NO179365B - Process for joining parts of ceramic high temperature superconductor materials - Google Patents

Process for joining parts of ceramic high temperature superconductor materials Download PDF

Info

Publication number
NO179365B
NO179365B NO910557A NO910557A NO179365B NO 179365 B NO179365 B NO 179365B NO 910557 A NO910557 A NO 910557A NO 910557 A NO910557 A NO 910557A NO 179365 B NO179365 B NO 179365B
Authority
NO
Norway
Prior art keywords
parts
gap
heat treatment
ceramic high
temperatures
Prior art date
Application number
NO910557A
Other languages
Norwegian (no)
Other versions
NO179365C (en
NO910557L (en
NO910557D0 (en
Inventor
Eberhard Preisler
Joachim Bock
Johannes Holzem
Werner Horst
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Publication of NO910557D0 publication Critical patent/NO910557D0/en
Publication of NO910557L publication Critical patent/NO910557L/en
Publication of NO179365B publication Critical patent/NO179365B/en
Publication of NO179365C publication Critical patent/NO179365C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/78Side-way connecting, e.g. connecting two plates through their sides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/80Joining the largest surface of one substrate with a smaller surface of the other substrate, e.g. butt joining or forming a T-joint

Abstract

For joining parts of ceramic high-temperature superconductive material of the composition Bi(2+a-b)(Sr(1-c)Cac)(3-a)PbbCu(2+d)Ox, a being 0 to 0.3, b being 0 to 0.5, c being 0.1 to 0.9 and d being 0 to 2, and x having a value depending on the oxidation state of the metals present, the end faces of the parts, located at a mutual distance amounting to a gap, are heated by means of a fuel gas/oxygen flame to temperatures from 750 to 875 DEG C. At the same time, a rod of the same material is heated above the distance amounting to a gap until the melt thereof drips between the end faces of the two parts into the gap, completely filling it. At least the joint region between the two parts is then heat-treated for 7 to 100 hours at temperatures between 780 and 850 DEG C.

Description

Foreliggende oppfinnelse angår en fremgangsmåte til forbinding av deler av keramisk høytemperatur-supraleder-materiale med sammensetningen (2+a-b)^<r>(1-c)^<a>c^(3—a)~ PtobCu(2+d)°X' der a utgjør fra 0 til 0,3, b fra 0 til 0,5, c fra 0,1 til 0,9, d fra 0 til 2 og x har en verdi som er avhengig av oksidas;] onst Ustanden til de inneholdende metallene. The present invention relates to a method for connecting parts of ceramic high-temperature superconductor material with the composition (2+a-b)^<r>(1-c)^<a>c^(3—a)~ PtobCu(2+d) °X' where a is from 0 to 0.3, b from 0 to 0.5, c from 0.1 to 0.9, d from 0 to 2 and x has a value that depends on the oxidase;] onst Ustanden to the containing metals.

Fra den ikke-offentliggjorte tyske patentsøknad P 38 30 092.3 er det kjent en fremgangsmåte for fremstilling av en høytemperatur-supraleder med sammensetning Bi2(Sr, Ca^CugOx med verdier for x fra 8 til 10. Der blir støkiometriske blandinger av oksider eller karbonater av vismut, strontium, kalsium og kobber oppvarmet til temperaturer fra 870 til 1100°C under dannelse av en homogen smelte. Den homogene smeiten blir tømt i en støpeform av metall og størkner der. Støpegodset som tas ut av støpeformen blir temperert fra 6 til 30 timer ved 780 til 850°C og deretter behandlet i minst 6 timer ved 600 til 830°C i oksygenatmosfære. På denne måten lar det seg fremstille plater med inntil flere cm kantlengde, hhv. diameter, såvel som staver inntil 50 cm lengde og 10 mm diameter, som hver består av den faserene forbindelsen. From the unpublished German patent application P 38 30 092.3, a method is known for the production of a high-temperature superconductor with composition Bi2(Sr, Ca^CugOx with values for x from 8 to 10. There, stoichiometric mixtures of oxides or carbonates of bismuth, strontium, calcium and copper heated to temperatures from 870 to 1100°C to form a homogeneous melt. The homogeneous melt is poured into a metal mold and solidified there. The castings removed from the mold are tempered from 6 to 30 hours at 780 to 850°C and then treated for at least 6 hours at 600 to 830°C in an oxygen atmosphere. In this way, it is possible to produce plates with up to several cm edge length, respectively diameter, as well as rods up to 50 cm long and 10 mm diameter, each of which consists of the phaser compound.

En ulempe er at de ovenfor beskrevne keramiske høytemperatur-supralederne er så sprø at de for transport i form av lange strømledere ikke kan bli rullet på en trommel med stor diameter (f.eks. 2 m) uten å brekke, hhv. lide av riss-dannelse, særlig når høytemperatur-supralederne skal anvendes til sterkstrøm-transport. A disadvantage is that the above-described ceramic high-temperature superconductors are so brittle that for transport in the form of long current conductors they cannot be rolled on a drum with a large diameter (e.g. 2 m) without breaking, or suffer from cracking, especially when the high-temperature superconductors are to be used for high-current transport.

Det finnes også allerede fylte keramiske høytemperatur-supraledere i pulverform i sølvrør og rørene har blitt forlenget ved rundhamring og dyptrekking, inntil det forelå "tråder" med den ønskede diameter, hvorved det indre rommet i sølvrøret befinner seg høytemperatur-supralederpulver som er sintrbar ved varmebehandling til en sammenhengende søyle. Oksygenet som er nødvendig for dannelse av supralederen diffunderer dermed gjennom veggen til sølvrøret. There are also already filled ceramic high-temperature superconductors in powder form in silver tubes and the tubes have been lengthened by round hammering and deep drawing, until there were "wires" of the desired diameter, whereby the inner space of the silver tube contains high-temperature superconductor powder which can be sinterable by heat treatment into a continuous column. The oxygen which is necessary for the formation of the superconductor thus diffuses through the wall of the silver tube.

De nevnte "pulverrør"-lederne tåler en bestemt grad av bøying, slik at de prinsipielt kan anvendes som transport-strømleder. Ulempen er imidlertid at de bare kan bøyes til små diametre uten forstyrrelse og de kan ikke bli koblet sammen til kompliserte systemer. The aforementioned "powder tube" conductors can withstand a certain degree of bending, so that they can in principle be used as a transport current conductor. The disadvantage, however, is that they can only be bent to small diameters without interference and they cannot be connected to complicated systems.

Det er derfor en oppgave for foreliggende oppfinnelse å angi en fremgangsmåte til forbindling av deler av keramiske høytemperatur-supraledermaterlale til kompliserte og omfattende strukturer, der også forbindelsesstedene er supraledende. Oppfinnelsen angår mer spesifikt en fremgangsmåte til forbinding av deler av keramisk høytemperatur-supraledermateriale med sammensetning ^*(2+a—b )^r(l-c)Cac)(3_a)PbbCu(2+d)°X' der a utgjør fra 0 til 0,3, b fra 0 til 0,5, c fra 0,1 til 0,9, d fra 0 til 2 og x har en verdi som er avhengig av oksidasjonstilstanden til de inneholdende metallene, kjennetegnet ved at man oppvarmer frontflåtene av delene som befinner seg i spalteformig avstand fra hverandre ved hjelp av en brenngass-oksygenflamme til temperaturer fra 750 til 875"C og samtidig oppvarmer en stav av samme materiale over den spalteformige avstanden inntil smeiten derav drypper av i spalten mellom frontflatene til delene under fullstendig utfylling av spalten, og at man deretter varmebehandler forbindelsesområdet mellom delene i 7 til 100 timer ved temperaturer mellom 780 og 850°C. It is therefore a task for the present invention to specify a method for connecting parts of ceramic high-temperature superconducting material to complicated and extensive structures, where the connection points are also superconducting. The invention relates more specifically to a method for connecting parts of ceramic high-temperature superconductor material with composition ^*(2+a—b )^r(l-c)Cac)(3_a)PbbCu(2+d)°X' where a is from 0 to 0.3, b from 0 to 0.5, c from 0.1 to 0.9, d from 0 to 2 and x has a value that depends on the oxidation state of the containing metals, characterized by heating the front floats of the parts located at a gap-like distance from each other by means of a fuel gas-oxygen flame to temperatures from 750 to 875"C and at the same time heating a rod of the same material across the gap-like distance until the melt therefrom drips into the gap between the front faces of the parts during complete filling of the gap, and that the connection area between the parts is then heat treated for 7 to 100 hours at temperatures between 780 and 850°C.

Fremgangsmåten ifølge oppfinnelsen kan ytterligere valgfritt også bli gjennomført ved at The method according to the invention can optionally also be carried out by

a) man varmebehandler ved temperaturer fra 815 til 830°C, a) you heat treat at temperatures from 815 to 830°C,

b) varmebehandlingstid avhenger av tykkelse på forbindelsesstedet, hvorved et tykkere forbindelsessted krever en b) heat treatment time depends on joint thickness, whereby a thicker joint requires a

lengre varmebehandlingstid og omvendt, longer heat treatment time and vice versa,

c) frontflåtene til de forbindende delene er anordnet parallelt til hverandre, d) frontflaten til de forbindende delene er anordnet kileformet til hverandre, e) de forbindende delene av keramisk høytemperaturleder-materiale omhylles av et sølvrør. c) the front faces of the connecting parts are arranged parallel to each other, d) the front surface of the connecting parts is arranged wedge-shaped to each other, e) the connecting parts of ceramic high-temperature conductor material are enveloped by a silver tube.

De anvendte forbindelsene ifølge oppfinnelsen, f.eks. Bi2(Sr ,Ca)3C\i20x (med x fra ca. 8,2), smelter inkongruent, dvs. de oppviser ikke noe smeltepunkt, men i stedet et smeltepunktintervall. Videre er overflatespenningen i denne smeiten i forhold til den faste fasen i luft, så stor at smeiten ikke raskt renner fra den fasen. Begge egenskapene er gode forutsetninger for et forhold, som ligner forbindelser av metaller ved autogensveising. The compounds used according to the invention, e.g. Bi2(Sr ,Ca)3C\i20x (with x from about 8.2), melt incongruously, i.e. they show no melting point, but instead a melting point range. Furthermore, the surface tension in this melt in relation to the solid phase in air is so great that the melt does not quickly flow from that phase. Both properties are good prerequisites for a relationship, which resembles connections of metals in autogen welding.

Oppsmelting av forbindelsene Bi2(Sr,Ca)3Cu20x (med x fra ca. 8,2) foregår f.eks. over 875 °C under oksygentap, hvorved smeltetemperaturen ved x fra ca. 7,5 minsker til ca. 780° C. Det foreliggende faste stoffet etter størkning av denne smeiten er ikke mer supraledende. Det kan imidlertid igjen ved varmebehandling ved ca. 800"C i luft bli overført til supraledende tilstand. Melting of the compounds Bi2(Sr,Ca)3Cu20x (with x from approx. 8.2) takes place e.g. above 875 °C during oxygen loss, whereby the melting temperature at x from approx. 7.5 decreases to approx. 780° C. The present solid after solidification of this melt is no longer superconducting. However, it can again by heat treatment at approx. 800"C in air be transferred to the superconducting state.

Ved fremgangsmåten ifølge oppfinnelsen er det å bemerke at frontflatene til de sammenføyde delene er så varm at de ikke kan bli forbundet med den oppvarmede stavens avdryppende smelte. In the method according to the invention, it is to be noted that the front surfaces of the joined parts are so hot that they cannot be connected with the dripping melt of the heated rod.

Ved fremgangsmåten ifølge oppfinnelsen varmebehandler man et tynt forbindelsessted i 8 til 15 timer, mens et tykkere forbindelsessted blir varmebehandlet inntil 100 timer. Varmebehandlingen av forbindelsesstedene mellom delene kan foregå ved at man underkaster den samlede nye formdelen i en ovn under varmebehandling. Varmebehandlingen kan også foregå lokalt ved at man anordner forbindelsesstedene i en elektrisk miniatyrovn med nøyaktig temperaturmåling og —regulering, eller ved lokal høyfrekvensinduksjonsoppvarming eller ved direkte oppvarming med anordnede elektroder skrått til forbindelsesstedet eller ved laserimpulser. In the method according to the invention, a thin joint is heat treated for 8 to 15 hours, while a thicker joint is heat treated for up to 100 hours. The heat treatment of the connection points between the parts can take place by subjecting the assembled new mold part in an oven during heat treatment. The heat treatment can also take place locally by arranging the connection points in an electric miniature furnace with precise temperature measurement and regulation, or by local high-frequency induction heating or by direct heating with arranged electrodes at an angle to the connection point or by laser pulses.

Ved sveisingen ifølge oppfinnelsen med sølvrør omhyllede formlegemer at høytemperatur-supraledende keramisk materiale må det særlig legges aktsomhet på at brenngass-oksygenflammen ikke kommer i berøring med sølvkappen og denne smelter opp, da smeltepunktet til sølv og den høytemperatur-supraledende forbindelsen ikke ligger langt fra hverandre. Det sølvfrie forbindelsesområdet mellom begge de forbundede delene ifølge oppfinnelsen kan eventuelt etterpå bli omhyllet av sølv. When welding according to the invention with silver tube-sheathed shaped bodies that are high-temperature superconducting ceramic material, particular care must be taken to ensure that the fuel gas-oxygen flame does not come into contact with the silver sheath and this melts, as the melting point of silver and the high-temperature superconducting compound are not far apart . The silver-free connection area between both of the connected parts according to the invention can optionally be sheathed in silver afterwards.

I de medfølgende tegningene er anvendelse av fremgangsmåten ifølge oppfinnelsen fremstilt skjematisk og i tverrsnitt. De viser: Fig. 1 forbindelse av to runde staver med parallelle til In the accompanying drawings, application of the method according to the invention is shown schematically and in cross-section. They show: Fig. 1 connection of two round rods with parallel to

hverandre anordnede frontflater, mutually arranged front surfaces,

Fig. 2 forbindelse av to tykkere runde staver med kileformig Fig. 2 connection of two thicker round rods with wedge-shaped

til hverandre anordnede frontflater, mutually arranged front surfaces,

Fig. 3 forbindelse av en tykkere og en tynnere rundstav med Fig. 3 connection of a thicker and a thinner round rod with

parallelle til hverandre anordnede frontflater, front surfaces arranged parallel to each other,

Fig. 4 forbindelse av en tynn skive med en rundstav med Fig. 4 connection of a thin disc with a round rod with

parallelle til hverandre anordnede frontflater, front surfaces arranged parallel to each other,

Fig. 5 anordning til lokal varmebehandling av forbindelser med rundstaver, Fig. 5 device for local heat treatment of connections with round rods,

Fig. 6 temperatur-motstands-diagram. Fig. 6 temperature-resistance diagram.

I fig. 1 gjengir skraveringen A den stivnede, ikke-supraledende smeiten og skravering B gjengir den ettertempererte, supraledende forbindelsen. In fig. 1, shading A represents the solidified, non-superconducting alloy and shading B represents the post-tempered, superconducting compound.

Bilde a viser forbindelsen med rundstaven umiddelbart etter størkning av den inndryppede smeiten i spalten, mens bilde b viser forbindelsesstedet etter 24 timers varmebehandling ved 815°C. Image a shows the connection with the round rod immediately after solidification of the infused melt in the gap, while image b shows the connection point after 24 hours of heat treatment at 815°C.

I fig. 3 befinner det seg lunkerområder i lengdeaksen til den tykkere og tynnere rundstaven. In fig. 3, there are hollow areas in the longitudinal axis of the thicker and thinner round rod.

I fig. 5 er en keramisk oppvarmingsbærer 1, der det befinner seg en motstandsoppvarmingsspiral 2, som er festet over rørdiameterføring 4 i holder 3. 5 angir forbindelsesskjøten til to rundstaver av keramisk høytemperatur-supraleder-materiale. Nær forbindelsesskjøten 5 er det anordnet et termoelement 6. In fig. 5 is a ceramic heating carrier 1, in which there is a resistance heating coil 2, which is fixed over pipe diameter guide 4 in holder 3. 5 indicates the connection joint of two round rods of ceramic high-temperature superconductor material. A thermocouple 6 is arranged near the connecting joint 5.

I fig. 6 er det gjengitt tre målinger ifølge fremgangsmåten i eksempel 1 av de forbundede delene; og hver av kurvene 1 og 2 viser målinger på hver av de forbundede delene og kurve 3 viser måling i forbindelsesområdet til begge delene over sveisestedet. In fig. 6 shows three measurements according to the method in example 1 of the connected parts; and each of curves 1 and 2 shows measurements on each of the connected parts and curve 3 shows measurement in the connection area of both parts above the welding point.

Eksempel 1 Example 1

To av de fremstilte rundstavene etter fremgangsmåten ifølge tysk patentsøknad P 38 30 092.3 med 5 mm diameter og 150 mm lengde blir på et keramisk underlag skjøvet sammen til en spalt slik at deres frontflater løper parallelt i forhold til hverandre. Frontflatene blir oppvarmet ved hjelp av en jordgass-oksygenflamme til lys rødglødende. Samtidig blir det over spalten oppvarmet en rundstav av samme materiale så sterkt at smeiten drypper av i spalten. Ved langsom dreiing av begge rundstavene, blir spalten samtidig fylt med smeiten Two of the manufactured round rods according to the method according to German patent application P 38 30 092.3 with a diameter of 5 mm and a length of 150 mm are pushed together on a ceramic substrate into a gap so that their front surfaces run parallel to each other. The front surfaces are heated by means of a natural gas-oxygen flame to a bright red glow. At the same time, a round rod of the same material is heated above the gap so strongly that the melt drips into the gap. By slowly turning both round rods, the gap is simultaneously filled with the melt

(sml. fig. 1, bilde a). Etter 12 timers varmebehandling av de forbundede rundstavene ved 815"C i en ovn var forbindelsessonen mellom begge rundstavene supraledende (sml. fig. 1, bilde b). (cf. fig. 1, picture a). After 12 hours of heat treatment of the connected round bars at 815°C in an oven, the connection zone between both round bars was superconducting (cf. Fig. 1, picture b).

Sprangtemperaturen i forbindelsessonen til begge rundstavene utgjorde 85,5 K; til venstre og høyre blir sprangtemperaturen målt til hhv. 86,0 og 86,5 K (sml. fig. 6). The burst temperature in the connection zone of both round rods was 85.5 K; on the left and right, the jump temperature is measured to 86.0 and 86.5 K (cf. Fig. 6).

Eksempel 2 Example 2

To av de fremstilte rundstavene etter fremgangsmåten ifølge tysk patent P 38 30 092.3 med 12 mm diameter og 300 mm lengde blir med deres kjegleformige frontflater anordnet i forhold til hverandre. Ved hjelp av en propangass-oksygenflamme blir den øvre kjeglen fra basis oppvarmet og smeltet, før smeiten fra en avdryppende rundstav av samme materiale dryppet ovenfor i kjeglen og fyller den fullstendig ut (sml. fig. 2). Deretter blir den forbundede rundstaven varmebehandlet i en ovn i 24 timer ved 800°C. Two of the manufactured round rods according to the method according to German patent P 38 30 092.3 with 12 mm diameter and 300 mm length are arranged with their cone-shaped front surfaces in relation to each other. Using a propane gas-oxygen flame, the upper cone is heated and melted from the base, before the melt from a dripping round rod of the same material is dripped above into the cone and fills it completely (cf. fig. 2). The connected round bar is then heat treated in a furnace for 24 hours at 800°C.

Som kontroll på om forbindelsessonen mellom begge rundstavene ikke lenger var supraledende, ble den spesifikke motstanden av de forbundede rundstavene målt. As a check whether the connection zone between both round rods was no longer superconducting, the specific resistance of the connected round rods was measured.

Eksempel 3 Example 3

Eksempel 2 ble gjentatt med en endring der en rundstav med 5 mm diameter og 120 mm lengde og en rundstav med 16 mm diameter og 40 mm lengde blir klemt i en holdeinnretning slik at deres akser blir sentrert og deres frontflater blir anordnet parallelt til hverandre (sml. fig. 3). Example 2 was repeated with a change where a round rod of 5 mm diameter and 120 mm length and a round rod of 16 mm diameter and 40 mm length are clamped in a holding device so that their axes are centered and their front surfaces are arranged parallel to each other (cf. . Fig. 3).

Målingen av spesifikk motstand til de forbundede rundstykkene ga: The measurement of specific resistance of the connected rolls gave:

Eksempel 4 Example 4

Eksempel 2 ble gjentatt med den endring at en rundstav med 5 mm diameter og 80 mm lengde er loddrett forbundet med en sirkelformig plate (20 mm diameter, 5 mm tykkelse) (sml. fig. 4) . Det bemerkes at oppvarmingen av den tynne skiven er mindre intensiv enn rundstavene. Example 2 was repeated with the change that a round rod with a diameter of 5 mm and a length of 80 mm is vertically connected to a circular plate (20 mm diameter, 5 mm thickness) (cf. fig. 4). It is noted that the heating of the thin disc is less intensive than the round bars.

Eksempel 5 Example 5

Eksempel 2 ble gjentatt med den endring at rundstaver med 8 mm diameter ble forbundet med hverandre og varmebehandlingen foregikk ved lokal varmebehandling av forbindelsessonen. Det ble i tillegg benyttet en elektrisk miniatyrovn, som i området til forbindelsessonen som ligger rundt rundstaven og er forsynt med en varmeisolering av aluminiumoksidull. Til temperturkontroll tjente et innført termoelement sml. fig. 5) . Example 2 was repeated with the change that round rods with a diameter of 8 mm were connected to each other and the heat treatment took place by local heat treatment of the connection zone. In addition, an electric miniature furnace was used, which in the area of the connection zone is located around the round rod and is provided with a thermal insulation of aluminum oxide wool. An introduced thermocouple etc. served for temperature control. fig. 5).

Claims (6)

1. Fremgangsmåte til forbinding av deler av keramisk høy-temperatur-supraledermateriale med sammensetning b)-(Sr(!_c )Cac )(3-a)Pl3bCu(2+d)0X' der a utSJør fra 0 111 °»3' b fra 0 til 0,5, c fra 0,1 til 0,9, d fra 0 til 2 og x har en verdi som er avhengig av oksidasj onstilstanden til de inneholdende metallene, karakterisert ved at man oppvarmer frontflåtene av delene som befinner seg i spalteformig avstand fra hverandre ved hjelp av en brenngass-oksygenflamme til temperaturer fra 750 til 875°C og samtidig oppvarmer en stav av samme materiale over den spalteformige avstanden inntil smeiten derav drypper av i spalten mellom frontflatene til delene under fullstendig utfylling av spalten, og at man deretter varmebehandler forbindelsesområdet mellom delene i 7 til 100 timer ved temperaturer mellom 780 og 850°C.1. Method for bonding parts of ceramic high-temperature superconductor material with composition b)-(Sr(!_c )Cac )(3-a)Pl3bCu(2+d)0X' where a is from 0 111 °»3' b from 0 to 0.5, c from 0.1 to 0.9, d from 0 to 2 and x has a value that depends on the oxidation state of the containing metals, characterized by heating the front faces of the parts that are in the gap distance from each other by means of a fuel gas-oxygen flame to temperatures from 750 to 875°C and at the same time heats a rod of the same material over the gap-shaped gap until the melt from it drips into the gap between the front faces of the parts while completely filling the gap, and that one then heat-treats the connection area between the parts for 7 to 100 hours at temperatures between 780 and 850°C. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at man varmebehandler ved en temperatur fra 815 til 830°C.2. Method according to claim 1, characterized in that heat treatment is carried out at a temperature from 815 to 830°C. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at varmebehandlingstiden avhenger av tykkelsen på forbindelsesstedet, der et tykkere forbindelsessted krever en lengre varmebehandlingstid og omvendt.3. Method according to claim 1 or 2, characterized in that the heat treatment time depends on the thickness of the connection point, where a thicker connection point requires a longer heat treatment time and vice versa. 4. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 3, karakterisert ved at frontflatene til de forbindende delene er anordnet parallelt til hverandre.4. Method according to any one of claims 1 to 3, characterized in that the front surfaces of the connecting parts are arranged parallel to each other. 5. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 3, karakterisert ved at frontflatene til de forbindende delene er kileformig anordnet til hverandre.5. Method according to any one of claims 1 to 3, characterized in that the front surfaces of the connecting parts are wedge-shaped to each other. 6. Fremgangsmåte ifølge et hvilket som helst av kravene 1 til 5, karakterisert ved at de forbindende delene av keramiske høytemperaturledermaterialer hver er omhyllet av et sølvrør.6. Method according to any one of claims 1 to 5, characterized in that the connecting parts of ceramic high temperature conductor materials are each enveloped by a silver tube.
NO910557A 1990-02-13 1991-02-12 Process for joining parts of ceramic high temperature superconductor materials NO179365C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE4004363A DE4004363A1 (en) 1990-02-13 1990-02-13 METHOD FOR CONNECTING PARTS FROM CERAMIC HIGH TEMPERATURE SUPER-MATERIAL MATERIAL

Publications (4)

Publication Number Publication Date
NO910557D0 NO910557D0 (en) 1991-02-12
NO910557L NO910557L (en) 1991-08-14
NO179365B true NO179365B (en) 1996-06-17
NO179365C NO179365C (en) 1996-09-25

Family

ID=6400029

Family Applications (1)

Application Number Title Priority Date Filing Date
NO910557A NO179365C (en) 1990-02-13 1991-02-12 Process for joining parts of ceramic high temperature superconductor materials

Country Status (8)

Country Link
EP (1) EP0442289B1 (en)
JP (1) JPH04321569A (en)
KR (1) KR0140380B1 (en)
CN (1) CN1021176C (en)
AT (1) ATE104654T1 (en)
CA (1) CA2034248A1 (en)
DE (2) DE4004363A1 (en)
NO (1) NO179365C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4208378A1 (en) * 1992-03-16 1993-09-23 Asea Brown Boveri Current supply for superconducting appts. - comprises normal-conducting current supply for carrying current to high temp. superconductor
JP2907313B2 (en) * 1993-12-02 1999-06-21 中部電力 株式会社 Bismuth-based high-temperature superconductor joining method
WO2005029511A1 (en) * 2003-09-17 2005-03-31 Sumitomo Electric Industries, Ltd. Superconducting device and superconducting cable
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate
US10141493B2 (en) * 2017-04-11 2018-11-27 Microsoft Technology Licensing, Llc Thermal management for superconducting interconnects

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68926070T2 (en) * 1988-06-20 1996-11-28 Daikin Ind Ltd Production of an oxide superconductor of the bismuth system
DE3905424C2 (en) * 1989-02-22 1994-02-17 Vacuumschmelze Gmbh Process for producing a superconducting connection between oxide superconductors

Also Published As

Publication number Publication date
NO179365C (en) 1996-09-25
CN1054146A (en) 1991-08-28
EP0442289A1 (en) 1991-08-21
JPH04321569A (en) 1992-11-11
KR910015512A (en) 1991-09-30
ATE104654T1 (en) 1994-05-15
KR0140380B1 (en) 1998-06-01
CA2034248A1 (en) 1991-08-14
EP0442289B1 (en) 1994-04-20
NO910557L (en) 1991-08-14
DE4004363A1 (en) 1991-08-14
DE59101410D1 (en) 1994-05-26
CN1021176C (en) 1993-06-09
NO910557D0 (en) 1991-02-12

Similar Documents

Publication Publication Date Title
US5244876A (en) Method for joining parts of ceramic high-temperature superconductor material
NO179365B (en) Process for joining parts of ceramic high temperature superconductor materials
US3715441A (en) Induction furnace with thermocouple assembly
US3334520A (en) Temperature sensing apparatus
NO303156B1 (en) Solid bodies of high temperature superconductor materials in contact with metallic conductors and their manufacture
DE837738C (en) Heating rod for high temperatures
JP2558702B2 (en) Method for manufacturing oxide superconducting fiber
CA2127343A1 (en) Cooled rollers used in metallurgical products handling
KR102285334B1 (en) Apparatus and method for testing properties of materials
Edler Material problems in using high-temperature thermocouples
FR2689524A1 (en) Process for producing a superconducting oxide ingot at a high critical temperature
SU1224610A1 (en) Method of producing refractory material hot junction
JPS63307619A (en) Processing method for superconductive material of ceramic type
JP2023106875A (en) Apparatus and method for manufacturing metal oxide single crystal
JPH11120843A (en) Manufacture of superconductive material
SU54013A1 (en) Iron tube for introducing oxygen into the liquid metal
Start et al. Design of laboratory furnaces
SU16971A1 (en) The use of crucibles with gaps intended for dragging the wire in a horizontal position for carrying out the method described in Sec. 1 and 2 patents for c. swith No. 40931
DE1433458C (en) Apparatus and method for melting alloys
SU1154049A1 (en) Method of sintering articles from powder materials
JPH07330331A (en) Method for preparing rapidly superconductive ceramic wire orribbon
Tucker Platinum Resistance Furnace for Melting Points and Combustions
GB1447787A (en) Method and means for measuring temperatures relative to liquid solid phase boundaries of materials
JPS63292529A (en) Method for obtaining superconductive wire
Schaefer et al. Electromotive‐Force Measurements of Molten Binary Alloys