NO310627B1 - Process for catalyzing by stream-free precipitation of metals on the surface of a non-conductive material - Google Patents
Process for catalyzing by stream-free precipitation of metals on the surface of a non-conductive material Download PDFInfo
- Publication number
- NO310627B1 NO310627B1 NO19950563A NO950563A NO310627B1 NO 310627 B1 NO310627 B1 NO 310627B1 NO 19950563 A NO19950563 A NO 19950563A NO 950563 A NO950563 A NO 950563A NO 310627 B1 NO310627 B1 NO 310627B1
- Authority
- NO
- Norway
- Prior art keywords
- chitosan
- solution
- substrate
- precipitation
- catalyst
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 45
- 229910052751 metal Inorganic materials 0.000 title claims description 42
- 239000002184 metal Substances 0.000 title claims description 42
- 238000001556 precipitation Methods 0.000 title claims description 35
- 239000012811 non-conductive material Substances 0.000 title claims description 11
- 230000008569 process Effects 0.000 title claims description 11
- 150000002739 metals Chemical class 0.000 title claims description 4
- 229920001661 Chitosan Polymers 0.000 claims description 64
- 239000003054 catalyst Substances 0.000 claims description 43
- 238000000576 coating method Methods 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 19
- 238000006555 catalytic reaction Methods 0.000 claims description 14
- 150000003839 salts Chemical class 0.000 claims description 11
- 239000011347 resin Substances 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 5
- 239000001023 inorganic pigment Substances 0.000 claims description 4
- 229910000510 noble metal Inorganic materials 0.000 claims description 4
- 239000000243 solution Substances 0.000 description 44
- 239000000758 substrate Substances 0.000 description 44
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 38
- 239000007788 liquid Substances 0.000 description 26
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 25
- 229910052763 palladium Inorganic materials 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000000123 paper Substances 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 239000001119 stannous chloride Substances 0.000 description 7
- 235000011150 stannous chloride Nutrition 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 238000003486 chemical etching Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 206010070834 Sensitisation Diseases 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000002262 Schiff base Substances 0.000 description 3
- 150000004753 Schiff bases Chemical class 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 230000006196 deacetylation Effects 0.000 description 3
- 238000003381 deacetylation reaction Methods 0.000 description 3
- YPTUAQWMBNZZRN-UHFFFAOYSA-N dimethylaminoboron Chemical compound [B]N(C)C YPTUAQWMBNZZRN-UHFFFAOYSA-N 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920002101 Chitin Polymers 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 150000002940 palladium Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011505 plaster Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 231100000489 sensitizer Toxicity 0.000 description 2
- 230000001235 sensitizing effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 1
- CSDSSGBPEUDDEE-UHFFFAOYSA-N 2-formylpyridine Chemical compound O=CC1=CC=CC=N1 CSDSSGBPEUDDEE-UHFFFAOYSA-N 0.000 description 1
- CLUWOWRTHNNBBU-UHFFFAOYSA-N 3-methylthiopropanal Chemical compound CSCCC=O CLUWOWRTHNNBBU-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004923 Acrylic lacquer Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910002666 PdCl2 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- CNUDBTRUORMMPA-UHFFFAOYSA-N formylthiophene Chemical compound O=CC1=CC=CS1 CNUDBTRUORMMPA-UHFFFAOYSA-N 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012052 hydrophilic carrier Substances 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- VOEYXMAFNDNNED-UHFFFAOYSA-N metolcarb Chemical compound CNC(=O)OC1=CC=CC(C)=C1 VOEYXMAFNDNNED-UHFFFAOYSA-N 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/30—Activating or accelerating or sensitising with palladium or other noble metal
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/2086—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/22—Roughening, e.g. by etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/22—Roughening, e.g. by etching
- C23C18/24—Roughening, e.g. by etching using acid aqueous solutions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
- C23C18/285—Sensitising or activating with tin based compound or composition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/027—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/386—Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
- H05K3/387—Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive for electroless plating
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemically Coating (AREA)
- Catalysts (AREA)
- Conductive Materials (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
Foreliggende oppfinnelse vedrører en fremgangsmåte for katalysering ved strømfri utfelning av metaller på overflaten av et ikke-ledende materiale, f. eks plast, glass etc. Fremgangsmåten innbefatter oppfanging av et katalysatormetall som er sterkt involvert i adhesjonen av en metallisk avsetning, eller strømfri utfelning, til et substrat ved en slik strømfri utfelningsprosess. Oppfinnelsen angår spesielt en fremgangsmåte for oppfanging og fiksering av et katalysatormetall som katalytisk kjerne på overflaten av et substrat gjennom selektiv og sterk kjemisorbsjon av katalysatormetallet fra en oppløsning som inneholder katalysatormetallet ved innvirkning av kitosan eller et kitosanderivat som inneholdes i et forbehandlingsmiddel. The present invention relates to a method for catalysis by electroless precipitation of metals on the surface of a non-conductive material, e.g. plastic, glass, etc. The method includes capture of a catalyst metal that is strongly involved in the adhesion of a metallic deposit, or electroless precipitation, to a substrate by such an electroless deposition process. The invention relates in particular to a method for capturing and fixing a catalyst metal as a catalytic core on the surface of a substrate through selective and strong chemisorption of the catalyst metal from a solution containing the catalyst metal by the action of chitosan or a chitosan derivative contained in a pretreatment agent.
Ikke-ledende plaster, kjeramiske materialer, papir, glass, fibre, osv, kan utfelles ved strømfri plettering (i det følgende "utfelning"). For å initiere oksydasjon av et reduksjonsmiddel i en utfelningsoppløsning må imidlertid overflaten av et slikt ikke-ledende stoff som nevnt ovenfor underkastes en katalyseringsbehandling. Selv om en kjent klassisk katalyseringsbehandlingsmetode er en sensitiverende-aktiverende metode hvorved det anvendes et stannokloridbad og et palladiumkloridbad, anvendes det nå generelt en katalysator-akseleratormetode hvorved det brukes et stannoklorid-palladiumkloridbad og et svovelsyre (eller saltsyre) -bad som en katalyseringsbehandlingsmetode. Videre har en annen katalyseringsbehandlingsmetode i den senere tid blitt tatt i bruk, og herved blir et substrat neddykket i en oppløsning av et palladiumkompleks som har en sterk adsorberbarhet og blir deretter vasket med vann, fulgt av utfelling av palladiummetall med et reduksjonsmiddel slik som dimetylaminoboran. Non-conductive plasters, ceramic materials, paper, glass, fibres, etc., can be precipitated by electroless plating (hereinafter "precipitation"). In order to initiate oxidation of a reducing agent in a precipitation solution, however, the surface of such a non-conductive substance as mentioned above must be subjected to a catalysis treatment. Although a known classical catalyzing treatment method is a sensitizing-activating method using a stannous chloride bath and a palladium chloride bath, a catalyst accelerator method using a stannous chloride-palladium chloride bath and a sulfuric acid (or hydrochloric acid) bath is now generally used as a catalyzing treatment method. Furthermore, another catalysis treatment method has recently been adopted, whereby a substrate is immersed in a solution of a palladium complex which has a strong adsorbability and is then washed with water, followed by precipitation of palladium metal with a reducing agent such as dimethylaminoborane.
Forbehandlingstrinnet som er nyttig for katalyseringstrinnet er et etsetrinn som er nødvendig for å sikre en fuktbarhet (hydrofilisitet) i overflaten av et substrat for å fremme den fysikalske adsorbsjonen derpå av et katalysatormetall. I et slikt etsetrinn anvendes det nå i de fleste tilfeller en kromsyreetseoppløsning for plaster og lignende. I det kjemiske etsetrinnet blir substratoverflaten gitt en mikroskopisk oppruing for å lette fysikalsk oppfanging i dette av et katalysatormetall i katalyseringstrinnet samtidig som det sikres en forankringseffekt ved adhesjonen av den resulterende metallavsetningen, eller pletteringen, på substratet. I denne sammenheng er det kjemiske etsetrinnet et meget viktig trinn (se fig 1 og 2). The pretreatment step useful for the catalyzing step is an etching step which is necessary to ensure a wettability (hydrophilicity) in the surface of a substrate to promote the physical adsorption thereon of a catalyst metal. In such an etching step, a chromic acid etching solution for plaster and the like is now used in most cases. In the chemical etching step, the substrate surface is given a microscopic roughening to facilitate the physical capture therein of a catalyst metal in the catalysing step while ensuring an anchoring effect by the adhesion of the resulting metal deposit, or plating, on the substrate. In this context, the chemical etching step is a very important step (see figs 1 and 2).
Ifølge sensitivering-aktiveringsmetoden som er en totrinnsprosess, blir først et substrat neddykket i en oppløsning av stannoklorid i prosessens sensitiveringstrinn for å adsorbere Sn^4" på substratets overflate, og blir deretter behandlet med en oppløsning av palladiumklorid i prosessens aktiveringstrinn for å utfelle Pd-kjerner i samsvar med en redoks-reaksjon representert ved følgende ligning: According to the sensitization-activation method, which is a two-step process, a substrate is first immersed in a solution of stannous chloride in the sensitization step of the process to adsorb Sn^4" on the surface of the substrate, and is then treated with a solution of palladium chloride in the activation step of the process to precipitate Pd- nuclei in accordance with a redox reaction represented by the following equation:
Kjemikalier som skal benyttes ved sensitivering, dvs sensitiveringsmidler, har blitt studert fra langt tilbake i tiden, blant annet de som er beskrevet i patentlitteraturen fra omkring 1936 (US patent 2.063.034). Typen av sensitiveirngsmiddel blir ikke så ofte variert avhengig av typen av substrat og typen av strømfri utfelning. I sensitiveringstrinnet anvendes det en rekke forskjellige saltsyre-surgjorte oppløsninger av stannoklorid som alene benyttes om hovedbestanddel. Foreslåtte sensitiveirngsmidler andre enn stannoklorid innbefatter platinaklorid og titanklorid, som også kan anvendes i form av en saltsyre-surgjort oppløsning. På den annen side er en oppløsning av palladiumklorid (0,2-1 g/l, saltsyre: 5 ml/l) mest utbredt benyttet som aktiveringsoppløsning. Salter av edelmetaller slik som Pt, Au og Ag andre enn Pd er også effektive for en strømfri kobberutfelningsoppløsning. Chemicals to be used for sensitisation, i.e. sensitisers, have been studied from far back in time, including those described in the patent literature from around 1936 (US patent 2,063,034). The type of sensitizer is not often varied depending on the type of substrate and the type of electroless deposition. In the sensitizing step, a number of different hydrochloric acid-acidified solutions of stannous chloride are used, which are used alone as the main ingredient. Suggested sensitizing agents other than stannous chloride include platinum chloride and titanium chloride, which can also be used in the form of a hydrochloric acid acidified solution. On the other hand, a solution of palladium chloride (0.2-1 g/l, hydrochloric acid: 5 ml/l) is most widely used as an activation solution. Salts of noble metals such as Pt, Au and Ag other than Pd are also effective for an electroless copper precipitation solution.
Katalysatoren for anvendelse i katalysator-akseleratormetoden er en blandet oppløsning av stannoklorid og palladiumklorid med saltsyre, og denne er kommersielt tilgjengelig i form av en konsentrert oppløsning som vanligvis fortynnes med en stor mengde av en oppløsning av saltsyre for å klargjøres for bruk. Katalysator-akseleratormetoden utføres ved en behandlingstemperatur i området 30-40°C i en neddykkingstid fra 1 til 3 minutter. 5-10 vol-% svovelsyre eller saltsyre blir vanligvis benyttet som akselerator, og kan alternativt være en oppløsning av natriumhydroksyd eller ammoniakk. Rantell et al [kfr. A.Rantell, A. Holtzman; Plating, 61, 326 (1974)] har rapportert at den blandede oppløsningen av stannoklorid og palladiumklorid med saltsyre ikke er kolloidal, men en oppløsning av et komplekst salt som har sammensetningen SvPdjCli^ og oppløseliggjøres i nærvær av et overskudd av stannoklorid. Rantell et al trakk videre følgende slutning med hensyn til forløpet av en reaksjon i akseleratortrinnet. The catalyst for use in the catalyst-accelerator method is a mixed solution of stannous chloride and palladium chloride with hydrochloric acid, and this is commercially available as a concentrated solution which is usually diluted with a large amount of a solution of hydrochloric acid to prepare for use. The catalyst-accelerator method is carried out at a treatment temperature in the range of 30-40°C for an immersion time of 1 to 3 minutes. 5-10 vol-% sulfuric acid or hydrochloric acid is usually used as an accelerator, and can alternatively be a solution of sodium hydroxide or ammonia. Rantell et al [cf. A. Rantell, A. Holtzman; Plating, 61, 326 (1974)] has reported that the mixed solution of stannous chloride and palladium chloride with hydrochloric acid is not colloidal, but a solution of a complex salt having the composition SvPdjCli^ and is solubilized in the presence of an excess of stannous chloride. Rantell et al further drew the following conclusion with regard to the course of a reaction in the accelerator step.
I katalysatortrinnet blir Sn<2+->Pd<2+> komplekssaltet først adsorbert på overflaten av et substrat og det adsorberte komplekse saltet blir deretter hydrolysert når substratet vaskes med vann. Ved hydrolysen blir tinn utfelt i form av et Sn(OH)Cl-bunnfall, som koeksisterer med fireverdig tinn og palladiumsaltet. I det etterfølgende akseleratortrinnet blir det utfelte stannosaltet oppløst og deretter reagert med palladiumsaltet som allerede er frigjort for en tilstand av et komplekst salt, slik at det oppnås palladiummetall i samsvar med følgende redoks-reaksjon: In the catalyst step, the Sn<2+->Pd<2+> complex salt is first adsorbed on the surface of a substrate and the adsorbed complex salt is then hydrolyzed when the substrate is washed with water. During the hydrolysis, tin is precipitated in the form of a Sn(OH)Cl precipitate, which coexists with tetravalent tin and the palladium salt. In the subsequent accelerator step, the precipitated stannous salt is dissolved and then reacted with the palladium salt which has already been freed from a state of a complex salt, so that palladium metal is obtained in accordance with the following redox reaction:
Som et resultat av dette forblir palladiummetall og små mengder av toverdig og firverdig tinnsalter på substratets overflate. As a result, palladium metal and small amounts of divalent and tetravalent tin salts remain on the surface of the substrate.
De reaksjonsmekanismer som er involvert i sensitivering-aktiveringsmetoden og katalysator-akseleratormetoden som de konvensjonelle katalyseringsmetodene for strømfri utfelning foregår altså som omtalt i det ovenstående. Det vil fremgå at mange reaksjoner er involvert inntil katalytiske kjerner av et metall slik som palladium utfelles. Katalysatormetallet går følgelig tapt litt etter litt i form av forskjellige reaksjons-mellomprodukter som dannes ved de respektive reaksjoner hver gang det foretas vasking av et substrat med vann og lignende for hver slik reaksjon. Den endelige resten av katalysatormetall blir sterkt påvirket av mange faktorer slik som konsentrasjonene, pH-verdiene og temperaturene til oppløsninger som benyttes i respektive trinn, ned-dykkingsperiodene for slike oppløsninger samt betingelsene for avfetting og oppruing av substratoverflaten. Når således det endelige opptaket av katalysatormetall blir util-strekkelig blir adhesjonen av den resulterende metallavsetningen til substratet alltid ufullkommen slik at det forårsakes feil ved utfelning. The reaction mechanisms involved in the sensitizing-activation method and the catalyst-accelerator method, which are the conventional catalysis methods for electroless precipitation, therefore take place as discussed above. It will be seen that many reactions are involved until catalytic cores of a metal such as palladium are precipitated. The catalyst metal is consequently lost little by little in the form of various intermediate reaction products which are formed in the respective reactions every time a substrate is washed with water and the like for each such reaction. The final residue of catalyst metal is strongly influenced by many factors such as the concentrations, pH values and temperatures of solutions used in respective steps, the immersion periods for such solutions as well as the conditions for degreasing and roughening of the substrate surface. Thus, when the final uptake of catalyst metal becomes insufficient, the adhesion of the resulting metal deposit to the substrate is always imperfect so that errors in precipitation are caused.
De omtalte fenomenene skyldes ren "fysikalsk adsorbsjon" av katalyseringsreaksjon-mellomprodukter og metallkatalysator som er fanget i fordypninger og mikroporer i overflatedelen av substratet som er mikroskopisk oppruet ved kjemisk etsing. The mentioned phenomena are due to pure "physical adsorption" of catalysis reaction intermediates and metal catalyst that are trapped in depressions and micropores in the surface part of the substrate that is microscopically roughened by chemical etching.
Formålet med foreliggende oppfinnelse er å tilveiebringe en helt ny fremgangsmåte som kan muliggjøre oppnåelse av en sterkere adsorbsjonsbinding av en katalysator til overflaten av et substrat for oppnåelse av en stor forbedring av adhesjonen av en metallavsetning, eller utfelning, på substratet ved anvendelse av hverken nevnte sensitivering-aktiveringsmetode eller katalysator-akseleratormetode. The purpose of the present invention is to provide a completely new method which can enable the achievement of a stronger adsorption bond of a catalyst to the surface of a substrate in order to achieve a great improvement in the adhesion of a metal deposit, or precipitation, on the substrate by the use of neither mentioned sensitization -activation method or catalyst-accelerator method.
Ifølge foreliggende oppfinnelse er det således tilveiebragt en fremgangsmåte for katalysering ved strømfri utfelning av metaller på overflaten av et ikke-ledende materiale, f.eks plast, glass etc, og denne fremgangsmåten er kjennetegnet ved dannelse av en beleggfilm innbefattende kitosan eller et kitosanderivat på nevnte overflate, og deretter behandling av beleggfilmen med en oppløsning av et salt av et katalysatormetall for å bevirke kjemisorbsjon derav på nevnte beleggfilm. According to the present invention, a method is thus provided for catalysis by electroless precipitation of metals on the surface of a non-conductive material, e.g. plastic, glass, etc., and this method is characterized by the formation of a coating film including chitosan or a chitosan derivative on said surface, and then treating the coating film with a solution of a salt of a catalyst metal to effect chemisorption thereof on said coating film.
Fordelaktige og foretrukne trekk ved denne fremgangsmåten fremgår fra de medfølgende krav 2-4. Advantageous and preferred features of this method appear from the accompanying claims 2-4.
Ifølge denne fremgangsmåten muliggjør den sterke kjemisorbsjonen av katalysatormetallet på beleggfilmen, som omfatter kitosan eller kitosanderivatet, en lett utførelse av strømfri utfelning av metall på overflaten av det ikke-ledende materialet. According to this method, the strong chemisorption of the catalyst metal on the coating film, which comprises chitosan or the chitosan derivative, enables an easy performance of electroless precipitation of metal on the surface of the non-conductive material.
Kitosan (P-l,4-poly-D-glukosamin) som kan benyttes i foreliggende oppfinnelse oppnås ved deacetylering av kitin (P-l,4-poly-N-acetylglukosamin) som ekstraheres som en naturlig polymer fra skall og lignende fra krabber og lignende. Kitosan er en kationisk biopolymer som har aminogrupper, og er et nytt materiale som har nyttige egenskaper slik som fuktighetsretensjon, antifungusegenskaper og absorbsjonsevne for tunge metaller. Kitosan har en biologisk tilpasningsevne i likhet med kitin og anvendelse derav på det farmasøytiske og biokjemiske området slik som kunstig hud, blir derfor grundig studert. Man har kommet frem til foreliggende oppfinnelse ved å rette oppmerksomheten mot metallabsorbsjonsevnen til kitosan, spesielt en spesifikk absorbsjonsevne som kitosan har for edelmetaller slik som palladium, platina og rhodium. Foruten kitosan kan også kitosanderivater slik som karboksymetylkitosan og glykolkitosaner benyttes. Deacetyleirngsgraden for kitosan eller kitosanderivatet som skal benyttes i foreliggende oppfinnelse er helst minst 80 %, fortrinnsvis minst 90 %. Når det anvendes kitosan som har en deacetyleirngsgrad som er lavere enn 80 %, er det mulig at dets adsorbsjonsevne for et katalysatormetall slik som palladium, beleggfilmens hydrofilisitet, osv, blir uheldig påvirket. Chitosan (P-1,4-poly-D-glucosamine) which can be used in the present invention is obtained by deacetylation of chitin (P-1,4-poly-N-acetylglucosamine) which is extracted as a natural polymer from shell and the like from crabs and the like. Chitosan is a cationic biopolymer that has amino groups, and is a new material that has useful properties such as moisture retention, antifungal properties and absorbency for heavy metals. Chitosan has a biological adaptability similar to chitin and its application in the pharmaceutical and biochemical area, such as artificial skin, is therefore thoroughly studied. The present invention has been arrived at by directing attention to the metal absorption capacity of chitosan, in particular a specific absorption capacity that chitosan has for precious metals such as palladium, platinum and rhodium. In addition to chitosan, chitosan derivatives such as carboxymethyl chitosan and glycol chitosans can also be used. The degree of deacetylation for chitosan or the chitosan derivative to be used in the present invention is preferably at least 80%, preferably at least 90%. When chitosan having a degree of deacetylation lower than 80% is used, it is possible that its adsorption capacity for a catalyst metal such as palladium, the hydrophilicity of the coating film, etc., are adversely affected.
Eksempler på det ikke-ledende materialet som skal benyttes som substrat i foreliggende oppfinnelse er plaster, kjeramiske materialer, papir, glass og fibre, som ikke kan utfelles direkte ved elektroutfelning. Examples of the non-conductive material to be used as a substrate in the present invention are plaster, ceramic materials, paper, glass and fibres, which cannot be deposited directly by electrodeposition.
Ved dannelse av en strømfri utfelning av metall på overflaten av det ikke-ledende materiale ifølge foreliggende oppfinnelse, blir det ikke-ledende materialets overflate belagt med en behandlingsvæske som inneholder i det minste kitosan eller kitosanderivatet (i det følgende for enkelthets skyld betegnet "kitosan") for dannelse av en hydrofil beleggfilm på det ikke-ledende materialets overflate før trinnene med katalysering og strømfri plettering. Kitosan som befinner seg i den således dannede hydrofile beleggfilmen vil på kjemisk måte adsorbere, oppfange og fiksere et katalysatormetall slik som palladium. Ved det strømfrie utfelningstrinnet kan det følgelig oppnås en slik tilstand at en tilstrekkelig mengde av en aktiv katalysator skapes på substratoverflaten på hvilken den strømfrie utfelning som har en god adhesjon til substratet kan dannes på ensartet og effektiv måte (fig 3). When forming an electroless precipitation of metal on the surface of the non-conductive material according to the present invention, the surface of the non-conductive material is coated with a treatment liquid containing at least chitosan or the chitosan derivative (hereinafter for the sake of simplicity referred to as "chitosan" ) to form a hydrophilic coating film on the non-conductive material's surface prior to the steps of catalysis and electroless plating. Chitosan which is in the thus formed hydrophilic coating film will chemically adsorb, capture and fix a catalyst metal such as palladium. In the electroless precipitation step, it is consequently possible to achieve such a condition that a sufficient amount of an active catalyst is created on the substrate surface on which the electroless precipitation which has a good adhesion to the substrate can be formed in a uniform and efficient manner (fig 3).
Kitosankonsentrasjonen i behandlingsvæsken som inneholder kitosan er helst i området 0,01-1 %, fortrinnsvis i området 0,05-0,2 %. Når den senkes under 0,01 % vil konsentrasjonseffekten av kitosantilsetningen bli såpass nedsatt at det ikke oppnås en effektiv oppfanging av katalysatoren. På den annen side, når den overskrider 1 % vil effekten av kitosantilsetningen bli en metning slik at dette nedsetter behandlingsvæskens belegningseffekt. The chitosan concentration in the treatment liquid containing chitosan is preferably in the range 0.01-1%, preferably in the range 0.05-0.2%. When it is lowered below 0.01%, the concentration effect of the chitosan addition will be so reduced that effective capture of the catalyst is not achieved. On the other hand, when it exceeds 1%, the effect of the chitosan addition will become a saturation so that this reduces the coating effect of the treatment liquid.
I tillegg til kitosan kan den kitosanholdige behandlingsvæsken inneholde en fortynnet syre slik som eddiksyre, maursyre eller saltsyre. Den fortynnede syren kan benyttes for å oppløse kitosan i behandlingsvæsken. Konsentrasjonen av den fortynnede syren beregnes på basis av ekvivalens til de frie aminogruppene i den kitosanforbindelsen som skal benyttes. Videre kan behandlingsvæsken i enkelte tilfeller blandes med en harpik som gir en utmerket adhesjon til substratet, skjønt dette avhenger av substrattypen. En hvilken som helst harpiks kan anvendes forsåvidt som den gir god kompatibilitet eller blandbarhet med kitosan. Eksempler på harpiksen som kan tilsettes til behandlingsvæsken innbefatter vannoppløselige harpikser slik som polyvinylalkohol og hydroksyetyl-cellulose; vannoppløseliggjorte harpikser av en alkyd-, polyester-, akryl-, epoksyharpiks eller lignende harpiks; og emulsjoner av en vinylacetat-, akrylharpiks eller lignende harpiks. Kitosan i seg selv kan tverrbindes med polyetylenglykoldiglysidyleter eller lignende for å gjøre beleggfilmen så stabil at katalyseringsreaksjonen kan forsterkes. Videre kan i visse tilfeller en rekke forskjellige uorganiske pigmenter tilsettes til behandlingsvæsken for å oppnå en fastere adhesjon til den resulterende strømløse utfelningen. I dette tilfellet er spesielt overflaten av beleggfilmen som er dannet ved påføring av behandlingsvæsken mikroskopisk ujevn slik at det oppnås en forankringseffekt i løpet av den strømfrie utfelningsdannelsen for derved ytterligere å bidra til en forbedring i filmens adhesjon til den strømfrie utfelningen, og dermed representere et alternativ til det kjemiske etsetrinnet i de konvensjonelle prosessene. Nyttige eksempler på uorganiske pigmenter er alurniniumsilikat, titanoksyd og bariumsulfat. Mengden av uorganisk pigment kan være i området 10-80 %, fortrinnsvis 50-70 %, basert på faststoffinneholdet. Når mengden overskrider 85 % blir adhesjonen for det kitosanholdige behandlingsmaterialet til substratet i seg selv nedsatt. Nesten alt resterende materiale er vann og et organisk oppløsningsmiddel som metanol, etanol, isopropanol og/eller etylacetat. Et slikt oppløsningsmiddel er effektivt med henblikk på å forbedre forskjellige harpiksers kompatibilitet i tilfelle slike materialer tilsettes, idet de gir en viss erosjon av substratet og hurtig tørking av behandlingsvæsken etter påføring derav. I tillegg kan et hydrofilt overflateregulerende middel etter behov tilsettes til behandlingsvæsken for å gi beleggfilmen som er dannet av nevnte væske en passende grad av utjevning og hydrofilisitet. Eksempler på overflateregulerende midler er perfluoralkyletylenoksyder. Det overflateregulerende midlet kan tilsettes til en mengde i området 0,05-1 %, fortrinnsvis 0,1-0,5 %, basert på innholdet av fast kitosan. In addition to chitosan, the chitosan-containing treatment liquid may contain a dilute acid such as acetic acid, formic acid or hydrochloric acid. The diluted acid can be used to dissolve chitosan in the treatment liquid. The concentration of the diluted acid is calculated on the basis of equivalence to the free amino groups in the chitosan compound to be used. Furthermore, the treatment liquid can in some cases be mixed with a resin that gives excellent adhesion to the substrate, although this depends on the type of substrate. Any resin can be used as long as it provides good compatibility or miscibility with chitosan. Examples of the resin that can be added to the treatment liquid include water-soluble resins such as polyvinyl alcohol and hydroxyethyl cellulose; water-solubilized resins of an alkyd, polyester, acrylic, epoxy or similar resin; and emulsions of a vinyl acetate, acrylic resin or similar resin. Chitosan itself can be cross-linked with polyethylene glycol diglycidyl ether or the like to make the coating film so stable that the catalysis reaction can be enhanced. Furthermore, in certain cases, a number of different inorganic pigments can be added to the treatment liquid to achieve a firmer adhesion to the resulting electroless deposit. In this case, in particular, the surface of the coating film formed by the application of the treatment liquid is microscopically uneven so that an anchoring effect is achieved during the electroless deposition formation to thereby further contribute to an improvement in the adhesion of the film to the electroless deposition, thus representing an alternative to the chemical etching step in the conventional processes. Useful examples of inorganic pigments are aluminum silicate, titanium oxide and barium sulphate. The amount of inorganic pigment may be in the range of 10-80%, preferably 50-70%, based on the solids content. When the amount exceeds 85%, the adhesion of the chitosan-containing treatment material to the substrate itself is reduced. Almost all remaining material is water and an organic solvent such as methanol, ethanol, isopropanol and/or ethyl acetate. Such a solvent is effective in improving the compatibility of various resins in case such materials are added, providing some erosion of the substrate and rapid drying of the treatment liquid after application thereof. In addition, a hydrophilic surface regulating agent can be added to the treatment liquid as needed to give the coating film formed from said liquid an appropriate degree of leveling and hydrophilicity. Examples of surface regulating agents are perfluoroalkylethylene oxides. The surface regulating agent can be added to an amount in the range of 0.05-1%, preferably 0.1-0.5%, based on the solid chitosan content.
Nevnte behandlingsvæske som inneholder kitosan kan påføres på substratoverflaten ved hjelp av en konvensjonell påføringsmetode slik som spraybelegging, valsebelegging, pensling, eller dyppbelegging for dannelse av en beleggfilm som kan tjene som en hydrofil bærer for fiksering av katalysatormetallet. Said treatment liquid containing chitosan can be applied to the substrate surface by a conventional application method such as spray coating, roller coating, brushing, or dip coating to form a coating film that can serve as a hydrophilic carrier for fixing the catalyst metal.
Etter dannelse av den katalysatormetallfikserende bærer på substratets overflate utføres trinnet med fiksering av katalysatormetallet gjennom katalyseringsreaksjonen fulgt av trinnet med strømfri utfelning. Det kan således på effektiv måte oppnås en strømfri utfelning som har en god adhesjon til substratet. Videre er det ifølge oppfinnelsen mulig bare å forbehandle en del av overflaten av det ikke-ledende materialet som substrat med den kitosanholdige behandlingsvæsken. I dette tilfellet blir katalysatoren selektivt dannet bare på den forbehandlede delen(e) av substratoverflaten og derved muliggjøres effektiv utførelse av partiell strømløs utfelning i det etterfølgende trinnet. Ifølge foreliggende oppfinnelse kan dessuten polyesterharpikser slik som polyetylentereftalat, konstruksjons-plaster, forskjellige legeringer, osv, som hittil har vært vanskelig å utfelle strørnfritt, utfelles strørnfritt på tilfredsstillende måte. After formation of the catalyst metal-fixing carrier on the surface of the substrate, the step of fixing the catalyst metal through the catalyzing reaction is carried out followed by the step of electroless precipitation. An electroless deposition which has good adhesion to the substrate can thus be effectively achieved. Furthermore, according to the invention, it is only possible to pre-treat part of the surface of the non-conductive material as substrate with the chitosan-containing treatment liquid. In this case, the catalyst is selectively formed only on the pretreated part(s) of the substrate surface, thereby enabling efficient performance of partial electroless precipitation in the subsequent step. According to the present invention, moreover, polyester resins such as polyethylene terephthalate, construction plastics, various alloys, etc., which have hitherto been difficult to precipitate free of particles, can be precipitated without particles in a satisfactory manner.
Videre, selv om den kitosanholdige behandlingsvæsken påføres direkte på overflaten av det ikke-ledende substratmaterialet i den foregående prosedyren, kan i visse tilfeller et underbelegg påføres på substratoverflaten før påføring derpå av behandlingsvæsken, idet et hvilket som helst underbelegg som har den beste adhesjonen til substratet kan benyttes uten å ta i betrakning dets kompatibilitet med kitosan som nevnt ovenfor, skjønt antall trinn forøkes. Eksempler på underbelegg innbefatter akryllakk, akrylbelegg, og uretan-behandlede akrylbelegg som har utmerket adhesjon til plaster slik som akrylharpikser, ABS, polystyren, polykarbonater, polypropylen og polyestere. Furthermore, although the chitosan-containing treatment liquid is applied directly to the surface of the non-conductive substrate material in the preceding procedure, in certain cases an undercoat may be applied to the substrate surface before applying the treatment liquid thereon, any undercoat having the best adhesion to the substrate can be used without considering its compatibility with chitosan as mentioned above, although the number of steps is increased. Examples of undercoats include acrylic lacquers, acrylic coatings, and urethane-treated acrylic coatings that have excellent adhesion to plastics such as acrylic resins, ABS, polystyrene, polycarbonates, polypropylene, and polyesters.
I katalyseringsreaksjonstrinnet blir substratet med beleggfilmen dannet som katalysatormetallfikserende bærer inneholdende kitosan på overflaten derav på enkel måte neddykket i en saltsyre-, salpetersyre- eller eddiksyre-surgjort oppløsning av hydroklorid, nitrat eller acetat av et edelmetall slik som Pd, Pt, Au eller Ag, eller lignende i en kort tidsperiode for fullstendig fiksering av katalysatorkjerner kun i løpet av et trinn hvilket er forskjellig fra de ovenfor omtalte konvensjonelle sensitivering-aktiverings- eller katalysator-akseleratormetodene. Det representative edelmetallsaltet er palladiumklorid som kan benyttes i form av en oppløsning (palladiumklorid: 0,2-1 g/l, saltsyre: 5 ml/l) slik som en aktiveringsoppløsning som benyttet i sensitivering-aktiveringsmetoden. Kjemisorbsjonen av palladium på den katalysatormetallfikserende bæreren inneholdende kitosan antas å skyldes koordineringsbindinger som illustrert på fig 4 [Baba et al; Bull. Chem. Soc. Jpn. 66, 2915 (1993)]. Kjemisorbsjonen kan hindre palladium i å falle av bæreren i det etterfølgende strømfrie utfelningstrinnet. Videre kan de frie aminogruppene i kitosan reageres med et aldehyd slik som formaldehyd, salisylaldehyd, glutaraldehyd, pyridin-2-aldehyd, tiofen-2-aldehyd eller 3-(metyltio)propionaldehyd for dannelse av en Schiff-base, som deretter kan reduseres med natriumbortetrahydrid eller lignende for dannelse av en katalysatormetallfikserende bærer på hvilken katalysatormetallet kan dannes på en mer selektiv og sterkere måte, skjønt det avhenger av typen av katalysatormetall (se fig 5). In the catalysis reaction step, the substrate with the coating film formed as a catalyst metal-fixing support containing chitosan on its surface is simply immersed in a hydrochloric, nitric or acetic acid-acidified solution of hydrochloride, nitrate or acetate of a noble metal such as Pd, Pt, Au or Ag, or the like in a short period of time for complete fixation of catalyst cores only during one step which is different from the above-mentioned conventional sensitizing-activation or catalyst-accelerator methods. The representative noble metal salt is palladium chloride which can be used in the form of a solution (palladium chloride: 0.2-1 g/l, hydrochloric acid: 5 ml/l) such as an activation solution used in the sensitization-activation method. The chemisorption of palladium on the catalyst metal-fixing support containing chitosan is believed to be due to coordination bonds as illustrated in Fig. 4 [Baba et al; Bull. Chem. Soc. Japan 66, 2915 (1993)]. The chemisorption can prevent the palladium from falling off the support in the subsequent electroless precipitation step. Furthermore, the free amino groups in chitosan can be reacted with an aldehyde such as formaldehyde, salicylaldehyde, glutaraldehyde, pyridine-2-aldehyde, thiophene-2-aldehyde or 3-(methylthio)propionaldehyde to form a Schiff base, which can then be reduced by sodium boron tetrahydride or the like to form a catalyst metal fixing support on which the catalyst metal can be formed in a more selective and stronger manner, although it depends on the type of catalyst metal (see Fig. 5).
Deretter blir substratet med nevnte katalysatormetallfikserende bærer inneholdende kitosan og med katalysatormetallet dannet derpå neddykket i et strørnfritt utfelningsbad av Cu, Ni, Co, Pd, Au eller en legering derav, hvoretter den strømfrie utfelningen som har en utmerket adhesjon til substratet kan oppnås kontinuerlig ved den reduserende virkning av de fikserte katalysatorkjernene som bare befinner seg på den eller de deler av substratoverflaten hvor den katalysatormetallfikserende bæreren forefinnes. Det ikke-ledende materialet kan således metalliseres i overensstemmelse med det ønskede formål. Next, the substrate with said catalyst metal-fixing support containing chitosan and with the catalyst metal formed is then immersed in a particle-free precipitation bath of Cu, Ni, Co, Pd, Au or an alloy thereof, after which the electroless precipitation which has excellent adhesion to the substrate can be obtained continuously by the reducing effect of the fixed catalyst cores located only on the part or parts of the substrate surface where the catalyst metal fixing support is present. The non-conductive material can thus be metallized in accordance with the desired purpose.
Ifølge sensitivering-aktiveringsmetoden, katalysator-akseleratormetoden, osv som katalyseringsmetoder i de konvensjonelle strømfrie pletteringsprosessene, dannes det et katalysatormetall på overflaten av et substrat som er mikroskopisk oppruet ved kjemisk etsing gjennom en rekke reaksjonstrinn som bevirkes på overflaten av substratet og ved hjelp av fysikalsk adsorbsjon av reaksjonsproduktet på substratoverflaten, med det resultat at resten av katalysatormetallet er så ustabil at den i mange tilfeller forårsaker uheldige effekter slik som adhesjonsfeil under forløpet for utfelningsdannelsen. I motsetning til dette blir det ifølge foreliggende katalyseringsprosess påført en behandlingsvæske som inneholder kitosan i form av et belegg på overflaten av et substrat til dannelse av en slags katalysatormetallfikserende bærer på hvilken katalysatormetallet bæres på sterk måte ved kjemisorbsjon derav hvilket således muliggjør dannelse ved strømfri utfelning av en ensartet metallavsetning med god adhesjon. Videre bæres katalysatoren kun på den eller de forbehandlede delene av substratoverflaten hvorpå behandlingsvæsken er påført slik at den partielle strømfrie utfelningen kan oppnås. Videre kan kjemisk etsing unngås slik at antall trinn kan reduseres og slik at awanns-behandlingen kan forenkles, og dette bidrar sterkt til en forbedring hva angår miljø-problemer. Fig 1 er et flytskjema for en konvensjonell strømfri utfelningsprosess omfattende katalysering ifølge sensitivering-aktiveringsmetoden; Fig 2 er et flytskjema for en konvensjonell strørnfri utfelningsprosess som omfatter katalysering ifølge katalysator-akseleratormetoden; Fig 3 er et flytskjema for en strørnfri utfelningsprosess hvor katalysering utføres gjennom dannelsen av en katalysatormetallfikserende bærer inneholdende kitosan ifølge foreliggende oppfinnelse; Fig 4 er en illustrasjon som viser adsorbsjonsmekanismen for palladium ved innvirkning av kitosan; og Fig 5 er en illustrasjon som viser adsorbsjonsmekanismen for palladium ved innvirkning av et kitosanderivat. According to the sensitizing-activation method, catalyst-accelerator method, etc. as catalyzing methods in the conventional electroless plating processes, a catalyst metal is formed on the surface of a substrate that is microscopically roughened by chemical etching through a series of reaction steps effected on the surface of the substrate and by means of physical adsorption of the reaction product on the substrate surface, with the result that the rest of the catalyst metal is so unstable that in many cases it causes adverse effects such as adhesion failure during the course of the precipitation formation. In contrast, according to the present catalysis process, a treatment liquid containing chitosan is applied in the form of a coating on the surface of a substrate to form a kind of catalyst metal-fixing support on which the catalyst metal is strongly supported by chemisorption thereof, which thus enables the formation by electroless precipitation of a uniform metal deposit with good adhesion. Furthermore, the catalyst is only carried on the pre-treated part or parts of the substrate surface on which the treatment liquid has been applied so that the partial electroless precipitation can be achieved. Furthermore, chemical etching can be avoided so that the number of steps can be reduced and so that the waste treatment can be simplified, and this greatly contributes to an improvement in terms of environmental problems. Fig 1 is a flow diagram of a conventional electroless precipitation process comprising catalysis according to the sensitizing-activation method; Fig 2 is a flow chart for a conventional particle-free precipitation process comprising catalysis according to the catalyst-accelerator method; Fig 3 is a flowchart for a particle-free precipitation process where catalysis is carried out through the formation of a catalyst metal-fixing carrier containing chitosan according to the present invention; Fig 4 is an illustration showing the adsorption mechanism for palladium under the influence of chitosan; and Fig 5 is an illustration showing the adsorption mechanism for palladium under the influence of a chitosan derivative.
Foretrukne utførelser Preferred designs
Eksempel 1 Example 1
Kitosan (SK-10 fremstilt av San-Ei Chemical Industries, Ltd) ble oppløst i en 1 % oppløsning av eddiksyre for dannelse av en 1 vekt/vol % oppløsning av kitosan, som deretter ble fortynnet med metanol for oppnåelse av en forbehandlingsvæske inneholdende 0,5 % kitosan. Forbehandlingsvæsken ble påført på japansk papir (300 mm<2 >morbærtrepapir og produsert av Dai-Inshu Seishi Kyogyo Kumiai) ved anvendelse av en spray eller en pensel, og deretter tørkes under tvungen luftbevegelse ved 50°C i 1 time. Chitosan (SK-10 manufactured by San-Ei Chemical Industries, Ltd) was dissolved in a 1% solution of acetic acid to form a 1% w/v solution of chitosan, which was then diluted with methanol to obtain a pretreatment liquid containing 0 .5% chitosan. The pretreatment liquid was applied to Japanese paper (300 mm<2 >mulberry wood paper and produced by Dai-Inshu Seishi Kyogyo Kumiai) using a spray or a brush, and then dried under forced air movement at 50°C for 1 hour.
Det belagte papiret ble deretter neddykket i en oppløsning av palladiumklorid (PdCl2-2H2O: 0,3 g/l, saltsyre: 5 ml/l) i 30 minutter, deretter vasket med vann, og deretter underkastet strømfri kobberutfelning i et utfelningsbad med en sammensetning som vist i tabell 1. The coated paper was then immersed in a solution of palladium chloride (PdCl2-2H2O: 0.3 g/l, hydrochloric acid: 5 ml/l) for 30 minutes, then washed with water, and then subjected to electroless copper precipitation in a precipitation bath with a composition as shown in Table 1.
pH 12,5, væsketemperatur: 60°C omrøring med luft. pH 12.5, liquid temperature: 60°C stirring with air.
Som et resultat kunne det oppnås en jevn kobberavsetning på hele overlfaten av det japanske papiret i tifelle for påføring av forbehandlingsoppløsningen på hele papiroverflaten, og bare på en del av overflaten av det japanske papiret i tilfelle for delvis påføring av forbehandlingsoppløsningen på papiroverflaten. As a result, uniform copper deposition could be achieved on the entire surface of the Japanese paper in the case of applying the pretreatment solution to the entire paper surface, and only on a part of the surface of the Japanese paper in the case of partially applying the pretreatment solution to the paper surface.
Eksempel 2 Example 2
Kitosan (SK-100, Lot. 414-05; produsert av San-Ei Chemical Industries, Ltd) ble oppløst i en 1 % oppløsning av eddiksyre for dannelse av en 1 vekt/vol % oppløsning av kitosan som deretter ble blandet med 1 vol/vol % av en oppløsning av salicylaldehyd (produsert av Kishida Chemical Co., Ltd) fortynnet med en 10-gangers mengde av metanol for dannelse av en Schiff-base, og ytterligere fortynnet med metanol etter 1 time for å oppnå en behandlingsvæske inneholdende 0,5 % kitosan. Chitosan (SK-100, Lot. 414-05; manufactured by San-Ei Chemical Industries, Ltd) was dissolved in a 1% solution of acetic acid to form a 1 w/v% solution of chitosan which was then mixed with 1 vol /vol% of a solution of salicylaldehyde (manufactured by Kishida Chemical Co., Ltd) diluted with a 10-fold amount of methanol to form a Schiff base, and further diluted with methanol after 1 hour to obtain a treatment liquid containing 0 .5% chitosan.
På den annen side ble et aluminiumoksyd-kjeramikksubstrat (99,9 %) utsatt to ganger for ultralydrensing med destillert vann i 5 minutter, videre utsatt for ultralydrensing med metanol, og deretter tørket for oppnåelse av et renset teststykke. On the other hand, an alumina ceramic substrate (99.9%) was subjected twice to ultrasonic cleaning with distilled water for 5 minutes, further subjected to ultrasonic cleaning with methanol, and then dried to obtain a cleaned test piece.
Teststykket ble neddykket i ovennevnte behandlingsvæske og deretter tørket ved 120°C i 30 minutter. Deretter ble teststykket neddykket i en 0,5 % oppløsning av dimetylaminoboran for å redusere Schiff-basen med denne, deretter neddykket i en oppløsning av palladiumklorid (PdCl2-2H20: 0,03 g/l, saltsyre: 5 ml/l) i 2 minutter, deretter vasket med vann, og tørket. Ved dette trinnet ble palladiumadsorbsjonen målt ifølge nedenstående prosedyre. 100 ml av en 1 % oppløsning av salpetersyre ble tilsatt til teststykket og oppvarmet for å oppløse palladium som derved ble fjernet fra teststykket. Oppløsningen ble ytterligere oppvarmet for å bevirke fordampning, deretter plassert i en 50 ml gradert målesylinder hvori destillert vann var anbragt opp til den merkede linjen på sylinderen. Den resulterende oppløsningen ble anbragt i et grafittpyrolyserør og forbrent ved en forbrenningstemperatur på 2600°C i 3 sekunder under anvendelse av en spektroskopisk atomabsorbsjonsanalysator (AA-670G, produsert av Shimadzu Seisakusho Ltd) og en grafittovnforstøver (Model GFA-4) for å måle absorbansen av palladium hvorfra palladiumadsorbsjonen ble beregnet. Som et resultat av dette ble det funnet at mengden av adsorbert palladium på katalysatormetallifkseringsbæreren inneholdende kitosan var 11,5 ug per teststykke i dette eksemplet. The test piece was immersed in the above treatment liquid and then dried at 120°C for 30 minutes. Next, the test piece was immersed in a 0.5% solution of dimethylaminoborane to reduce the Schiff base with it, then immersed in a solution of palladium chloride (PdCl2-2H20: 0.03 g/l, hydrochloric acid: 5 ml/l) for 2 minutes, then washed with water and dried. At this step, the palladium adsorption was measured according to the procedure below. 100 ml of a 1% solution of nitric acid was added to the test piece and heated to dissolve the palladium which was thereby removed from the test piece. The solution was further heated to cause evaporation, then placed in a 50 ml graduated measuring cylinder in which distilled water was placed up to the marked line on the cylinder. The resulting solution was placed in a graphite pyrolysis tube and combusted at a combustion temperature of 2600°C for 3 seconds using a spectroscopic atomic absorption analyzer (AA-670G, manufactured by Shimadzu Seisakusho Ltd) and a graphite furnace atomizer (Model GFA-4) to measure the absorbance of palladium from which the palladium adsorption was calcd. As a result, it was found that the amount of adsorbed palladium on the catalyst metal fixation support containing chitosan was 11.5 µg per test piece in this example.
Deretter ble et annet teststykke neddykket i behandlingsvæsken og deretter i opp-løsningen av dimetylaminoboran på samme måte som beskrevet ovenfor, videre neddykket i oppløsningen av palladiumklorid i 2 minutter, deretter vasket, og tørket og ble underkastet strømfri nikkelutfelningi et utfelningsbad med en sammensetning som vist i tabell 2 i 30 minutter for oppnåelse av en jevn nikkelutfelning. Next, another test piece was immersed in the treatment liquid and then in the solution of dimethylaminoborane in the same manner as described above, further immersed in the solution of palladium chloride for 2 minutes, then washed, and dried and subjected to electroless nickel precipitation in a precipitation bath with a composition as shown in table 2 for 30 minutes to achieve a uniform nickel precipitation.
Eksempel 3 Example 3
Kitosan (SK-100, Lot. 802-05; produsert av San-Ei Chemical Industries, Ltd) ble oppløst i en 1 % oppløsning av eddiksyre for dannelse av en 1 vekt/vol % oppløsning av kitosan. På den annen side ble 20 deler titanoksyd og 80 deler aluminiumsilikat blandet med og dispergert i 100 deler av en akrylharpiks av epoksyherdetypen (produsert av Toray Industries, Inc) for oppnåelse av en oppløsning som deretter ble fortynnet med et blandet oppløsningsmiddel av metanol/isopropylalkohol/etylacetat/butylcellosolve (80:12:3:5) for dannelse av en 20 vekt/vol % oppløsning. Denne oppløsningen ble blandet med ovennevnte oppløsning av kitosan i et forhold av 10:1 for oppnåelse av en forbehandlingsvæske inneholdende kitosan som aktiv bestanddel. Chitosan (SK-100, Lot. 802-05; manufactured by San-Ei Chemical Industries, Ltd) was dissolved in a 1% solution of acetic acid to form a 1% w/v solution of chitosan. On the other hand, 20 parts of titanium oxide and 80 parts of aluminosilicate were mixed with and dispersed in 100 parts of an epoxy curing type acrylic resin (manufactured by Toray Industries, Inc) to obtain a solution which was then diluted with a mixed solvent of methanol/isopropyl alcohol/ ethyl acetate/butyl cellosolve (80:12:3:5) to form a 20% w/v solution. This solution was mixed with the above solution of chitosan in a ratio of 10:1 to obtain a pretreatment liquid containing chitosan as an active ingredient.
Et prøvestykke av ABS-harpiks (50 mm x 150 mm x 2,0 mm-t) ble fremstilt som et substrat, tørket med et klede fuktet med isopropylalkohol for avfetting og rensing, og prøvestykket ble deretter spraybelagt med en oppløsning fremstilt ved tilsetning av 0,5 deler av et epoksyherdemiddel (DENACOL EX-850 fremstilt av Nagase Chemicals, Ltd) til 100 deler av ovennevnte forbehandlingsvæske og fortynning av den resulterende blanding med en 5-gangers mengde av et blandet oppløsningsmiddel av butylacetat/etylacetat/n-butanol/toluen/butylcellusolve (20:25:20:25:10) fulgt av tørking ved 60°C i 1 time. A specimen of ABS resin (50 mm x 150 mm x 2.0 mm-t) was prepared as a substrate, dried with a cloth moistened with isopropyl alcohol for degreasing and cleaning, and the specimen was then spray-coated with a solution prepared by adding 0.5 parts of an epoxy curing agent (DENACOL EX-850 manufactured by Nagase Chemicals, Ltd) to 100 parts of the above pretreatment liquid and diluting the resulting mixture with a 5-fold amount of a mixed solvent of butyl acetate/ethyl acetate/n-butanol/ toluene/butylcellosolve (20:25:20:25:10) followed by drying at 60°C for 1 hour.
Det belagte ABS-harpiksstykket ble neddykket i en oppløsning av palladiumklorid The coated ABS resin piece was immersed in a palladium chloride solution
(PdCl2*2H20: 0,25 g/l, saltsyre: 5 ml/l) i 3 minutter, deretter vasket med vann, så utfelt i et strørnfritt kobberutfelningsbad med en sammensetning som vist i tabell 1 i 30 minutter, og deretter videre plettert i et strørnfritt nikkelutfelningsbad med en sammensetning som (PdCl2*2H20: 0.25 g/l, hydrochloric acid: 5 ml/l) for 3 minutes, then washed with water, then precipitated in a particle-free copper precipitation bath with a composition as shown in Table 1 for 30 minutes, and then further plated in a particle-free nickel precipitation bath with a composition which
vist i tabell 3 i 5 minutter til oppnåelse av en jevn kobber/nikkel-utfelning med en tykkelse i området 1,5-2,0 nm. shown in Table 3 for 5 minutes to obtain a uniform copper/nickel deposit with a thickness in the range of 1.5-2.0 nm.
Det ble fastslått at den således oppnådde kobber/nikkel-utfelningen hadde et godt ut-seende og en utmerket adhesjon i forskjellige egenskapstester som vist i tabell 4. It was determined that the copper/nickel precipitate thus obtained had a good appearance and an excellent adhesion in various property tests as shown in Table 4.
Når det gjelder adhesjonen ble et 10 mm x 10 mm areal av kobber/nikkel-utfelningen krysskåret i 100 små firkanter hver med en lengde på 1 mm og en bredde på 1 mm, og et cellofanklebebånd ble festet til det krysskårede arealet av utfelningen og deretter revet av for å bedømme adhesjonen basert på (antall gjenværende firkanter av utfelning/totalt antall firkanter). As for the adhesion, a 10 mm x 10 mm area of the copper/nickel deposit was cross-cut into 100 small squares each with a length of 1 mm and a width of 1 mm, and a cellophane adhesive tape was attached to the cross-cut area of the deposit and then torn off to judge the adhesion based on (number of remaining squares of precipitation/total number of squares).
Claims (4)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33109794A JP3022226B2 (en) | 1994-12-08 | 1994-12-08 | Catalytic method in electroless plating |
Publications (3)
Publication Number | Publication Date |
---|---|
NO950563D0 NO950563D0 (en) | 1995-02-15 |
NO950563L NO950563L (en) | 1996-06-10 |
NO310627B1 true NO310627B1 (en) | 2001-07-30 |
Family
ID=18239827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO19950563A NO310627B1 (en) | 1994-12-08 | 1995-02-15 | Process for catalyzing by stream-free precipitation of metals on the surface of a non-conductive material |
Country Status (19)
Country | Link |
---|---|
US (1) | US5660883A (en) |
JP (1) | JP3022226B2 (en) |
KR (1) | KR960023235A (en) |
CN (1) | CN1124301A (en) |
AU (1) | AU699029B2 (en) |
BE (1) | BE1008679A3 (en) |
CA (1) | CA2142683C (en) |
CH (1) | CH689394A5 (en) |
DE (1) | DE19506551C2 (en) |
DK (1) | DK172134B1 (en) |
FI (1) | FI950446A (en) |
FR (1) | FR2727984B1 (en) |
GB (1) | GB9502096D0 (en) |
IT (1) | IT1281942B1 (en) |
NL (1) | NL9500293A (en) |
NO (1) | NO310627B1 (en) |
RU (1) | RU2126459C1 (en) |
SE (1) | SE514289C2 (en) |
TW (1) | TW254971B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6046107A (en) * | 1998-12-17 | 2000-04-04 | Industrial Technology Research Institute | Electroless copper employing hypophosphite as a reducing agent |
US6703186B1 (en) | 1999-08-11 | 2004-03-09 | Mitsuboshi Belting Ltd. | Method of forming a conductive pattern on a circuit board |
JP2001236885A (en) * | 2000-02-22 | 2001-08-31 | Matsushita Electric Ind Co Ltd | Plasma display panel and its manufacturing method |
JP4897165B2 (en) * | 2000-09-27 | 2012-03-14 | 名古屋メッキ工業株式会社 | Method for producing metal-plated organic polymer fiber |
JP2002348673A (en) * | 2001-05-24 | 2002-12-04 | Learonal Japan Inc | Electroless copper plating method without using formaldehyde, and electroless copper plating solution therefor |
US7223694B2 (en) * | 2003-06-10 | 2007-05-29 | Intel Corporation | Method for improving selectivity of electroless metal deposition |
US7049234B2 (en) * | 2003-12-22 | 2006-05-23 | Intel Corporation | Multiple stage electroless deposition of a metal layer |
JP2005243499A (en) * | 2004-02-27 | 2005-09-08 | Fujitsu Ltd | Method of forming electrode of flat display panel |
US7732330B2 (en) | 2005-06-30 | 2010-06-08 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method using an ink-jet method of the same |
CN101319315A (en) * | 2008-07-03 | 2008-12-10 | 东华大学 | Activation method before flexible backing material chemical plating based on numerator self-assembly technique |
CN102414874A (en) * | 2009-04-13 | 2012-04-11 | 应用材料公司 | Composite materials containing metallized carbon nanotubes and nanofibers |
JP5663886B2 (en) * | 2010-02-08 | 2015-02-04 | 三菱電機株式会社 | Manufacturing method of semiconductor device |
US20110303644A1 (en) * | 2010-06-09 | 2011-12-15 | Arlington Plating Company | Methods for Plating Plastic Articles |
JP6448191B2 (en) * | 2010-09-13 | 2019-01-09 | ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツングChemetall GmbH | Method of coating the surface and use of objects coated in this way |
EP2695581B1 (en) | 2012-08-07 | 2019-03-13 | Critical Innovations, LLC | Device for simultaneously documenting and treating tension pneumothorax and/or hemothorax |
CN103114437B (en) * | 2013-02-01 | 2014-11-05 | 东华大学 | Method for chemically plating nickel at textile surface without using palladium |
US10046147B2 (en) | 2013-12-26 | 2018-08-14 | Critical Innovations, LLC | Percutaneous access pathway system and method |
CN103805971B (en) * | 2014-03-11 | 2017-02-15 | 东华大学 | Method for activating electroless copper-plated textile with nickel salt |
CN104372313B (en) * | 2014-09-29 | 2018-07-13 | 安科智慧城市技术(中国)有限公司 | A kind of preparation method and thin-film solar cells of back electrode of thin film solar cell |
DE102015201562A1 (en) * | 2015-01-29 | 2016-08-04 | Helmholtz-Zentrum Dresden - Rossendorf E.V. | Method for metallizing plastic parts and solution |
CN105821396A (en) * | 2016-03-27 | 2016-08-03 | 华南理工大学 | Palladium-free chemical copper plating method |
US10814119B2 (en) | 2017-09-22 | 2020-10-27 | Critical Innovations, LLC | Percutaneous access pathway system |
CN110093596A (en) * | 2019-04-24 | 2019-08-06 | 南昌大学 | A kind of preparation method of the extra thin copper foil of Automatic-falling |
CN112063998B (en) * | 2020-08-28 | 2022-10-11 | 南昌大学 | Preparation method of ultrathin copper/graphene composite foil |
CN112522687A (en) * | 2020-11-02 | 2021-03-19 | 深圳市先进连接科技有限公司 | Resin surface modification solution and chemical silver plating method |
CN112979344B (en) * | 2021-03-16 | 2022-04-08 | 河海大学 | Antibacterial protective layer prepared on concrete surface based on chemical plating method and preparation method |
EP4321116A3 (en) | 2022-08-11 | 2024-05-08 | Critical Innovations, LLC | Percutaneous access pathway system |
CN116782516B (en) * | 2023-07-13 | 2024-01-23 | 南华大学 | Universal process for preparing copper printed circuit based on homogeneous ion type catalytic ink |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6036668A (en) * | 1983-08-08 | 1985-02-25 | Hitachi Chem Co Ltd | Catalyst for electroless copper plating |
US4670306A (en) * | 1983-09-15 | 1987-06-02 | Seleco, Inc. | Method for treatment of surfaces for electroless plating |
US4663240A (en) * | 1984-11-06 | 1987-05-05 | Enthone, Incorporated | RFI shielded plastic articles and process for making same |
US5338822A (en) * | 1992-10-02 | 1994-08-16 | Cargill, Incorporated | Melt-stable lactide polymer composition and process for manufacture thereof |
US5336415A (en) * | 1993-02-10 | 1994-08-09 | Vanson L.P. | Removing polyvalent metals from aqueous waste streams with chitosan and halogenating agents |
DE69423257T2 (en) * | 1993-05-28 | 2000-07-06 | Matsushita Electric Industrial Co., Ltd. | Denitrification system |
-
1994
- 1994-12-08 JP JP33109794A patent/JP3022226B2/en not_active Expired - Fee Related
- 1994-12-19 TW TW83111861A patent/TW254971B/en active
-
1995
- 1995-01-16 KR KR1019950000598A patent/KR960023235A/en not_active Application Discontinuation
- 1995-01-17 CN CN95101769A patent/CN1124301A/en active Pending
- 1995-02-01 FI FI950446A patent/FI950446A/en unknown
- 1995-02-02 GB GB9502096A patent/GB9502096D0/en active Pending
- 1995-02-07 RU RU95101851A patent/RU2126459C1/en active
- 1995-02-13 CH CH00417/95A patent/CH689394A5/en not_active IP Right Cessation
- 1995-02-15 NO NO19950563A patent/NO310627B1/en not_active IP Right Cessation
- 1995-02-16 SE SE9500571A patent/SE514289C2/en not_active IP Right Cessation
- 1995-02-16 NL NL9500293A patent/NL9500293A/en not_active Application Discontinuation
- 1995-02-16 CA CA 2142683 patent/CA2142683C/en not_active Expired - Fee Related
- 1995-02-17 DK DK017895A patent/DK172134B1/en not_active IP Right Cessation
- 1995-02-21 FR FR9501991A patent/FR2727984B1/en not_active Expired - Fee Related
- 1995-02-23 IT IT95RM000110 patent/IT1281942B1/en active IP Right Grant
- 1995-02-24 AU AU13581/95A patent/AU699029B2/en not_active Ceased
- 1995-02-24 DE DE19506551A patent/DE19506551C2/en not_active Expired - Fee Related
- 1995-03-14 US US08/404,155 patent/US5660883A/en not_active Expired - Fee Related
- 1995-06-13 BE BE9500525A patent/BE1008679A3/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
RU95101851A (en) | 1996-11-20 |
DK17895A (en) | 1996-06-09 |
FI950446A (en) | 1996-06-09 |
ITRM950110A0 (en) | 1995-02-23 |
IT1281942B1 (en) | 1998-03-03 |
GB9502096D0 (en) | 1995-03-22 |
JP3022226B2 (en) | 2000-03-15 |
NO950563D0 (en) | 1995-02-15 |
ITRM950110A1 (en) | 1996-08-23 |
KR960023235A (en) | 1996-07-18 |
SE514289C2 (en) | 2001-02-05 |
AU699029B2 (en) | 1998-11-19 |
CH689394A5 (en) | 1999-03-31 |
BE1008679A3 (en) | 1996-07-02 |
CA2142683A1 (en) | 1996-06-09 |
RU2126459C1 (en) | 1999-02-20 |
JPH08158057A (en) | 1996-06-18 |
DK172134B1 (en) | 1997-11-24 |
US5660883A (en) | 1997-08-26 |
SE9500571L (en) | 1996-06-09 |
TW254971B (en) | 1995-08-21 |
DE19506551A1 (en) | 1996-06-13 |
DE19506551C2 (en) | 2001-05-31 |
CA2142683C (en) | 2000-07-18 |
CN1124301A (en) | 1996-06-12 |
AU1358195A (en) | 1996-06-13 |
SE9500571D0 (en) | 1995-02-16 |
FI950446A0 (en) | 1995-02-01 |
FR2727984A1 (en) | 1996-06-14 |
FR2727984B1 (en) | 1997-12-12 |
NO950563L (en) | 1996-06-10 |
NL9500293A (en) | 1996-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO310627B1 (en) | Process for catalyzing by stream-free precipitation of metals on the surface of a non-conductive material | |
SE514289C3 (en) | Process for catalytic pretreatment of a substrate during electroless plating | |
BE1008678A3 (en) | Forming a layer of money on a substrate vitreous. | |
US4097286A (en) | Method of depositing a metal on a surface | |
EP0913502A1 (en) | Method of electroplating nonconductive plastic molded product | |
JPH05112888A (en) | Plating of electrically-conductive surface | |
JP3417947B2 (en) | Polymeric resins for depositing catalytic palladium on supports | |
US4042730A (en) | Process for electroless plating using separate sensitization and activation steps | |
JP2001206735A (en) | Plating method | |
JPS585984B2 (en) | Pretreatment method for electroless plating | |
JP2003277941A (en) | Electroless plating method and pretreating agent | |
JPH03271375A (en) | Electroless plating method and pretreating agent for electroless plating | |
JP2003155574A (en) | Plated product and method of producing the same | |
KR20050078380A (en) | Electroless plating method of stone | |
CN112225464B (en) | Gold-silver alloy nanometer island-shaped film with high fluorescence enhancement effect and preparation method thereof | |
JPH05339517A (en) | Production of pigment | |
JPH06212440A (en) | Method for electroless plating on nonconductive base | |
KR20220055340A (en) | Electroless plating method of substrate surface oxide coating using photoreduction method and substrate plated using the same | |
JPH06256961A (en) | Electroless plating catalyst, its production and electroless plating method | |
JP2004315895A (en) | Pretreatment liquid for electroless plating, and electroless plating method using it | |
RU2063461C1 (en) | Method of preparing nickel coating on materials made of carbon fibers | |
SU1123999A1 (en) | Method for treating surface of insulating materials before chemical metallization | |
CN113862995A (en) | Pretreatment method and coating method for metallization of carbon fiber surface | |
TH8310B (en) | "The process for catalyzing in electroless plating" | |
JPH0220709B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |
Free format text: LAPSED IN AUGUST 2002 |