NO175854B - Glass microspheres with bacteriostatic properties and also bed for treating patients with burns, comprising a fluidization system. - Google Patents

Glass microspheres with bacteriostatic properties and also bed for treating patients with burns, comprising a fluidization system. Download PDF

Info

Publication number
NO175854B
NO175854B NO883945A NO883945A NO175854B NO 175854 B NO175854 B NO 175854B NO 883945 A NO883945 A NO 883945A NO 883945 A NO883945 A NO 883945A NO 175854 B NO175854 B NO 175854B
Authority
NO
Norway
Prior art keywords
microspheres
proteins
glass
microspheres according
bound
Prior art date
Application number
NO883945A
Other languages
Norwegian (no)
Other versions
NO883945L (en
NO175854C (en
NO883945D0 (en
Inventor
Marcel Delzant
Original Assignee
Glaverbel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaverbel filed Critical Glaverbel
Publication of NO883945D0 publication Critical patent/NO883945D0/en
Publication of NO883945L publication Critical patent/NO883945L/en
Publication of NO175854B publication Critical patent/NO175854B/en
Publication of NO175854C publication Critical patent/NO175854C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/05Parts, details or accessories of beds
    • A61G7/057Arrangements for preventing bed-sores or for supporting patients with burns, e.g. mattresses specially adapted therefor
    • A61G7/05738Arrangements for preventing bed-sores or for supporting patients with burns, e.g. mattresses specially adapted therefor with fluid-like particles, e.g. sand, mud, seeds, gel, beads
    • A61G7/05746Arrangements for preventing bed-sores or for supporting patients with burns, e.g. mattresses specially adapted therefor with fluid-like particles, e.g. sand, mud, seeds, gel, beads fluidised by air flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Nursing (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Invalid Beds And Related Equipment (AREA)
  • Medicinal Preparation (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Glass Compositions (AREA)
  • Medicines Containing Plant Substances (AREA)

Description

Foreliggende oppfinnelse vedrører glassmikrokuler med bakteriostatiske egenskaper, og deres anvendelse i svevesenger i sykehus beregnet for behandling av pasienter med forbrenninger. The present invention relates to glass microspheres with bacteriostatic properties, and their use in floating beds in hospitals intended for the treatment of patients with burns.

De bakteriostatiske og baktericide egenskapene til en rekke syntetiske og naturlige produkter er blitt studert i lang tid, og noen av disse produktene utgjør en del av den tradisjonelle farmakope, slik som antibiotika eller des-infeksjonsmidler . The bacteriostatic and bactericidal properties of a number of synthetic and natural products have been studied for a long time, and some of these products form part of the traditional pharmacopoeia, such as antibiotics or disinfectants.

I noen år har spesielle senger for behandling av personer som har sterke forbrenninger, blitt benyttet i sykehus. Disse sengene omfatter fluidisert sengeutstyr, dvs. en madrass eller puter bestående av partikler bragt til fluidisert tilstand i en gass slik som luft og holdt på plass under et gasspermeabelt klede. Noen ganger består sengen ganske enkelt av en stålbeholder inneholdende fine, faste partikler. Underdelen omfatter en blåseanordning som suger luft fra rommet gjennom et filter. Luften komprimeres og oppvarmes til en temperatur av 31-38°C. Luften kommer inn i laget av fine partikler, f.eks. av en tykkelse på 25 cm, og bringer dem til fluidisert tilstand. Partiklene er fanget under et gasspermeabelt klede fremstilt f.eks. av polyester. Alle fluider som dreneres fra pasienten, kan passere gjennom et slikt klede til dannelse av agglomerater med noen partikler, og slike agglomerater fjernes periodisk ved hjelp av en sikt plassert ved bunnen av beholderen. For some years, special beds for the treatment of people with severe burns have been used in hospitals. These beds comprise fluidized bedding, i.e. a mattress or pillows consisting of particles brought to a fluidized state in a gas such as air and held in place under a gas permeable blanket. Sometimes the bed simply consists of a steel container containing fine, solid particles. The lower part includes a blower device that sucks air from the room through a filter. The air is compressed and heated to a temperature of 31-38°C. The air enters the layer of fine particles, e.g. of a thickness of 25 cm, and brings them to a fluidized state. The particles are trapped under a gas-permeable cloth produced, e.g. of polyester. All fluids drained from the patient can pass through such a cloth to form agglomerates with some particles, and such agglomerates are periodically removed by means of a sieve placed at the bottom of the container.

Det er åpenbart at sengeutstyr av denne typen ikke bør inne-holde eller fremme tilstedeværelsen av mikrobielle eller bakterielle stammer. Ifølge FR patentsøknad 2.523.841 har det således blitt foreslått at det til partikler slik som glassmikrokuler som utgjør det fluidiserte medium, tilsettes partikler av et annet materiale som har baktericide egenskaper. De foreslåtte partiklene er partikler av metall, slik som kalsium- eller magnesium- eller aluminium- eller vismut- eller silisiumpartikler. Bortsett fra vanskeligheter som kan oppstå fra valget av størrelsen av slike partikler for å gjøre dem i stand til fluidisering uten segregering fra glassmikrokulene, er det åpenbart at et forslag av denne type representerer en avgjort risiko ved bruk. Det er risiko for antennelse av partiklene i nærvær av fuktighet eller av en varm flekk, eller endog ved romtemperatur i tilfelle for kalsium. Det er derfor ønskelig å finne andre midler som er enklere og tryggere med henblikk på å gi nevnte sengeutstyr baktericide eller bakteriostatiske egenskaper. It is obvious that bedding of this type should not contain or promote the presence of microbial or bacterial strains. According to FR patent application 2,523,841, it has thus been proposed that particles of another material which have bactericidal properties are added to particles such as glass microspheres which make up the fluidized medium. The proposed particles are metal particles, such as calcium or magnesium or aluminum or bismuth or silicon particles. Apart from difficulties that may arise from the selection of the size of such particles to enable them to fluidize without segregation from the glass microspheres, it is obvious that a proposal of this type represents a definite risk in use. There is a risk of the particles igniting in the presence of moisture or a hot spot, or even at room temperature in the case of calcium. It is therefore desirable to find other means which are simpler and safer with a view to giving said bedding equipment bactericidal or bacteriostatic properties.

Ifølge foreliggende oppfinnelse er det tilveiebragt glassmikrokuler som er kjennetegnet ved at kulene er belagt med proteiner som er bundet kovalent med et koblingsmiddel til glasset og gir kulene bakteriostatiske egenskaper, og at kulene er hydrofobe. According to the present invention, glass microspheres are provided which are characterized by the fact that the spheres are coated with proteins which are bound covalently with a coupling agent to the glass and give the spheres bacteriostatic properties, and that the spheres are hydrophobic.

Foreliggende oppfinnelse representerer derfor et svar på problemet med å gi sengeutstyr bakteriocide eller bakteriostatiske egenskaper fordi den muliggjør at enkeltpartikler kan innføres i fluidiserte eller svevesenger på sykehus, nemlig glassmikrokuler som i seg selv er i besittelse av bakteriostatiske egenskaper. Videre kan slike partikler resirkuleres og regenereres. The present invention therefore represents an answer to the problem of giving bed equipment bacteriocidal or bacteriostatic properties because it enables single particles to be introduced into fluidized or floating beds in hospitals, namely glass microspheres which in themselves possess bacteriostatic properties. Furthermore, such particles can be recycled and regenerated.

Foreliggende mikrokuler hvortil proteiner som gir dem en bakteriostatisk evne, er bundet på kovalent måte, bibeholder deres egenskaper med tiden, og disse egenskapene opprettholdes i flere måneder før bruk dersom kulene lagres under gode betingelser, i tørr, tett forpakning, og de bibeholder deres bakteriostatiske evne i en periode som er forenlig med deres bruk i svevesenger, dvs.i flere dagers eller endog flere ukers utsettelse for luften. Denne bakteriostatiske evne opprettholdes når kulene befinner seg i en fuktig atmosfære, eller når de utsettes for en moderat temperatur (f. eks. under 60 eller. 70°C). Den bakterostatiske evnen bevares selv når kulene utsettes i hverandres omgivelse for slitasje under deres håndtering og bruk. Dette antas å skyldes den kovalente binding som forekommer mellom proteinene og glasset. Det er uventet funnet at til tross for det faktum at nevnte proteiner er bundet til glasset via en kovalent binding, så bibeholder proteinene deres bakteriostatiske egenskaper, og er i stand til å gi slike egenskaper til mikrokulene som understøtter dem. Present microspheres to which proteins that give them a bacteriostatic ability are covalently bound, retain their properties over time, and these properties are maintained for several months before use if the beads are stored under good conditions, in dry, tight packaging, and they retain their bacteriostatic ability for a period that is compatible with their use in floating beds, i.e. for several days or even several weeks exposure to the air. This bacteriostatic ability is maintained when the balls are in a humid atmosphere, or when they are exposed to a moderate temperature (eg below 60 or 70°C). The bacteriostatic ability is preserved even when the balls are exposed in each other's surroundings to wear and tear during their handling and use. This is believed to be due to the covalent bond that occurs between the proteins and the glass. It has unexpectedly been found that despite the fact that said proteins are bound to the glass via a covalent bond, the proteins retain their bacteriostatic properties and are able to impart such properties to the microspheres that support them.

Som allerede nevnt ovenfor er mikrokulene i besittelse av bakteriostatiske egenskaper, og i mange tilfeller er de også bakteriocide, avhengig av proteinenes beskaffenhet og deres konsentrasjon. Som eksempel er det meget lett å gjøre dem i stand til å drepe eller begrense veksten og formeringen av bakterier slik som Escherichia coli, Salmonellae, Pseudo-monas, Legionellae og Staphylococcus aureus. As already mentioned above, the microspheres possess bacteriostatic properties, and in many cases they are also bacteriocide, depending on the nature of the proteins and their concentration. For example, it is very easy to make them capable of killing or limiting the growth and reproduction of bacteria such as Escherichia coli, Salmonellae, Pseudo-monas, Legionellae and Staphylococcus aureus.

Foreliggende mikrokuler kan benyttes i direkte kontakt med huden, f. eks. i bandasjer, og i dette tilfelle vil et spesielt bionedbrytbart glass fortrinnsvis velges. Det er også mulig å tenke seg binding til mikrokulene av proteiner som gjør dem aktive, sett fra et baktericid synspunkt, i for-døyelseskanalen hos mennesker og dyr. Det er også mulig å benytte dem for å danne et sterilt medium som ikke er i kontakt med legemet, som tilfellet er for fluidisert sengeutstyr. I betraktning av viktigheten av denne sistnevnte anvendelse refereres det i foreliggende sammenheng spesielt til denne, men det skal forstås at oppfinnelsen ikke kun er begrenset til slik bruk. Present microspheres can be used in direct contact with the skin, e.g. in bandages, and in this case a special biodegradable glass will preferably be chosen. It is also possible to imagine binding to the microspheres of proteins that make them active, from a bactericidal point of view, in the digestive tract of humans and animals. It is also possible to use them to form a sterile medium that is not in contact with the body, as is the case for fluidized bed equipment. In consideration of the importance of this latter application, reference is made in particular to this in the present context, but it should be understood that the invention is not only limited to such use.

Etter at foreliggende mikrokuler har vært i bruk i et visst tidsrom kan det være nødvendig eller ønskelig å regenerere dem for ny bruk. Det vil f.eks. vanligvis være nødvendig å skifte kulene i fluidisert sengeutstyr for behandling av pasienter med forbrenninger når en ny pasient overføres til sengen. Brukte kuler kan lett steriliseres ved en varmebehandling. De kan f.eks. behandles ved en temperatur på ca. 100°C i et tilstrekkelig langt tidsrom. En slik behandling fjerner også proteinbelegget fra kulene, men et friskt belegg av protein kan lett bindes kovalent til kulene slik at de kan brukes på nytt. After the present microspheres have been in use for a certain period of time, it may be necessary or desirable to regenerate them for new use. It will e.g. it is usually necessary to change the balls in fluidized bed equipment for the treatment of patients with burns when a new patient is transferred to the bed. Used balls can be easily sterilized by heat treatment. They can e.g. processed at a temperature of approx. 100°C for a sufficiently long period of time. Such treatment also removes the protein coating from the balls, but a fresh coating of protein can easily be covalently bound to the balls so that they can be used again.

I de mest foretrukne utførelser av oppfinnelsen har nevnte mikrokuler en ikke-porøs overflate. Dette trekk representerer betydelige fordeler ut fra et hygienisk synspunkt. Enhver kroppsvæske, eller andre fluider, som kommer i kontakt med kuler som har porøse overflater, kan lett adsorberes. Selv om dette adsorberte materiale lett kan steriliseres som nevnt ovenfor, er det meget vanskelig å fjerne fra porøse kuler slik at det blir tilbake som en mulig helsefare, selv etter sterilisering og binding av bakteriostatiske proteiner til kulene. Dersom det bakteriostatiske belegget på en slik porøs kule skulle feile eller svikte, kan det adsorberte materiale være et fruktbart mikrobiologisk formeringssted. Dette er ikke tilfelle med kuler som har ikke-porøse overflater. Meget lite, om i det hele tatt noe, av materialet av nevnte type finnes å bli adsorbert, og det som adsorberes, kan lett fjernes ved sterilisering slik at det er mulig å bruke kulene på nytt med mye mindre risiko for fare for pasienten. Kuler som har ikke-porøse overflater, har den ytterligere fordel i forhold til kule med porøse overflater at de generelt er lettere å produsere, og derfor mindre kostbare. In the most preferred embodiments of the invention, said microspheres have a non-porous surface. This feature represents significant advantages from a hygienic point of view. Any body fluid, or other fluids, that come into contact with spheres that have porous surfaces can be easily adsorbed. Although this adsorbed material can be easily sterilized as mentioned above, it is very difficult to remove from porous beads so that it remains as a possible health hazard, even after sterilization and binding of bacteriostatic proteins to the beads. Should the bacteriostatic coating on such a porous sphere fail or fail, the adsorbed material can be a fertile microbiological breeding ground. This is not the case with spheres that have non-porous surfaces. Very little, if any, of the material of the type mentioned is found to be adsorbed, and what is adsorbed can easily be removed by sterilization so that it is possible to reuse the balls with much less risk of danger to the patient. Balls having non-porous surfaces have the additional advantage over balls with porous surfaces that they are generally easier to manufacture, and therefore less expensive.

Proteinene som er bundet til glassmikrokulene, er fortrinnsvis enzymer. Valget av enzymer muliggjør at veksten eller formeringen av bakterier kan undertrykkes eller hindres i overensstemmelse med en samlet selektiv, spesifikk mekanisme som muligjør dannelsen in situ av en selvstendig helhet som er skadelig for bakterier. De foretrukne enzymene for anvendelse i forbindelse med svevesenger er peroksydaser som kata-lyserer oksydasjonen av forskjellige ioner som er til stede i fluider slik som plasma eller serum, og skaper baktericide elementer. The proteins bound to the glass microspheres are preferably enzymes. The choice of enzymes enables the growth or multiplication of bacteria to be suppressed or prevented in accordance with an overall selective, specific mechanism that enables the formation in situ of a self-contained entity harmful to bacteria. The preferred enzymes for use in connection with floating beds are peroxidases which catalyze the oxidation of various ions present in fluids such as plasma or serum, creating bactericidal elements.

Proteiner slik som transferin eller myeloperoksydase kan bindes til kulene, men det er foretrukket å velge proteiner slik som laktoferin eller laktoperoksydase. Laktoferin opptar jernioner og skaper derved et medium som er uegnet for bakterievekst. Laktoperoksydase, med et oksydasjonsmiddel slik som hydrogenperoksyd, tilveiebragt på metabolisk måte eller ved innvirkning av glukoseoksydase på glykose (og SCN" ioner danner et medium inneholdende OSCN- ioner som ødelegger bakterier. Proteins such as transferrin or myeloperoxidase can be bound to the beads, but it is preferred to choose proteins such as lactoferrin or lactoperoxidase. Lactoferrin absorbs iron ions and thereby creates a medium that is unsuitable for bacterial growth. Lactoperoxidase, with an oxidizing agent such as hydrogen peroxide, provided metabolically or by the action of glucose oxidase on glucose (and SCN" ions form a medium containing OSCN ions which destroys bacteria.

Siden den bakteriostatiske virkning av proteiner er meget effektiv, er det ikke nødvendig å belegge kulenes overflater fullstendig med proteiner. Proteinene er fortrinnsvis til stede i en mengde på 0,1 vekt-# i forhold til vekten av glasset. En mengde så liten som 0,05 vekt-# er effektiv, og det er ofte tilstrekkelig å benytte en mengde på 0,02$. Since the bacteriostatic effect of proteins is very effective, it is not necessary to completely coat the surfaces of the spheres with proteins. The proteins are preferably present in an amount of 0.1 wt-# in relation to the weight of the glass. An amount as small as 0.05 wt-# is effective, and it is often sufficient to use an amount of 0.02$.

Som angitt ovenfor ligger en stor fordel ved foreliggende mikrokuler i det faktum at disse bibeholder sine bakteriostatiske eller baktericide egenskaper til tross for mekaniske og mekaniske påvirkninger som de kan utsettes for. Dette skyldes sannsynligvis forekomsten av en kovalent binding mellom proteinene og glasset. For å lette kovalent festing av proteinene til glasset er det foretrukket å benytte et koblingsmiddel som ved glassoverflaten kan skape selektive festesteder for de reaktiv gruppene i proteinene. Disse reaktive gruppene består av aminosyrer. Som et koblingsmiddel er det mulig å benytte et organisk titånat, men det er foretrukket å velge et koblingsmiddel av silantypen fordi mengden av silaner tilbyr et omfattende valg av stoffer som kan reagere direkte med aminosyrer. As indicated above, a major advantage of the present microspheres lies in the fact that they retain their bacteriostatic or bactericidal properties despite mechanical and mechanical influences to which they may be subjected. This is probably due to the occurrence of a covalent bond between the proteins and the glass. To facilitate covalent attachment of the proteins to the glass, it is preferred to use a coupling agent which can create selective attachment sites for the reactive groups in the proteins at the glass surface. These reactive groups consist of amino acids. As a coupling agent it is possible to use an organic titanate, but it is preferred to choose a coupling agent of the silane type because the amount of silanes offers an extensive choice of substances that can react directly with amino acids.

Som en variant kan det være foretrukket å binde proteinene ved hjelp av en silanforbindelse og et annet koblingsmiddel. I dette tilfelle skaper silanforbindelsen en aminert glass-overflate som er bundet til proteinene via en kobling av "Michael"-typen med glutaraldehyd, eller av amidtypen, f.eks. med ravsyreanhydrid, eller av azotypen, f.eks. med nitro-benzoylklorid. Det er også mulig å danne en tioesterbinding i koblingskjeden, hvilket har den fordel at den lett kan spaltes dersom det er ønskelig å skille kulene fra proteinene for resirkuleringsformål. Kobling med glutaraldehyd er fordelaktig fordi det tillater hurtig binding av en rekke forskjellige proteiner eller forskjellige enzymer til glasset. As a variant, it may be preferred to bind the proteins using a silane compound and another coupling agent. In this case, the silane compound creates an aminated glass surface which is bound to the proteins via a "Michael" type linkage with glutaraldehyde, or of the amide type, e.g. with succinic anhydride, or of the azo type, e.g. with nitro-benzoyl chloride. It is also possible to form a thioester bond in the link chain, which has the advantage that it can be easily cleaved if it is desired to separate the beads from the proteins for recycling purposes. Coupling with glutaraldehyde is advantageous because it allows rapid binding of a variety of different proteins or different enzymes to the glass.

Foreliggende mikrokuler er fortrinnsvis hydrofobe. Denne egenskap muliggjør at de kan beholde sin integritet i nærvær av fuktighet eller av forskjellige fysiologiske fluider , og gjør det fremfor alt mulig å hindre dem i å agglomerere i nærvær av disse fluider. Foreliggende hydrofobe mikrokuler skylder fortrinnsvis sin hydrofobe natur tilstedeværelsen av et silikonbelegg. Det velges fortrinnsvis et silikonmateriale som polymeriserer ved den frie glassoverflaten uten å bindes dertil via kovalente bindinger. Det kan f.eks. anvendes en aminogruppeholdig polydimetyl-siloksan-kopolymer slik som produktet Dow Corning MDX4-4159, som polymeriserer ved romtemperatur eller moderat temperatur. Et silikon-materiaie av denne typen er forenlig med tilstedeværelsen av proteiner og modifiserer overraskende nok ikke eller modifiserer bare ubetydelig mikrokulenes bakteriostatiske aktivitet i forhold til identiske mikrokuler belagt bare med proteiner. The present microspheres are preferably hydrophobic. This property enables them to retain their integrity in the presence of moisture or of various physiological fluids, and above all makes it possible to prevent them from agglomerating in the presence of these fluids. Present hydrophobic microspheres preferably owe their hydrophobic nature to the presence of a silicone coating. A silicone material is preferably chosen which polymerises at the free glass surface without being bound to it via covalent bonds. It can e.g. an amino group-containing polydimethylsiloxane copolymer such as the product Dow Corning MDX4-4159 is used, which polymerizes at room temperature or moderate temperature. A silicone material of this type is compatible with the presence of proteins and surprisingly does not modify or only slightly modifies the bacteriostatic activity of the microspheres compared to identical microspheres coated only with proteins.

Foreliggende glassmikrokuler er massive glassmikrokuler eller hulemikrokuler. For bruk i svevesenger for sykehus er det foretrukket at disse mikrokulene har en relativ densitet som er større enn 1 for å lette understøttelsen av pasienten, skjønt hule mikrokuler har den fordel at de krever en mindre mengde av fluidiserende luft, hvilket resulterer i mindre ut-tørking av fluidiseringsatmosfæren. Present glass microspheres are solid glass microspheres or hollow microspheres. For use in hospital floating beds, it is preferred that these microspheres have a relative density greater than 1 to facilitate patient support, although hollow microspheres have the advantage of requiring a smaller amount of fluidizing air, resulting in less out- drying of the fluidization atmosphere.

Det velges fortrinnsvis mikrokuler hvis partikkelstørrelses-fordeling er snever, hvilket letter deres fluidisering uten segregering. Det velges f.eks. glassmikrokuler hvis diameter ligger mellom 65 og 110 mikrometer. Det er mulig å benytte mikrokuler som har en gjennomsnittlig diameter som ligger mellom 80 og 100 mikrometer, og fortrinnvis mellom 85 og 90 mikrometer. Slike kuler krever ikke for mye energi for deres fluidisering, og er ikke i stand til å passere gjennom nettverket i kledematerialer som normalt benyttes for svevesenger i sykehus. For denne spesielle anvendelse kan massive glassmikrokuler eller hule mikrokuler velges. Microspheres are preferably chosen whose particle size distribution is narrow, which facilitates their fluidization without segregation. It is chosen e.g. glass microspheres whose diameter is between 65 and 110 micrometres. It is possible to use microspheres which have an average diameter between 80 and 100 micrometres, and preferably between 85 and 90 micrometres. Such spheres do not require too much energy for their fluidization, and are not able to pass through the network in covering materials normally used for floating beds in hospitals. For this particular application, solid glass microspheres or hollow microspheres can be selected.

Foreliggende oppfinnelse tilveiebringer således også en seng for behandling av pasienter med forbrenning, omfattende et fluidiseringssystem, kjennetegnet ved at den inneholder foreliggende mikrokuler som definert i det ovenstående og som er suspendert i en fluidiserende gass. The present invention thus also provides a bed for the treatment of patients with burns, comprising a fluidization system, characterized in that it contains present microspheres as defined above and which are suspended in a fluidizing gas.

Ved festing av et belegg av proteiner som er bundet kovalent til glasset for fremstilling av glassmikrokulene oppnås et findelt partikkelformig materiale som lett kan fluidiseres, og er i besittelse av og bibeholder effektive bakteriostatiske egenskaper. Mikrokulene bringes i kontakt med proteiner, f.eks. i suspensjon eller i pulverform. By attaching a coating of proteins which are bound covalently to the glass for the production of the glass microspheres, a finely divided particulate material is obtained which can be easily fluidized, and which possesses and retains effective bacteriostatic properties. The microspheres are brought into contact with proteins, e.g. in suspension or in powder form.

Trinnet med å bringe mikrokulene i kontakt med proteinene forutgås av et trinn med binding av koblingsmidlet til glassoverflaten. Koblingsmidlet er fortrinnsvis en silanforbindelse som lett avsettes på glassoverflaten fra en oppløsning, suspensjon eller pulver, ved romtemperatur. Det er f.eks. også mulig at det til glassoverflaten podes amino-eller oksyrangrupper som kan reagere med aminosyrene i proteinene. The step of bringing the microspheres into contact with the proteins is preceded by a step of binding the coupling agent to the glass surface. The coupling agent is preferably a silane compound which is easily deposited on the glass surface from a solution, suspension or powder, at room temperature. It is e.g. it is also possible that amino or oxirane groups are grafted onto the glass surface which can react with the amino acids in the proteins.

I noen tilfeller kan det være nyttig å behandle glasset med et annet koblingsmiddel. Dette er tilfellet f.eks. dersom silanbehandlingen av glasset danner aminogrupper ved glassoverflaten. I dette tilfelle bringes proteinet via en kobling av " Michael"-typen med glutaraldehyd, eller av amidtypen eller azotypen. For å unngå denaturering av proteinene j anbefales det å foreta bindingen av proteinene til glasset ved å bringe sistnevnte i kontakt med et medium som inneholder nevnte proteiner, hvori pH-verdien ikke overskrider 7. Et medium inneholdende proteinene og hvori pH-verdien er mellom 4 og 5, blir fortrinnsvis valgt. In some cases, it may be useful to treat the glass with a different coupling agent. This is the case e.g. if the silane treatment of the glass forms amino groups at the glass surface. In this case, the protein is brought via a coupling of the "Michael" type with glutaraldehyde, or of the amide or azo type. In order to avoid denaturation of the proteins j, it is recommended to bind the proteins to the glass by bringing the latter into contact with a medium containing said proteins, in which the pH value does not exceed 7. A medium containing the proteins and in which the pH value is between 4 and 5, is preferably selected.

Etter at nevnte proteiner har blitt bundet til glasset blir mikrokulene fortrinnsvis bragt i kontakt med et medium inneholdende en silikonforbindelse for å avsette et silikonbelegg på kulene. De således behandlede kulene er hydrofobe, og har ingen tendens til å agglomerere. Mediet inneholdende silikonforbindelsen har fortrinnsvis en pE-verdi mellom 4 og 5. Avsetningen av silikon utføres ved romtemperatur eller moderat temperatur. For ikke å denaturere proteinene anbefales det generelt og avsette og, der det passer, polymerisere silikonmateriaiet ved en temperatur som ikke overskrider 60-70°C. After said proteins have been bound to the glass, the microspheres are preferably brought into contact with a medium containing a silicone compound to deposit a silicone coating on the spheres. The spheres treated in this way are hydrophobic and have no tendency to agglomerate. The medium containing the silicone compound preferably has a pE value between 4 and 5. The deposition of silicone is carried out at room temperature or moderate temperature. In order not to denature the proteins, it is generally recommended to deposit and, where appropriate, polymerize the silicone material at a temperature that does not exceed 60-70°C.

Når mikrokulene har blitt benyttet i et visst tidsrom, f.eks. i løpet av en skifting av pasienter i en sveveseng f or behandling av forbrenninger, kan det vise seg nødvendig å regenerere mikrokulene. For å gjøre dette er det ønskelig først å sterilisere de brukte kulene. Slike kuler kan lett steriliseres ved en varmebehandling, f.eks. ved å behandle dem ved en temperatur av 100°C i flere timer. Denne behandling fjerner de kovalent bundede proteinene, men bibeholder silikonmateriaiet ved glassoverflaten. When the microspheres have been used for a certain period of time, e.g. during a change of patients in a floating bed for the treatment of burns, it may prove necessary to regenerate the microspheres. To do this, it is desirable to first sterilize the used balls. Such balls can be easily sterilized by a heat treatment, e.g. by treating them at a temperature of 100°C for several hours. This treatment removes the covalently bound proteins, but retains the silicone material at the glass surface.

Oppfinnelsen skal i det følgende forklares mer detaljert under henvisning til nedenstående eksempler. In the following, the invention will be explained in more detail with reference to the examples below.

Eksempel 1 Example 1

Massive alkali-kalk-glassmikrokuler velges ved sikting for å fjerne kuler som er mindre enn 65 mikrometer og større enn 106 mikrometer. Den gjennomsnittlige diameteren (beregnet på vekt) av kulene som velges, er 85 mikrometer. Mikrokulene behandles med (gamma-glycidoksypropyl)trimetoksysilan (A 187 fra Union Carbide) i alkoholisk oppløsning ved romtemperatur, i en mengde på 0,1 cm<3> silan pr. kg kuler, hvilket tilsvarer ca. 100 mg silan pr. kg kuler. Massive alkali-lime glass microspheres are selected by sieving to remove spheres smaller than 65 micrometers and larger than 106 micrometers. The average diameter (calculated by weight) of the balls selected is 85 micrometers. The microspheres are treated with (gamma-glycidoxypropyl)trimethoxysilane (A 187 from Union Carbide) in alcoholic solution at room temperature, in an amount of 0.1 cm<3> silane per kg balls, which corresponds to approx. 100 mg silane per kg balls.

Laktoferin bindes deretter kovalent til kulene. Laktoferinet bindes via dets aminosyrer til epoksygruppene i silanet. Denne operasjon finner sted ved romtemperatur ved å bringe de silanbehandlede kulene i kontakt med en 10% vandig oppløsning av bovin-laktoferin (markedsført av Oléofina) ved en pH-verdi mellom 4 og 5. Det oppnås således ca. 0,01 vekt-$ aktivt produkt beregnet på glassets vekt. Lactoferrin is then covalently bound to the beads. The lactoferrin is bound via its amino acids to the epoxy groups in the silane. This operation takes place at room temperature by bringing the silane-treated balls into contact with a 10% aqueous solution of bovine lactoferrin (marketed by Oléofina) at a pH value between 4 and 5. Thus approx. 0.01 weight-$ active product calculated on the weight of the glass.

Mikrokulene blir deretter forsiktig oppvarmet ved å sørge for ikke å overskride 60°C, og de bringes deretter i kontakt med en silikonvæske. Silikonen som velges, er en aminogruppeholdig polydimetylsiloksan-kopolymer MDX4-4159 fra Dow Corning, som anvendes i en mengde på 0,2 cm<3> pr. kg glass, hvilket tilsvarer ca. 200 mg silan pr. kg kuler. The microspheres are then gently heated, taking care not to exceed 60°C, and they are then brought into contact with a silicone liquid. The silicone chosen is an amino group-containing polydimethylsiloxane copolymer MDX4-4159 from Dow Corning, which is used in an amount of 0.2 cm<3> per kg of glass, which corresponds to approx. 200 mg silane per kg balls.

Den bakteriostatiske evnen til disse mikrokulene er identisk med en til laktoferin i oppløsning, dvs. ikke immobilisert. Det er f.ek. funnet at disse mikrokulene inhiberer veksten av en E. coli-stamme. The bacteriostatic ability of these microspheres is identical to that of lactoferrin in solution, i.e. not immobilized. It is e.g. found that these microspheres inhibit the growth of an E. coli strain.

Disse mikrokulene er hydrofobe, og kan lagres, manipuleres og benyttes uten noen risiko for agglomerering. These microspheres are hydrophobic and can be stored, manipulated and used without any risk of agglomeration.

Eksempel 2 Example 2

Alkali-kalk-glassmikrokuler lik de i eksempel 1 behandles ved bruk av (gamma-aminopropyl)trimetoksysilan A1100 fra Union Carbide i en alkoholisk oppløsning i en mengde på 0,1 cm<3> silan pr. kg glass, hvilket tilsvarer 100 mg silan pr. kg glass. Overflaten til kulene aktiveres deretter ved å reagere silanen med glutaraldehyd ved en pH-verdi under 6,5 i støkiometriske mengdeforhold. Alkali-lime glass microspheres similar to those in Example 1 are treated using (gamma-aminopropyl)trimethoxysilane A1100 from Union Carbide in an alcoholic solution in an amount of 0.1 cm<3> silane per kg of glass, which corresponds to 100 mg of silane per kg of glass. The surface of the spheres is then activated by reacting the silane with glutaraldehyde at a pH value below 6.5 in stoichiometric quantities.

Laktoperoksydase bindes deretter til kulene ved å bringe disse i kontakt med en vandig oppløsning av laktoperoksydase (markedsført av Oléofina). 0^02 vekt-# laktoperoksydase, beregnet på glasset, bindes deretter på kovalent måte. Et silikonmateriale identisk med det i eksempel 1 avsettes deretter på kulenes overflate. Lactoperoxidase is then bound to the beads by bringing them into contact with an aqueous solution of lactoperoxidase (marketed by Oléofina). 0^02 wt-# of lactoperoxidase, calculated on the glass, is then bound covalently. A silicone material identical to that in example 1 is then deposited on the surface of the spheres.

Det ble funnet at laktoperoksydasen bibeholdt sin enzymatiske aktivitet til tross for dets kovalente binding til glasset. Denne enzymatiske aktiviteten ble analysert ved o-fenylen-diaminmetoden og en verdi på 350 U/mg av laktoperoksydase bundet til glasset ble observert, mens den samme metoden benyttet på en ekvivalent mengde laktoperoksydase i opp-løsning hadde en aktivitet på ca. 400 U/mg av enzym (U/mg = enhet for spesifikk aktivitet til proteinet pr. mg; en aktivitetsenhet er den mengde enzym som i løpet av 1 min. gir en økning i absorbans ved bølgelengde 490 nm på 0,1, ved 37°C og ved pH 5, og med o-fenylendiamin og HgOg som substrat). It was found that the lactoperoxidase retained its enzymatic activity despite its covalent binding to the glass. This enzymatic activity was analyzed by the o-phenylene-diamine method and a value of 350 U/mg of lactoperoxidase bound to the glass was observed, while the same method used on an equivalent amount of lactoperoxidase in solution had an activity of approx. 400 U/mg of enzyme (U/mg = unit of specific activity of the protein per mg; a unit of activity is the amount of enzyme which, within 1 min., gives an increase in absorbance at wavelength 490 nm of 0.1, at 37 °C and at pH 5, and with o-phenylenediamine and HgOg as substrate).

Den bakteriostatiske virkningsgraden til mikrokulene ble også undersøkt. Denne bakteriostatiske virkningsgraden ble analysert m.h.t. en E. coli-stamme som var følsom overfor innvirkningen av 0SCN~ioner. Endringen med tid av den optiske densiteten til slik kultur ved bølgelengde 660 nm ble undersøkt. En økning i optisk densitet er bevis for bakterie-formering. I fravær av laktoperoksydase viser en kontroll-prøve en økning i optisk densitet tilsvarende en multi-plikasjon av den innledende verdi med en faktor av størrel-sesorden på 100 etter 6 timer ved 37°C. I motsetning til dette forblir den optiske densiteten i nærvær av 8 g pr. liter av kuler behandlet ifølge foreliggende eksempel (hvilket tilsvarer 500 U laktoperoksydase pr. liter kulturmedium), uendret etter 6 timer, og dette demonstrerer blokkering av bakterieveksten. The bacteriostatic efficiency of the microspheres was also investigated. This bacteriostatic efficiency was analyzed with respect to an E. coli strain which was sensitive to the action of 0SCN~ions. The change with time of the optical density of such culture at wavelength 660 nm was investigated. An increase in optical density is evidence of bacterial growth. In the absence of lactoperoxidase, a control sample shows an increase in optical density corresponding to a multiplication of the initial value by a factor of the order of magnitude of 100 after 6 hours at 37°C. In contrast, the optical density remains in the presence of 8 g per liter of spheres treated according to the present example (which corresponds to 500 U of lactoperoxidase per liter of culture medium), unchanged after 6 hours, and this demonstrates the blocking of bacterial growth.

For sammenligning ble mikrokuler behandlet som bekrevet ovenfor, men ikke omfattende silikon, bragt i kontakt med den samme E coli-stammen. For en identisk mengde laktoperoksydase bundet til kulene ble det funnet at aktiviteten til kulene belagt med laktoperoksydase og silikon praktisk talt er identisk med den til de ikke-silikonbehandlede kulene. Det er således overraskende nok ingen forstyrrelse mellom aktiviteten til det immobiliserte enzym og tilstedeværelsen av silikonmateriale. For comparison, microspheres treated as described above, but not containing silicone, were contacted with the same E coli strain. For an identical amount of lactoperoxidase bound to the beads, it was found that the activity of the beads coated with lactoperoxidase and silicone is practically identical to that of the non-silicone treated beads. Thus, surprisingly, there is no interference between the activity of the immobilized enzyme and the presence of silicone material.

Lignende resultater finnes med andre bakterier slik som Pseu-domonas og Staphylococcus aureus. Similar results are found with other bacteria such as Pseudomonas and Staphylococcus aureus.

Eksempel 3 Example 3

Først bindes (gamma-glycidoksypropyl)trimetoksysilan som beskrevet i eksempel 1 til glassmikrokuler identisk med dem i eksempel 1, og 0,5 vekt-# laktoperoksydase bindes deretter direkte til mikrokulene. Behandlingen fullføres ved avsetning av silikon identisk med det som er angitt i eksemplene 1 og '2. Testen med dyrking av bakterier som i eksempel 2 ble gjen-tatt, og det ble funnet at 7 g kuler pr. liter kulturmedium var tilstrekkelig til å blokkere bakterievekst. First, (gamma-glycidoxypropyl)trimethoxysilane as described in Example 1 is bound to glass microspheres identical to those in Example 1, and 0.5 wt # of lactoperoxidase is then bound directly to the microspheres. The treatment is completed by depositing silicone identical to that indicated in examples 1 and '2. The test with cultivation of bacteria as in example 2 was repeated, and it was found that 7 g of balls per liter of culture medium was sufficient to block bacterial growth.

Claims (12)

1 Glassmikrokuler, karakterisert ved at kulene er belagt med proteiner som er bundet kovalent med et koblingsmiddel til glasset og gir kulene bakteriostatiske egenskaper, og at kulene er hydrofobe.1 Glass microspheres, characterized in that the spheres are coated with proteins that are bound covalently with a coupling agent to the glass and give the spheres bacteriostatic properties, and that the spheres are hydrophobic. 2. Mikrokuler ifølge krav 1, karakterisert ved at de har en ikke-porøs overflate.2. Microspheres according to claim 1, characterized in that they have a non-porous surface. 3. Mikrokuler ifølge krav 1 eller 2, karakterisert ved at belegget omfatter et enzym.3. Microspheres according to claim 1 or 2, characterized in that the coating comprises an enzyme. 4. Mikrokuler ifølge krav 1 eller 2, karakterisert ved at proteinene er valgt fra laktoferin eller laktoperoksydase.4. Microspheres according to claim 1 or 2, characterized in that the proteins are selected from lactoferrin or lactoperoxidase. 5 . Mikrokuler ifølge hvilket som helst av kravne 1-4, karakterisert ved at proteinene er til stede i en mengde på mindre enn 0,1 vekt-# beregnet på mikrokulene, og fortrinnsvis mindre enn 0,05 vekt-#.5 . Microspheres according to any one of claims 1-4, characterized in that the proteins are present in an amount of less than 0.1 wt-# calculated on the microspheres, and preferably less than 0.05 wt-#. 6. Mikrokuler ifølge hvilket som helst avkravene 1-5, karakterisert ved at proteinene er bundet til glasset via et koblingsmiddel av silantypen.6. Microspheres according to any one of claims 1-5, characterized in that the proteins are bound to the glass via a coupling agent of the silane type. 7. Mikrokuler ifølge krav 6, karakterisert ved at proteinene er bundet til glasset via et silan og et annet koblingsmiddel.7. Microspheres according to claim 6, characterized in that the proteins are bound to the glass via a silane and another coupling agent. 8. Mikrokuler ifølge krav 7, karakterisert ved at det andre koblingsmiddelet er glutaraldehyd.8. Microspheres according to claim 7, characterized in that the second coupling agent is glutaraldehyde. 9. Mikrokuler ifølge krav 1,. karakterisert ved at de bærer et silikonbelegg.9. Microspheres according to claim 1. characterized in that they carry a silicone coating. 10. Mikrokuler ifølge hvilket som helst av kravene 1-9, karakterisert ved at deres gjennomsnittlige diameter ligger mellom 80 og 100 mikrometer, og fortrinnsvis mellom 85 og 90 mikrometer.10. Microspheres according to any one of claims 1-9, characterized in that their average diameter is between 80 and 100 micrometers, and preferably between 85 and 90 micrometers. 11. Mikrokuler ifølge hvilket som helst av kravene 1-10, karakterisert ved at de er suspendert i en fluidiserende gass.11. Microspheres according to any one of claims 1-10, characterized in that they are suspended in a fluidizing gas. 12. Seng for behandling av pasienter med forbrenning, omfattende et fluidiseringssystem, karakterisert ved at den inneholder mikrokuler ifølge krav 11.12. Bed for treating patients with burns, comprising a fluidization system, characterized in that it contains microspheres according to claim 11.
NO883945A 1987-09-07 1988-09-05 Glass microspheres with bacteriostatic properties and bed for treating patients with burns, comprising a fluidization system NO175854C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LU86987A LU86987A1 (en) 1987-09-07 1987-09-07 GLASS MICROBALLS WITH BACTERIOSTATIC PROPERTIES, METHOD FOR MANUFACTURING SUCH MICROBALLS

Publications (4)

Publication Number Publication Date
NO883945D0 NO883945D0 (en) 1988-09-05
NO883945L NO883945L (en) 1989-03-08
NO175854B true NO175854B (en) 1994-09-12
NO175854C NO175854C (en) 1994-12-21

Family

ID=19730965

Family Applications (1)

Application Number Title Priority Date Filing Date
NO883945A NO175854C (en) 1987-09-07 1988-09-05 Glass microspheres with bacteriostatic properties and bed for treating patients with burns, comprising a fluidization system

Country Status (16)

Country Link
JP (1) JP2542243B2 (en)
KR (1) KR890004673A (en)
AU (1) AU611936B2 (en)
BE (1) BE1000875A3 (en)
CA (1) CA1326209C (en)
DE (1) DE3830123A1 (en)
DK (1) DK498088A (en)
ES (1) ES2008620A6 (en)
FI (1) FI95458C (en)
FR (1) FR2619990B1 (en)
GB (1) GB2209523B (en)
IT (1) IT1223794B (en)
LU (1) LU86987A1 (en)
NL (1) NL8802169A (en)
NO (1) NO175854C (en)
SE (1) SE503238C2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113426A (en) * 1989-01-19 1992-05-12 Fujitsu Limited Ground fault detector
US6592814B2 (en) * 1998-10-02 2003-07-15 Johnson & Johnson Vision Care, Inc. Biomedical devices with antimicrobial coatings
FR2825373B1 (en) 2001-05-31 2004-04-30 Tmi Europ PROCESS FOR THE ENZYMATIC PRODUCTION OF A FLUID TREATMENT AGENT
WO2007095393A2 (en) * 2006-02-15 2007-08-23 Massachusetts Institute Of Technology Medical devices and coatings with non-leaching antimicrobial peptides
GB0616580D0 (en) * 2006-08-21 2006-09-27 Novathera Ltd Composite material
CA2888241C (en) 2012-10-16 2020-12-29 Surmodics, Inc. Wound packing device and methods
CN103251573B (en) * 2013-05-13 2014-10-29 李伟 Protein micro/nano sphere carrying antitumor chemotherapeutic medicine and preparation method of protein micro/nano sphere
US10201457B2 (en) 2014-08-01 2019-02-12 Surmodics, Inc. Wound packing device with nanotextured surface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH545102A (en) * 1972-01-20 1973-12-15 Detec Sa Bed for the treatment of severe burns
US4478946A (en) * 1981-07-02 1984-10-23 South African Inventions Development Corporation Carrier bound immunosorbent
FR2523841B1 (en) * 1982-03-25 1985-10-25 Lacoste Francois FLUIDIZED BED FOR THERAPEUTIC USE
US4683203A (en) * 1984-04-14 1987-07-28 Redco N.V. Immobilized enzymes, processes for preparing same, and use thereof
JPS63146791A (en) * 1986-12-08 1988-06-18 Hitachi Ltd Immobilization of enzyme and immobilized enzyme

Also Published As

Publication number Publication date
JP2542243B2 (en) 1996-10-09
BE1000875A3 (en) 1989-05-02
KR890004673A (en) 1989-05-09
AU2171788A (en) 1989-03-09
IT8867785A0 (en) 1988-09-02
NL8802169A (en) 1989-04-03
ES2008620A6 (en) 1989-07-16
SE8803124D0 (en) 1988-09-06
NO883945L (en) 1989-03-08
DK498088A (en) 1989-03-08
FR2619990B1 (en) 1990-09-21
NO175854C (en) 1994-12-21
FI95458B (en) 1995-10-31
GB2209523A (en) 1989-05-17
AU611936B2 (en) 1991-06-27
FI884091A (en) 1989-03-08
CA1326209C (en) 1994-01-18
LU86987A1 (en) 1989-04-06
SE503238C2 (en) 1996-04-22
DK498088D0 (en) 1988-09-07
IT1223794B (en) 1990-09-29
GB2209523B (en) 1991-08-21
FI95458C (en) 1996-02-12
JPH0193444A (en) 1989-04-12
GB8820574D0 (en) 1988-09-28
SE8803124L (en) 1989-03-08
FR2619990A1 (en) 1989-03-10
DE3830123A1 (en) 1989-03-16
NO883945D0 (en) 1988-09-05
FI884091A0 (en) 1988-09-06

Similar Documents

Publication Publication Date Title
JP3524096B2 (en) Use of an acyl exchange reaction between an esterified polysaccharide and a polyamine to form a film on at least the surface of the gelled particles in an aqueous medium, particles formed thereby, methods for their preparation and compositions containing said particles
US4004979A (en) Preparation of active proteins cross-linked to inactive proteins
EP1496919B1 (en) Immobilisation and stabilisation of virus
US4970156A (en) Immobilization of active protein by cross-linking to inactive protein
US4757014A (en) Immobilization of biologically active protein on a polymeric fibrous support
Reid Biofilms in infectious disease and on medical devices
US4682992A (en) Microbicidal coated beads
Costa et al. 17 Enzyme Immobilization in Biodegradable Polymers for Biomedical Applications
EP0223479B1 (en) Article and method for enzymatic neutralization of hydrogen peroxide
NO175854B (en) Glass microspheres with bacteriostatic properties and also bed for treating patients with burns, comprising a fluidization system.
US4784989A (en) Means for removing microorganisms from tissue
Alptekin et al. Characterization and properties of catalase immobilized onto controlled pore glass and its application in batch and plug-flow type reactors
Painter Concerning the wound-healing properties of Sphagnum holocellulose: the Maillard reaction in pharmacology
US4829001A (en) Enzymatic neutralization of hydrogen peroxide
Shaker et al. Mechanism of resistance of Bacillus subtilis spores to chlorhexidine
Ruiz-Rico et al. Natural antimicrobial-coated supports as filter aids for the microbiological stabilisation of drinks
Danial et al. Co-immobilisation of superoxide dismutase and catalase using an in vitro encapsulation protocol
Costa et al. Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics
Chang Artificial cell biotechnology for medical applications
CZ169496A3 (en) Enzymes fixed on to a carrier
Das et al. Biofilms in human health
Tabassum et al. Insight into Catalase Immobilization, Applicability, and Inactivation Mechanisms through Process Engineering Strategies
Lante et al. Characteristics of laccase immobilized on different supports for wine-making technology
Kulkarni et al. Immobilized Enzymes
Bhuriya et al. Immobilization of Urease on k-carrageenan and Its use in urea hydrolysis