially refractory insulating stones, i.e. stones and other shaped pieces which can withstand temperatures up to 1200°C, using a calcium carbonate-containing clay mixture, which after the addition of water and organic fillers, which ensures the porosity necessary to achieve insulating properties, is shaped into stones and burned.

DE 40 21 028 Al beskriver en fremgangsmåte som med stor nøyaktighet kan fremstille cellekeramiske bygge- og konstruksjonselementer av stort format og/eller av stort volum. Brent kalk tilsettes en utgangsblanding av leire, vann og en skumdanner, og derved dannes kalsiumhydroksid som i en karbondioksidatmosfære ved karbonisering i leirpotteskår danner en krystallstruktur av kalsiumkarbonat. Dette kalsiumkarbonatet er mekanisk stabilt og forhindrer at det ved tørkingen skjer svinn og sprekking. DE 40 21 028 Al describes a method which can produce cellular ceramic building and construction elements of large format and/or of large volume with great accuracy. Burnt lime is added to a starting mixture of clay, water and a foaming agent, thereby forming calcium hydroxide which in a carbon dioxide atmosphere forms a crystal structure of calcium carbonate when carbonized in clay pot shards. This calcium carbonate is mechanically stable and prevents shrinkage and cracking during drying.

SAMMENFATNING AV OPPFINNELSEN SUMMARY OF THE INVENTION

Hensikten med den foreliggende oppfinnelsen er å tilveiebringe et leirebasert The purpose of the present invention is to provide a clay-based

keram, så som en stein som kan anvendes til bygningsformål, og spesielt der det er formålstjenlig med en lett (lav volumvekt) og porøs stein med god varmeisolerende evne og som har en bøyestrekkfasthet som er sammenlignbar med tradisjonell stein, f.eks teglstein. Hensikten er å kunne benytte steinen på lignende måte som sementstabilisert lettklinkerstein, men som har større styrke enn denne. For oppnåelse av dette brennes steinen ved en lavere temperatur enn det som tidligere er kjent for å unngå sintring og krymping av steinen, og for å bevare porøsiteten. Den lavere brenntemperaturen fører også til et betydelige lavere energiforbruk enn for de tidligere kjente metoder samt at etterherdingen av steinen fører til at mye karbondioksid bindes opp i steinen, noe som medfører en miljøgevinst. ceramic, such as a stone that can be used for building purposes, and especially where it is expedient to use a light (low volume weight) and porous stone with good heat-insulating ability and which has a bending tensile strength that is comparable to traditional stone, e.g. brick. The purpose is to be able to use the stone in a similar way to cement stabilized light clinker stone, but which has greater strength than this. To achieve this, the stone is fired at a lower temperature than previously known to avoid sintering and shrinkage of the stone, and to preserve the porosity. The lower burning temperature also leads to a significantly lower energy consumption than for the previously known methods and that the post-hardening of the stone leads to a lot of carbon dioxide being tied up in the stone, which brings about an environmental benefit.

I henhold til den foreliggende oppfinnelsen tilveiebringes en fremgangsmåte til fremstilling av et lett, sterkt og varmeisolerende leirebasert keram, som er kjennetegnet ved at den omfatter trinnene According to the present invention, a method is provided for the production of a light, strong and heat-insulating clay-based ceramic, which is characterized by the fact that it includes the steps

- blanding av leire, kalk og vann for oppnåelse av en fuktig og formbar - mixture of clay, lime and water to obtain a moist and mouldable

blanding, mixture,

- brenning av blandingen for oppnåelse av et keram, idet brenningen utføres ved anvendelse av temperatur på 900°C og høyere, og fortrinnsvis på 1000°C, - firing the mixture to obtain a ceramic, the firing being carried out using a temperature of 900°C and higher, and preferably at 1000°C,

- tilføring av vann til keramet etter at keramet er blitt avkjølt, og - adding water to the ceramic after the ceramic has cooled, and

- tilføring av karbondioksid til det fuktede keramet. - adding carbon dioxide to the moistened ceramic.

KORT BESKRIVELSE AV FIGURENE BRIEF DESCRIPTION OF THE FIGURES

Figur 1 viser volumvekt som følge av kalsittinnhold og brenntemperatur. Figure 1 shows volume weight as a result of calcite content and firing temperature.

Figur 2 viser åpen porøsitet som følge av kalsittinnhold og brenntemperatur Figure 2 shows open porosity as a result of calcite content and firing temperature

Figur 3 viser sammenheng mellom mengden uomsatt CaO etter brenning ved 1000°C og mengden kalsitt i ubrente prøver. Figure 3 shows the relationship between the amount of unreacted CaO after firing at 1000°C and the amount of calcite in unfired samples.

DETALJERT BESKRIVELSE AV OPPFINNELSEN DETAILED DESCRIPTION OF THE INVENTION

Oppfinnelsen gjelder en ny type leirebasert keram så som murstein, teglstein, isolasjonsstein, o.l., som har lavere volumvekt og bedre isolasjonsevne enn tradisjonell stein. Keramet oppnådd ved fremgangsmåten har høy porøsitet (over 50 volum%) og en volumvekt (densitet) på under 1,3 g/cm<3>, fortrinnsvis ned mot ca. 1,2 g/cm<3>. Videre er keramets bøyefasthet (styrke) sammenlignbar med f.eks teglstein. The invention relates to a new type of clay-based ceramic such as brick, brick, insulating stone, etc., which has a lower volume weight and better insulating ability than traditional stone. The ceramic obtained by the method has high porosity (over 50% by volume) and a volume weight (density) of less than 1.3 g/cm<3>, preferably down to approx. 1.2 g/cm<3>. Furthermore, the ceramic's bending strength (strength) is comparable to, for example, brick.

Ifølge oppfinnelsen blandes leire, kalk og vann for oppnåelse av en fuktig og formbar blanding. Som kalk kan anvendes kalsitt eller andre karbonatbergarter. Leiren som er nyttig ifølge oppfinnelsen kan være en hvilken som helst leire. Eksempel på egnede leirer omfatter, men er ikke begrenset til, illitt, kloritt, kaolinitt, smektitter, sepiolitter og blandinger derav. Leiren anvendt ifølge den foreliggende oppfinnelsen kan f.eks. være en norsk glasimarin leire, med hovedbestanddeler illitt, kloritt, feltspater og kvarts. According to the invention, clay, lime and water are mixed to obtain a moist and malleable mixture. Calcite or other carbonate rocks can be used as lime. The clay useful in the invention may be any clay. Examples of suitable clays include, but are not limited to, illite, chlorite, kaolinite, smectites, sepiolites and mixtures thereof. The clay used according to the present invention can e.g. be a Norwegian glacimarine clay, with main constituents illite, chlorite, feldspar and quartz.

Sintringsegenskapene til leiren anvendt ifølge oppfinnelsen kan bli målt i en dilatometer med en oppvarmingshastighet på 120°C/time. Leiren oppfører seg slik at den begynner å sintre rundt 850°C. Maksimal sintringshastighet ligger rundt 1080°C. Ved 1150°C har leiren betydelig med smeltefase. The sintering properties of the clay used according to the invention can be measured in a dilatometer with a heating rate of 120°C/hour. The clay behaves in such a way that it begins to sinter at around 850°C. The maximum sintering rate is around 1080°C. At 1150°C, the clay has a significant melting phase.

Det kan i tillegg tilsettes et additiv av finkornet leire («Ball Clay») av type Hypure Vector fra English China Clay (ECC) for å forbedre massens plastisitet/formbarhet. Det kan anvendes opp til 5 vekt% av nevnte additiv regnet av den totale blandingen. Deretter blir massen støpt eller ekstrudert, og en viss tørking kan utføres. An additive of fine-grained clay ("Ball Clay") of the Hypure Vector type from English China Clay (ECC) can also be added to improve the plasticity/formability of the mass. Up to 5% by weight of said additive can be used, calculated from the total mixture. The mass is then molded or extruded, and some drying can be carried out.

Ved brenning av leire og kalsitt får man et produkt som består av ulike silikater pluss glassfase. CaO reagerer relativt fort med leiremineraler når temperaturen kommer over 800°C og danner ulike kalsiumsilikater eller kalsiumaluminium-silikater, som f.eks. kan være wollastonitt CaOSi02, anortitt CaOAl203-2Si02 eller andre mineraler. Ved brenningen kan det f.eks. anvendes en standard ovn av type Entech hurtigovn med lufttilgang. When clay and calcite are fired, a product is obtained which consists of various silicates plus a glass phase. CaO reacts relatively quickly with clay minerals when the temperature rises above 800°C and forms various calcium silicates or calcium aluminum silicates, such as e.g. can be wollastonite CaOSi02, anorthite CaOAl203-2Si02 or other minerals. When burning, it can e.g. a standard oven of the type Entech rapid oven with air access is used.

For å kalsinere karbonatbergarten må temperaturen være over 800°C, men ikke særlig over 1000°C, for da sintrer og krymper leira. 1000°C synes derfor å være en optimal øvre grense ved bruk av kalsitt som karbonatbergart. Ved 1000°C oppnås full kalsinering av kalsitten, og ved denne temperaturen er sintringen av leira såvidt begynt, dvs. krympingen av leira er på under 1%. Dette betyr at steinen beholder formen under brenningen. Under brenningen vil det meste av den kalsinerte kalsitten reagere med silikatmineralene og danne slaggmineraler. Mengden kalsitt i steinen må derfor være høy nok til at det etter brenningen fortsatt er fri kalsiumoksid i steinen, og dette er kritisk for etterherdingen. Minst 40 vekt% kalk av den totale blandingen må tilsettes for å få CaO-rester etter første brenning. I en foretrukket utførelse anvendes minst 50 vekt% kalk, og mer foretrukket opp til 60 vekt%, av den totale blandingen. To calcine the carbonate rock, the temperature must be above 800°C, but not particularly above 1000°C, because then the clay sinters and shrinks. 1000°C therefore seems to be an optimal upper limit when using calcite as carbonate rock. At 1000°C, full calcination of the calcite is achieved, and at this temperature the sintering of the clay has just begun, i.e. the shrinkage of the clay is less than 1%. This means that the stone retains its shape during firing. During firing, most of the calcined calcite will react with the silicate minerals to form slag minerals. The amount of calcite in the stone must therefore be high enough so that after firing there is still free calcium oxide in the stone, and this is critical for post-hardening. At least 40% by weight of lime of the total mixture must be added to obtain CaO residues after the first firing. In a preferred embodiment, at least 50% by weight of lime, and more preferably up to 60% by weight, of the total mixture is used.

Ifølge den foreliggende oppfinnelsen vil ureagert CaO etter brenning kunne bringes over til CaC03 ved å eksponere mot CO2. Ved brenningen (kalsineringen) vil kalsitt (CaCOs) omdannes til CaO og CO2 og med. vann tilstede skjer en hydratisering til kalsiumhydroksid (Ca(OH)2). According to the present invention, after burning, unreacted CaO can be converted to CaCO3 by exposure to CO2. During the burning (calcination), calcite (CaCOs) will be converted into CaO and CO2 and so on. in the presence of water, hydration to calcium hydroxide (Ca(OH)2) occurs.

Etterherdingen foregår ved at den avkjølte steinen fuktes ved at den blir nedsenket 3-5 sekunder i vann og settes under trykk i karbondioksidatmosfære i en autoklav i et visst antall timer. Det skjer en karbonatisering ved at kalsiumhydroksid reagerer med karbondioksid slik at det dannes kalsiumkarbonat og vann. Tiden for karbondioksid-eksponeringen avhenger av karbondioksidtrykket og steinens størrelse. Med et trykk på 10 bar og en stein med dimensjoner på eksempelvis 155mm x 12 mm x 11 mm er 18 timer tilstrekkelig. Optimal eksponeringstid må bestemmes i forhold til steinens størrelse og det anvendte karbondioksidtrykket, og kan f.eks. ha en varighet av ett døgn eller mer. Post-hardening takes place by moistening the cooled stone by immersing it in water for 3-5 seconds and putting it under pressure in a carbon dioxide atmosphere in an autoclave for a certain number of hours. Carbonation occurs when calcium hydroxide reacts with carbon dioxide so that calcium carbonate and water are formed. The time for the carbon dioxide exposure depends on the carbon dioxide pressure and the size of the stone. With a pressure of 10 bar and a stone with dimensions of, for example, 155mm x 12mm x 11mm, 18 hours is sufficient. Optimal exposure time must be determined in relation to the size of the stone and the carbon dioxide pressure used, and can e.g. have a duration of one day or more.

Etterherdingen fører til at mye karbondioksid bindes opp i steinen som nydannet karbonatsement. Post-hardening causes a lot of carbon dioxide to be tied up in the stone as newly formed carbonate cement.

De følgende spesifikke eksempler er ment å belyse fordelene ved den foreliggende oppfinnelse, og er ikke ment å begrense omfanget av oppfinnelsen på utilbørlig måte. The following specific examples are intended to illustrate the advantages of the present invention, and are not intended to unduly limit the scope of the invention.

Eksempler Examples

Prøveserie 1: leire + kalsitt Sample series 1: clay + calcite

Det ble laget en serie prøver av leire og økende mengder kalsitt. Hensikten var å finne hvor stor kalsitt-tilsats man måtte ha for å at man skulle få uomsatt CaO i prøvene etter brenning. Man er avhengig av å ha noe CaO tilstede for å kunne få. tilbakereaksjon med CO2 slik at det dannes CaC03 i porestrukturen i materialet. A series of samples of clay and increasing amounts of calcite were made. The purpose was to find how much calcite addition was needed in order to obtain unreacted CaO in the samples after firing. You need to have some CaO present to be able to get it. back reaction with CO2 so that CaC03 is formed in the pore structure of the material.

Man blandet leire og kalsitt med vann og filtrerte bort vannet slik at man fikk en plastisk masse. Denne ble kjevlet ut til en flat leiv som ble kuttet i mindre biter for brenning. Prøvene ble varmet opp med 150°C/time, holdt 2 timer ved topptemperatur som varierte mellom 800 og 1000°C, og avkjølt med 300°C/time. Etter brenning målte man volumvekt og porøsitet (ISO 5017) på utvalgte serier. Resultatene er vist i tabell 1 og figur 1 og 2. Clay and calcite were mixed with water and the water filtered off so that a plastic mass was obtained. This was rolled out into a flat sheet which was cut into smaller pieces for burning. The samples were heated at 150°C/hour, held for 2 hours at a peak temperature that varied between 800 and 1000°C, and cooled at 300°C/hour. After firing, the volume weight and porosity (ISO 5017) were measured on selected series. The results are shown in table 1 and figures 1 and 2.

Det fremgår av resultatene at alle prøvene ble meget porøse og lette. Porøsiteten øker sterkt med økende tilsats av kalsitt, og varierer lite med brenntemperaturen . Prøvene med 55% kalsitt har en porøsitet på mellom 58 og 59% og en volumvekt på 1,26-1,29 g/cm<3>.1 andre enden av forsøksserien finner man prøvene med 10% kalsitt som har en porøsitet på 38,5% og en volumvekt på 1,73 g/cm<3>. It appears from the results that all the samples became very porous and light. The porosity increases strongly with increasing addition of calcite, and varies little with the firing temperature. The samples with 55% calcite have a porosity of between 58 and 59% and a volume weight of 1.26-1.29 g/cm<3>.1 at the other end of the test series, one finds the samples with 10% calcite, which have a porosity of 38 .5% and a volume weight of 1.73 g/cm<3>.

Prøveserie 2: 50% leire + 50% kalsitt Sample series 2: 50% clay + 50% calcite

Den nye prøveserien ble laget med sammensetning 50% kalsitt, 5% additiv av "Ball Clay" (ECC - Hypure Vector), og 45% leire. Nevnte additiv ble tilsatt for å øke tørrbruddstyrken til prøvene. Det ble støpt staver ca. 155 mm lange og ca. 12 x 11 mm<2> i tverrsnitt. Disse ble deretter tørket og brent ved 1000°C etter samme brennprogram som i prøveserie 1. Etter brenning ble prøvene eksponert både mot vann og mot CO2, og man målte bøyefasthet i 3 pkt. bøyetest både før og etter eksponering. 10 staver ble lagt i vann over natten før de skulle autoklaveres, dette for at CaO måtte bringes over til Ca(OH)2 før eksponering mot CO2. Etter vannbehandlingen ble de tørket ved 110°C før de ble lagt i autoklav med 10 bar C02-trykk. Etter 18 timer i autoklaven ble de tatt ut og veid på nytt. Man registrerte da nesten ikke noe vektøkning og konkluderte med at det ikke hadde skjedd noen særlig reaksjon. Stavene ble derfor dyppet 3-5 sekunder i vann og lagt våte i autoklav. Dette var fra fredag ettermiddag til mandag morgen og de ble liggende i autoklaven ved 10 bar C02-trykk. De ble tatt ut og tørket på nytt. Alle stavene viste nå en tydelig vektøkning, i gjennomsnitt var den på 4,27%. Dette betydde at man hadde fått en tilbakereaksjon. Dersom man antar at all fri CaO var reagert til CaC03, finner man at mengden CaO i brente prøver (1000°C) var 8,7% i snitt. 50% kalsitt-tilsats gir altså en uomsatt rest på 8,7% CaO. Det man her så var at tilbakereaksjonen til CaC03 ikke gikk like raskt i prøvene med leire som for ren CaO. Man fikk ingen særlig reaksjon til Ca(OH)2 etter en natt i vann, men ved å autoklavere våte prøver fikk man en meget god tilbakereaksjon. Dette førte til at man gjorde tilsvarende forsøk med prøvene fra prøveserien fordi man nå hadde metode til å måle indirekte hvor mye uomsatt CaO man hadde i prøvene etter brenning. The new sample series was made with a composition of 50% calcite, 5% additive of "Ball Clay" (ECC - Hypure Vector), and 45% clay. Said additive was added to increase the dry breaking strength of the samples. Staves were cast approx. 155 mm long and approx. 12 x 11 mm<2> in cross section. These were then dried and fired at 1000°C according to the same firing program as in test series 1. After firing, the samples were exposed to both water and CO2, and bending strength was measured in a 3-point bending test both before and after exposure. 10 rods were placed in water overnight before they were to be autoclaved, this so that the CaO had to be transferred to Ca(OH)2 before exposure to CO2. After the water treatment, they were dried at 110°C before being placed in an autoclave with 10 bar C02 pressure. After 18 hours in the autoclave, they were taken out and weighed again. Almost no weight gain was then recorded and it was concluded that no particular reaction had occurred. The rods were therefore dipped for 3-5 seconds in water and placed wet in an autoclave. This was from Friday afternoon to Monday morning and they were left in the autoclave at 10 bar C02 pressure. They were taken out and dried again. All the rods now showed a clear increase in weight, on average it was 4.27%. This meant that there had been a backlash. If one assumes that all free CaO had reacted to CaC03, one finds that the amount of CaO in burnt samples (1000°C) was 8.7% on average. 50% calcite addition thus gives an unconverted residue of 8.7% CaO. What was seen here was that the back reaction to CaC03 did not proceed as quickly in the samples with clay as for pure CaO. No particular reaction to Ca(OH)2 was obtained after a night in water, but by autoclaving wet samples a very good back reaction was obtained. This led to similar tests being carried out with the samples from the test series because there was now a method to indirectly measure how much unreacted CaO was in the samples after firing.

Vektøkning etter eksponering i CO2 kan brukes som et mål på hvor mye rest-CaO man har i prøvene etter brenning. Man forutsetter at vektøkningen skyldes at CaO har gått over til CaC03. Av ett gram CaC03 er 0,56 g CaO. Man kan derfor enkelt beregne mengden uomsatt CaO i de brente prøvene når man måler vektøkningen etter autoklavering i C02-gass. En slik måleserie ble utført på prøvene FH10-FH55 som var brent ved 1000°C etter at de var eksponert mot CO2 ved 10 bar trykk over helga (fredag ettermiddag til mandag morgen). Tabell 2 og figur 3 viser resultatene. Man finner at mengden uomsatt CaO øker eksponentielt med mengden kalsitt i opprinnelig prøve. Ved 30% kalsitt-tilsats er mengden uomsatt etter brenning ved 1000°C ca. 1%. Ved 50% kalsitt-tilsats er mengden uomsatt etter brenning ca. 8% og ved 55% kalsitt-tilsats er mengden uomsatt ca. 12%. Weight gain after exposure to CO2 can be used as a measure of how much residual CaO there is in the samples after firing. It is assumed that the increase in weight is due to CaO having changed to CaC03. Of one gram of CaCO3, 0.56 g is CaO. You can therefore easily calculate the amount of unreacted CaO in the burnt samples when you measure the increase in weight after autoclaving in C02 gas. Such a series of measurements was carried out on samples FH10-FH55 which had been fired at 1000°C after they had been exposed to CO2 at 10 bar pressure over the weekend (Friday afternoon to Monday morning). Table 2 and Figure 3 show the results. It is found that the amount of unreacted CaO increases exponentially with the amount of calcite in the original sample. With 30% calcite addition, the amount unreacted after firing at 1000°C is approx. 1%. With 50% calcite addition, the amount unconverted after firing is approx. 8% and with 55% calcite addition, the amount unconverted is approx. 12%.

Omregnet til hvor mye CO2 som kan "lagres" i en stein brent ved 1000°C, finner man at en stein som er laget med 50% kalsitt kan ta opp ca. 64 kg CO2 pr. tonn stein (tilsvarende 82,5 kg CO2 pr. m3 stein). Converted to how much CO2 can be "stored" in a stone burnt at 1000°C, it is found that a stone made with 50% calcite can absorb approx. 64 kg CO2 per tonne of stone (equivalent to 82.5 kg CO2 per m3 stone).

Claims (5)

1. Fremgangsmåte til fremstilling av et lett, sterkt og varmeisolerende leirebasert keram, k ar a k t e r i.s er t ved at den omfatter trinnene - blanding av leire, kalk og vann for oppnåelse av en fuktig og formbar blanding, - brenning av blandingen for oppnåelse av et keram, idet brenningen utføres ved anvendelse av temperatur på 900°C og høyere, og fortrinnsvis på 1000°C, - tilføring av vann til keramet etter at keramet er blitt avkjølt, og - tilføring av karbondioksid til det fuktede keramet.1. Method for producing a light, strong and heat-insulating clay-based ceramic, characterized in that it includes the steps - mixing clay, lime and water to obtain a moist and malleable mixture, - firing the mixture to obtain a ceramic, the firing being carried out using a temperature of 900°C and higher, and preferably at 1000°C, - adding water to the ceramic after the ceramic has cooled, and - adding carbon dioxide to the moistened ceramic. 2. Fremgangsmåte som angitt i krav 1,karakterisert ved at nevnte kalk er kalsitt eller andre karbonatbergarter.2. Method as stated in claim 1, characterized in that said lime is calcite or other carbonate rocks. 3. Fremgangsmåte som angitt i krav 2, karakterisert ved at nevnte kalk anvendes i en mengde av minst 40 vekt% og fortrinnsvis opp til 60 vekt% av den totale blandingen.3. Method as stated in claim 2, characterized in that said lime is used in an amount of at least 40% by weight and preferably up to 60% by weight of the total mixture. 4. Fremgangsmåte som angitt i krav 1,karakterisert ved at det fuktede keramet eksponeres i karbondioksid ved trykk på 1 til 10 bar, og fortrinnsvis ved trykk på 10 bar med en varighet av ett døgn eller mer.4. Method as stated in claim 1, characterized in that the moistened ceramic is exposed to carbon dioxide at a pressure of 1 to 10 bar, and preferably at a pressure of 10 bar for a duration of one day or more. 5. Fremgangsmåte som angitt i krav 1,karakterisert ved at det nevnte keram er murstein, teglstein, isolasjonsstein, o.l.5. Method as stated in claim 1, characterized in that the said ceramic is brick, brick, insulating stone, etc.
NO20011807A 2001-04-09 2001-04-09 Process for making a light, strong and heat-insulating clay-based ceramic NO313667B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NO20011807A NO313667B1 (en) 2001-04-09 2001-04-09 Process for making a light, strong and heat-insulating clay-based ceramic
PCT/NO2002/000133 WO2002081409A1 (en) 2001-04-09 2002-04-05 Method for manufacturing a light, strong and heat-insulating clay-based ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO20011807A NO313667B1 (en) 2001-04-09 2001-04-09 Process for making a light, strong and heat-insulating clay-based ceramic

Publications (3)

Publication Number Publication Date
NO20011807D0 NO20011807D0 (en) 2001-04-09
NO20011807L NO20011807L (en) 2002-10-10
NO313667B1 true NO313667B1 (en) 2002-11-11

Family

ID=19912360

Family Applications (1)

Application Number Title Priority Date Filing Date
NO20011807A NO313667B1 (en) 2001-04-09 2001-04-09 Process for making a light, strong and heat-insulating clay-based ceramic

Country Status (2)

Country Link
NO (1) NO313667B1 (en)
WO (1) WO2002081409A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118736A1 (en) * 2010-03-25 2011-09-29 株式会社豊田中央研究所 Chemical heat storage material structure, production method therefor, and chemical heat accumulator
CN106187142A (en) * 2016-07-20 2016-12-07 周荣 A kind of preparation method of high porosity complex phase porous ceramic film material
AT524652B1 (en) * 2021-09-22 2022-08-15 Wienerberger Ag PROCESS FOR MAKING BRICKS

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE898269C (en) * 1951-06-19 1953-11-30 Eduard Cramer Process for the production of ceramic thermal insulation bodies
DK110166C (en) * 1965-08-27 1969-11-17 Skarrehage Molervaerk As Process for the production of semi-refractory insulation stones.
DE58905965D1 (en) * 1988-10-21 1993-11-25 Arturo Broggini Process for the production of artificial stones.
DE4021028A1 (en) * 1990-07-02 1992-01-09 Z & K Forschungslabor Bassilio Large vol. cellular ceramic construction elements - obtd. by foaming clay, water and chalk slurry mixt. and carbonising to produce strong calcium carbonate frame structure

Also Published As

Publication number Publication date
NO20011807D0 (en) 2001-04-09
NO20011807L (en) 2002-10-10
WO2002081409A1 (en) 2002-10-17

Similar Documents

Publication Publication Date Title
Amin et al. Fabrication of geopolymer bricks using ceramic dust waste
Válek et al. Determination of optimal burning temperature ranges for production of natural hydraulic limes
US6818055B2 (en) Porous silicate granular material and method for producing it
Escalera et al. High temperature phase evolution of Bolivian kaolinitic–illitic clays heated to 1250° C
JP3038679B2 (en) Porcelain tile
CN100393656C (en) High-intensity corrosion-proof chimney lining brick made by mullite and method for manufacturing the same
Jankula et al. The influence of heat on elastic properties of illitic clay Radobica
Tognonvi et al. High-temperature, resistant, argillite-based, alkali-activated materials with improved post-thermal treatment mechanical strength
Samad et al. Manufacture of refractory brick from locally available red clay blended with white Portland cement and its performance evaluation
NO313667B1 (en) Process for making a light, strong and heat-insulating clay-based ceramic
CN106946558A (en) A kind of forsterite periclase spinelle complex phase lightweight refracrory and preparation method thereof
Sokolar et al. Sintering of anorthite ceramic body based on interstratified illite-smectite clay
Vakalova et al. Features of solid phase synthesis of wollastonite from natural and technogenic raw material
RU2433106C2 (en) Method of producing heat-insulating calcium hexaaluminate material
KR102565729B1 (en) Manufacturing Method of Calcium Silicated Base Cement Clinker And Calcium Silicated Base Cement Clinker Hardening Body
US2706844A (en) Cellulation of clay products
Moutaoukil et al. Effects of elevated temperature and activation solution content on microstructural and mechanical properties of fly ash-based geopolymer
RU2286965C1 (en) Method of manufacturing magnesia binder
Otero et al. Manufacture of refractory insulating bricks using fly ash and clay
Messaoud et al. Physico-chemical properties of Geopolymer binders made from Tunisian Clay
JP4096096B2 (en) Hexaluminate porous ceramics and method for producing the same
JP4065949B2 (en) Hexaluminate porous ceramics and method for producing the same
CN110436956A (en) Discarded magnesia-alumina-carbon brick prepares periclase-magnesium aluminate spinel heat-barrier material method
Morsy et al. Effect of curing temperature on the thermal expansion and phase composition of hydrated limestone-slag cement
RU2379264C1 (en) Raw mix for manufacturing of ceramic vermiculite products

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees