NO175543B - Silicon-based alloy, method of making such alloy, and method of producing consolidated products from silicon-based alloy - Google Patents

Silicon-based alloy, method of making such alloy, and method of producing consolidated products from silicon-based alloy

Info

Publication number
NO175543B
NO175543B NO924442A NO924442A NO175543B NO 175543 B NO175543 B NO 175543B NO 924442 A NO924442 A NO 924442A NO 924442 A NO924442 A NO 924442A NO 175543 B NO175543 B NO 175543B
Authority
NO
Norway
Prior art keywords
weight
silicon
based alloy
alloy
elements
Prior art date
Application number
NO924442A
Other languages
Norwegian (no)
Other versions
NO175543C (en
NO924442D0 (en
NO924442L (en
Inventor
Estrade Leif L
Karl Forwald
Gunnar Schussler
Original Assignee
Elkem As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elkem As filed Critical Elkem As
Priority to NO924442A priority Critical patent/NO175543C/en
Publication of NO924442D0 publication Critical patent/NO924442D0/en
Priority to PCT/NO1993/000171 priority patent/WO1994011138A1/en
Priority to EP94901077A priority patent/EP0668806B1/en
Priority to AU55785/94A priority patent/AU5578594A/en
Priority to JP6511956A priority patent/JP2821269B2/en
Priority to DE69320649T priority patent/DE69320649T2/en
Priority to AT94901077T priority patent/ATE170114T1/en
Publication of NO924442L publication Critical patent/NO924442L/en
Publication of NO175543B publication Critical patent/NO175543B/en
Publication of NO175543C publication Critical patent/NO175543C/en
Priority to US08/746,438 priority patent/US5833772A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

Den foreliggende oppfinnelse vedrører silisiumbaserte, aluminium- og titaninneholdende legeringer og pulverbaserte produkter fremstilt av slike legeringer. Den foreliggende oppfinnelse vedrører videre en fremgangsmåte for fremstilling av silisiumbaserte, aluminium- og titaninneholdende legeringer, samt en fremgangsmåte for fremstilling av gjenstander fra slike legeringer. The present invention relates to silicon-based, aluminum- and titanium-containing alloys and powder-based products made from such alloys. The present invention further relates to a method for producing silicon-based, aluminum- and titanium-containing alloys, as well as a method for producing objects from such alloys.

Silisium er hittil idet alt vesentligste blitt benyttet som utgangsmateriale for fremstilling av silaner, produkter for elektroniske formål og som legeringsmiddel for stål og aluminium. For stål tilsettes silisium vanligvis i form av ferrosilisium i mengder som normalt er under 4 vekt % silisium. For aluminium og aluminiumlegeringer tilsettes silisium i form av elementært silisium. Innholdet av silisium i aluminiumlegeringer varierer sterkt, men kan for aluminiumsilisium legeringer innlegeres i mengder av maksimum 20 vekt % av legeringene. Silicon has so far mainly been used as a starting material for the production of silanes, products for electronic purposes and as an alloying agent for steel and aluminium. For steel, silicon is usually added in the form of ferrosilicon in amounts that are normally below 4% silicon by weight. For aluminum and aluminum alloys, silicon is added in the form of elemental silicon. The content of silicon in aluminum alloys varies greatly, but for aluminium-silicon alloys, quantities of a maximum of 20% by weight of the alloys can be incorporated.

Elementært silisium er meget sprøtt og mangler duktilitet. Videre fører tilsetning av silisium til f.eks. aluminiumlegeringer til økende sprøhet av legeringene når silisiuminnholdet overstiger ca. 20 vekt %. Så langt oppfinnerne kjenner til finnes det derfor idag ikke silisiumbaserte legeringer som har slike egenskaper at legeringene kan anvendes for konstruksjonsformål. Elemental silicon is very brittle and lacks ductility. Furthermore, the addition of silicon leads to e.g. aluminum alloys to increasing brittleness of the alloys when the silicon content exceeds approx. 20% by weight. As far as the inventors are aware, there are therefore no silicon-based alloys today that have such properties that the alloys can be used for construction purposes.

Silisium har imidlertid en rekke egenskaper som gjør at bruk av silisiumbaserte legeringer for konstruksjonsformål er meget interessant. Silisium har således en lav egenvekt på 2,3 og et høyt smeltepunkt på 1410°C. Silisiumbaserte legeringer med-tilstrekkelig duktilitet og styrke vil således kunne oppvise en rekke fordeler i forhold til andre lettmetaller så som for eksempel Al, Ti, Mg og Be. Spesielt gjelder det egenskaper som høy stivhet i forhold til egenvekt, anvendelse ved høyere temperaturer enn andre lettmetaller, lav varmeutvidelse, god korrosjonsmotstand og god erosjonsmotstand. I den etterfølgende tabell er en del egenskaper for silisium sammenlignet med egenskapene for Mg, Al, Ti og rustfritt 18/8 stål. However, silicon has a number of properties that make the use of silicon-based alloys for construction purposes very interesting. Silicon thus has a low specific gravity of 2.3 and a high melting point of 1410°C. Silicon-based alloys with sufficient ductility and strength will thus be able to show a number of advantages compared to other light metals such as Al, Ti, Mg and Be. In particular, this applies to properties such as high stiffness in relation to specific weight, use at higher temperatures than other light metals, low thermal expansion, good corrosion resistance and good erosion resistance. In the following table, some properties for silicon are compared with the properties for Mg, Al, Ti and stainless 18/8 steel.

Det er et formål ved den foreliggende oppfinnelse å fremskaffe silisiumbaserte legeringer med en slik duktilitet og styrke at legeringene kan anvendes for konstruksjonsformål. Samtidig som legeringene bibeholder silisiums gode egenskaper. It is an aim of the present invention to provide silicon-based alloys with such ductility and strength that the alloys can be used for construction purposes. At the same time, the alloys retain silicon's good properties.

Den foreliggende oppfinnelse vedrører således en hurtig størknet silisiumbasert legering, hvilken legering er kjennetegnet ved at den inneholder 2-40 vekt % Al, 2 - 45 vekt % Ti, 0 - 10 vekt % av ett eller flere av elementene V, Cr, Mn, Fe, Ni, Co, 0 - 1 vekt % av et eller flere av elementene B, Sr, P og rest silisium bortsett fra eventuelle forurensninger med den tilleggsbestemmelse at legeringen inneholder minst 35 vekt %Si. The present invention thus relates to a rapidly solidified silicon-based alloy, which alloy is characterized by the fact that it contains 2-40% by weight Al, 2-45% by weight Ti, 0-10% by weight of one or more of the elements V, Cr, Mn, Fe, Ni, Co, 0 - 1% by weight of one or more of the elements B, Sr, P and residual silicon, apart from any impurities with the additional provision that the alloy contains at least 35% Si by weight.

I henhold til en foretrukket utførelsesform inneholder silisiumlegeringen 10 - 30 vekt % Al og 3 - 15 vekt % Ti. According to a preferred embodiment, the silicon alloy contains 10-30% by weight Al and 3-15% by weight Ti.

I henhold til en ytterligere utførelsesform inneholder legeringen 2-10 vekt % Al og 25 - 40 vekt % Ti. According to a further embodiment, the alloy contains 2-10% by weight Al and 25-40% by weight Ti.

Legeringen i følgende oppfinnelse inneholder fortrinnsvis bor i en mengde av 0,01 - 0,1 vekt %, og/eller fosfor i en mengde av 0,01 - 0,05 vekt % og/eller strontium i en mengde av 0,05 - 0,5 vekt %. The alloy in the following invention preferably contains boron in an amount of 0.01 - 0.1% by weight, and/or phosphorus in an amount of 0.01 - 0.05% by weight and/or strontium in an amount of 0.05 - 0.5% by weight.

Elementene V, Cr, Mn, Fe, Ni og Co tilsettes fortrinnsvis i mengder av 1 - 3 vekt %. The elements V, Cr, Mn, Fe, Ni and Co are preferably added in amounts of 1 - 3% by weight.

Den størknede legering har fortrinnsvis en primær kornstørrelse mindre enn 50|im, og foretrukket mindre enn 10|j.m. For å oppnå best mulig styrke og duktilitet er det spesielt foretrukket at den størknede legering og de utskilte intermetalliske fasene har en primær kornstørrelse mindre enn l(im. The solidified alloy preferably has a primary grain size of less than 50 µm, and preferably less than 10 µm. In order to achieve the best possible strength and ductility, it is particularly preferred that the solidified alloy and the separated intermetallic phases have a primary grain size smaller than l(im.

Den foreliggende oppfinnelse vedrører videre en fremgangsmåte for fremstilling av en hurtig størknet silisiumbasert legering, hvilken fremgangsmåte er kjennetegnet ved at det tilveiebringes en smelte bestående av 2 - 40 vekt % Al, 2 - 45 vekt % Ti, 0 - 10 vekt % av ett eller flere av elementene V, Cr, Mn, Fe, Ni og Co, 0-1 vekt % av ett eller flere av elementene B, Sr, P og rest silisium bortsett fra eventuelle forurensninger, med den tilleggsbestemmelse at legeringen inneholder minst 35 vekt % Si, hvilken smelte størknes med en størkningshastighet av minst 10^ °C/sekund. The present invention further relates to a method for producing a rapidly solidified silicon-based alloy, which method is characterized by providing a melt consisting of 2 - 40% by weight Al, 2 - 45% by weight Ti, 0 - 10% by weight of one or several of the elements V, Cr, Mn, Fe, Ni and Co, 0-1% by weight of one or more of the elements B, Sr, P and residual silicon apart from any impurities, with the additional provision that the alloy contains at least 35% by weight Si , which melt solidifies at a solidification rate of at least 10^ °C/second.

I henhold til en foretrukket utførelsesform størknes smeiten med en størkningshastighet mellom 10^ og 10^ °C/sekund. According to a preferred embodiment, the melt is solidified at a solidification rate between 10^ and 10^ °C/second.

Størkningen foretas fortrinnsvis ved hjelp av smeltespinning eller ved hjelp av gassatomisering. Det ligger imidlertid innenfor rammen av den foreliggende oppfinnelse å anvende andre kjente metoder for å oppnå en tilstrekkelig høy størkningshastighet. The solidification is preferably carried out by means of melt spinning or by means of gas atomisation. However, it is within the scope of the present invention to use other known methods to achieve a sufficiently high solidification rate.

Den foreliggende oppfinnelse vedrører videre en fremgangsmåte for fremstilling av konsoliderte produkter fra hurtig størknede silisiumbaserte legeringer, hvilken fremgangsmåte er kjennetegnet ved at hurtig størknede silisiumbaserte legeringer bestående av 2 - 40 vekt % Al, 2 - 45 vekt % Ti, 0 - 10 vekt % av ett eller flere av elementene V, Cr, Mn, Fe, Ni, Co, 0-1 vekt % av ett eller flere av elementene B, Sr og P og rest silisium bortsett fra vanlige forurensninger, med den tilleggsbestemmelse at legeringen inneholder minst 35 vekt % Si, knuses og males til en partikkelstørrelse mindre enn 500(im og formes til gjenstander ved pulvermetallurgiske prosesser, hvoretter de formede gjenstander varmkonsolideres. The present invention further relates to a method for the production of consolidated products from rapidly solidified silicon-based alloys, which method is characterized by rapidly solidified silicon-based alloys consisting of 2 - 40% by weight Al, 2 - 45% by weight Ti, 0 - 10% by weight of one or more of the elements V, Cr, Mn, Fe, Ni, Co, 0-1% by weight of one or more of the elements B, Sr and P and residual silicon apart from common impurities, with the additional provision that the alloy contains at least 35% by weight % Si, is crushed and ground to a particle size of less than 500 (im and shaped into objects by powder metallurgical processes, after which the shaped objects are heat consolidated.

I henhold til en foretrukket utførelsesform males den hurtig størknede silisiumbaserte legering til en partikkelstørrelse mindre enn 200|im før gjenstandene formes. According to a preferred embodiment, the rapidly solidified silicon-based alloy is milled to a particle size of less than 200 µm before forming the articles.

Forming av gjenstander og konsolidering av de formede gjenstandene utføres ved hjelp av kjente pulvermetallurgiske prosesser. Det foretrekkes å benytte varm isostatisk pressing, men det ligger innenfor rammen av oppfinnelsen å benytte metoder så som for eksempel kald isostatisk pressing etterfulgt av sintring, varm enakset pressing, smiing, ekstrudering og injeksjonsstøping etterfulgt av sintring. Shaping of objects and consolidation of the shaped objects is carried out using known powder metallurgical processes. It is preferred to use hot isostatic pressing, but it is within the scope of the invention to use methods such as, for example, cold isostatic pressing followed by sintering, hot uniaxial pressing, forging, extrusion and injection molding followed by sintering.

Det har overraskende vist seg at konsoliderte produkter av den silisiumbaserte legering i henhold til den foreliggende oppfinnelse har en meget høy kompresjonsstyrke og en tilstrekkelig duktilitet til at legeringsproduktene kan anvendes for konstruksjonsformål. It has surprisingly been found that consolidated products of the silicon-based alloy according to the present invention have a very high compressive strength and a sufficient ductility for the alloy products to be used for construction purposes.

Ved hurtigstørkning av de silisiumbaserte legeringene i henhold til den foreliggende oppfinnelse oppnås det et svært finkornet materiale som spesielt er karakterisert ved en eksepsjonell finfordeling av de intermetalliske fasene i materialet og dertil hørende stor tetthet av korngrenser. Det antas at det er denne kombinasjonen som gir materialet dets duktilitet og styrke i henhold til oppfinnelsen. Ved varmkonsolideringen av gjenstandene i henhold til den foreliggende oppfinnelse er det viktig å velge temperatur og trykkforløp slik at materialet blir tilstrekkelig tett og at kornveksten under konsolideringen ikke forringer materialets egenskaper. By rapid solidification of the silicon-based alloys according to the present invention, a very fine-grained material is obtained which is particularly characterized by an exceptionally fine distribution of the intermetallic phases in the material and the associated high density of grain boundaries. It is believed that it is this combination that gives the material its ductility and strength according to the invention. During the hot consolidation of the objects according to the present invention, it is important to choose the temperature and pressure sequence so that the material becomes sufficiently dense and that grain growth during consolidation does not impair the material's properties.

EKSEMPEL 1 EXAMPLE 1

En silisiumlegering inneholdende 25 vekt % Al, 5 vekt % Ti og rest silisium bortsett fra vanlige forurensninger, ble smeltet i en vakuum ovn og støpt ut til en stang. Stangen ble benyttet som utgangsmateriale for smeltespinning. Ved smeltespinningen ble legering smeltet og størknet til tynne folier eller ribbons med en størkningshastighet på over 10^ °C/sekund. A silicon alloy containing 25 wt% Al, 5 wt% Ti and residual silicon apart from common impurities was melted in a vacuum furnace and cast into a bar. The bar was used as starting material for melt spinning. During melt spinning, alloy was melted and solidified into thin foils or ribbons with a solidification rate of over 10^ °C/second.

Foliene ble malt i en lukket mølle til en partikkelstørrelse mindre enn 200|im. The foils were ground in a closed mill to a particle size of less than 200 µm.

Legeringspartiklene ble deretter fylt i en sylinderformet matrise med en diameter på 1 cm og en høyde av mer enn 1 cm. Deretter ble legeringspartiklene presset ved et enakset trykk på 40 MPa og ved en temperatur av 700°C i to timer. The alloy particles were then filled into a cylindrical matrix with a diameter of 1 cm and a height of more than 1 cm. Then, the alloy particles were pressed at a uniaxial pressure of 40 MPa and at a temperature of 700°C for two hours.

De produserte gjenstander ble deretter testet ved kompresjonstesting. Bruddstyrken ble målt til 878 MPa og en lengdeforandring ved kompresjon til brudd på 7 %. The manufactured items were then tested by compression testing. The breaking strength was measured at 878 MPa and a length change in compression to break of 7%.

Resultatene viser at fremstilte legeringer har en meget høy kompresjonsstyrke og en kompresjonslengde som er i paritet med fiberforsterket aluminium. The results show that the produced alloys have a very high compressive strength and a compression length that is on a par with fibre-reinforced aluminium.

Claims (13)

1. Hurtig størknet silisiumbasert legering, karakterisert ved at den inneholder 2 - 40 vekt % Al, 2 - 45 vekt % Ti, 0 - 10 vekt % av ett eller flere av elementene V, Cr, Mn, Fe, Ni, Co, 0-1 vekt % av et eller flere av elementene B, Sr, P og rest silisium bortsett fra eventuelle forurensninger med den tilleggsbestemmelse at legeringen inneholder minst 35 vekt % Si.1. Rapidly solidified silicon-based alloy, characterized in that it contains 2 - 40% by weight Al, 2 - 45% by weight Ti, 0 - 10% by weight of one or more of the elements V, Cr, Mn, Fe, Ni, Co, 0 -1% by weight of one or more of the elements B, Sr, P and residual silicon apart from any impurities with the additional provision that the alloy contains at least 35% by weight Si. 2. Silisiumbasert legering ifølge krav 1, karakterisert ved at den inneholder 10-30 vekt % Al og 3 - 15 vekt % Ti.2. Silicon-based alloy according to claim 1, characterized in that it contains 10-30% by weight Al and 3-15% by weight Ti. 3. Silisiumbasert legering ifølge krav 1, karakterisert ved at den inneholder 2-10 vekt % Al og 25 - 40 vekt % Ti.3. Silicon-based alloy according to claim 1, characterized in that it contains 2-10% by weight Al and 25-40% by weight Ti. 4. Silisiumbasert legering ifølge krav 1-3, karakterisert ved at den inneholder bor i en mengde av 0,01 - 0,1 vekt %.4. Silicon-based alloy according to claims 1-3, characterized in that it contains boron in an amount of 0.01 - 0.1% by weight. 5. Silisiumbasert legering ifølge krav 1-3, karakterisert ved at den inneholder fosfor i en mengde av 0,01 - 0,05 vekt %.5. Silicon-based alloy according to claims 1-3, characterized in that it contains phosphorus in an amount of 0.01 - 0.05% by weight. 6. Silisiumbasert legering ifølge krav 1-3, karakterisert ved at den inneholder strontium i en mengde av 0,05 - 0,5 vekt %.6. Silicon-based alloy according to claims 1-3, characterized in that it contains strontium in an amount of 0.05 - 0.5% by weight. 7. Silisiumbasert legering ifølge krav 1-6, karakterisert ved at den inneholder i det minste ett av elementene V, Cr, Mn, Fe, Ni og Co i en mengde av 1 - 3 vekt %.7. Silicon-based alloy according to claims 1-6, characterized in that it contains at least one of the elements V, Cr, Mn, Fe, Ni and Co in an amount of 1-3% by weight. 8. Silisiumbasert legering ifølge krav 1-7, karakterisert ved at den har en primær kornstørrelse mindre enn 50|im.8. Silicon-based alloy according to claims 1-7, characterized in that it has a primary grain size smaller than 50 µm. 9. Silisiumbasert legering ifølge krav 8, karakterisert ved at den har en primær kornstørrelse mindre enn 10|im.9. Silicon-based alloy according to claim 8, characterized in that it has a primary grain size smaller than 10 µm. 10. Fremgangsmåte for fremstilling av en hurtig størknet silisiumbasert legering, karakterisert ved at det tilveiebringes en smelte bestående av 2 - 40 vekt % Al, 2 - 45 vekt % Ti, 0 - 10 vekt % av ett eller flere av elementene V, Cr, Mn, Fe, Ni og Co, 0-1 vekt % av ett eller flere av elementene B, Sr, P og rest silisium bortsett fra eventuelle forurensninger, med den tilleggsbestemmelse at legeringen inneholder minst 35 vekt % Si, hvilken smelte størknes med en størkningshastighet av minst 10-^ °C/sekund.10. Method for producing a rapidly solidified silicon-based alloy, characterized in that a melt consisting of 2 - 40% by weight Al, 2 - 45% by weight Ti, 0 - 10% by weight of one or more of the elements V, Cr, Mn, Fe, Ni and Co, 0-1% by weight of one or more of the elements B, Sr, P and residual silicon apart from any impurities, with the additional provision that the alloy contains at least 35% by weight Si, which melt is solidified at a solidification rate of at least 10-^ °C/second. 11. Fremgangsmåte ifølge krav 10, karakterisert ved at legeringssmelten størknes med en størkningshastighet mellom 10^ og 10^ °C/sekund.11. Method according to claim 10, characterized in that the alloy melt is solidified at a solidification rate between 10^ and 10^ °C/second. 12. Fremgangsmåte for fremstilling av konsoliderte produkter fra hurtig størknede silisiumbaserte legeringer, karakterisert ved at hurtig størknede silisiumbaserte legeringer bestående av 2 - 40 vekt % Al, 2 - 45 vekt % Ti, 0 - 10 vekt % av ett eller flere av elementene V, Cr, Mn, Fe, Co, 0 - 1 vekt % av ett eller flere av elementene B, Sr og P og rest silisium bortsett fra vanlige forurensninger, med den tilleggsbestemmelse at legeringen inneholder minst 35 vekt % Si, knuses og males til en partikkelstørrelse mindre enn 500(im, og formes til gjenstander ved pulvermetallurgiske prosesser, hvoretter de formede gjenstander konsolideres.12. Process for the production of consolidated products from rapidly solidified silicon-based alloys, characterized in that rapidly solidified silicon-based alloys consisting of 2 - 40% by weight Al, 2 - 45% by weight Ti, 0 - 10% by weight of one or more of the elements V, Cr, Mn, Fe, Co, 0 - 1% by weight of one or more of the elements B, Sr and P and residual silicon apart from common impurities, with the additional stipulation that the alloy contains at least 35% by weight Si, crushed and ground to a particle size less than 500 (im, and formed into articles by powder metallurgical processes, after which the formed articles are consolidated. 13. Fremgangsmåte ifølge krav 12, karakterisert ved at den hurtig størknede silisiumbaserte legering males til en partikkelstørrelse mindre enn 200|J.m før gjenstandene formes.13. Method according to claim 12, characterized in that the rapidly solidified silicon-based alloy is ground to a particle size of less than 200 µm before the objects are shaped.
NO924442A 1992-11-18 1992-11-18 Silicon-based alloy, process for making such alloy, and process for producing consolidated products from silicon-based alloy NO175543C (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
NO924442A NO175543C (en) 1992-11-18 1992-11-18 Silicon-based alloy, process for making such alloy, and process for producing consolidated products from silicon-based alloy
AT94901077T ATE170114T1 (en) 1992-11-18 1993-11-17 SILICON ALLOY, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR PRODUCING CONSOLIDATED PRODUCTS FROM THIS ALLOY
PCT/NO1993/000171 WO1994011138A1 (en) 1992-11-18 1993-11-17 Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon alloy
EP94901077A EP0668806B1 (en) 1992-11-18 1993-11-17 Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon alloy
AU55785/94A AU5578594A (en) 1992-11-18 1993-11-17 Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon alloy
JP6511956A JP2821269B2 (en) 1992-11-18 1993-11-17 “Silicon alloy, method for producing silicon alloy, and method for producing consolidated product from silicon alloy”
DE69320649T DE69320649T2 (en) 1992-11-18 1993-11-17 SILICON ALLOY, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR PRODUCING CONSOLIDATED PRODUCTS FROM THIS ALLOY
US08/746,438 US5833772A (en) 1992-11-18 1996-11-08 Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO924442A NO175543C (en) 1992-11-18 1992-11-18 Silicon-based alloy, process for making such alloy, and process for producing consolidated products from silicon-based alloy

Publications (4)

Publication Number Publication Date
NO924442D0 NO924442D0 (en) 1992-11-18
NO924442L NO924442L (en) 1994-05-19
NO175543B true NO175543B (en) 1994-07-18
NO175543C NO175543C (en) 1994-10-26

Family

ID=19895599

Family Applications (1)

Application Number Title Priority Date Filing Date
NO924442A NO175543C (en) 1992-11-18 1992-11-18 Silicon-based alloy, process for making such alloy, and process for producing consolidated products from silicon-based alloy

Country Status (7)

Country Link
EP (1) EP0668806B1 (en)
JP (1) JP2821269B2 (en)
AT (1) ATE170114T1 (en)
AU (1) AU5578594A (en)
DE (1) DE69320649T2 (en)
NO (1) NO175543C (en)
WO (1) WO1994011138A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9514777D0 (en) * 1995-07-19 1995-09-20 Osprey Metals Ltd Silicon alloys for electronic packaging
EP1028476A4 (en) * 1998-09-08 2007-11-28 Sumitomo Metal Ind Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
JP3733292B2 (en) * 1998-09-18 2006-01-11 キヤノン株式会社 Electrode material for negative electrode of lithium secondary battery, electrode structure using the electrode material, lithium secondary battery using the electrode structure, and method for producing the electrode structure and the lithium secondary battery
US7498100B2 (en) 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7871727B2 (en) 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
US7851085B2 (en) 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP5487388B2 (en) * 2009-10-02 2014-05-07 国立大学法人東北大学 Method for producing polycrystalline fibrous silicon and polycrystalline fibrous silicon
SI2853333T1 (en) * 2013-09-26 2019-12-31 Alfa Laval Corporate Ab Method of joining metal parts using a melting depressant layer
EP2853332A1 (en) 2013-09-26 2015-04-01 Alfa Laval Corporate AB A novel brazing concept

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB404463A (en) * 1932-06-02 1934-01-18 Aluminium Ltd Improvements in or relating to aluminium silicon alloys and methods of manufacturingthe same
JPS5914096B2 (en) * 1979-09-05 1984-04-03 財団法人電気磁気材料研究所 Al-Si based vibration absorbing alloy and its manufacturing method
US4402905A (en) * 1982-03-05 1983-09-06 Westinghouse Electric Corp. Production of a polycrystalline silicon aluminum alloy by a hot pressing technique
DE3573137D1 (en) * 1984-10-03 1989-10-26 Sumitomo Electric Industries Material for a semiconductor device and process for its manufacture
JPH01205055A (en) * 1988-02-12 1989-08-17 Sumitomo Electric Ind Ltd Substrate material for semiconductor device

Also Published As

Publication number Publication date
WO1994011138A1 (en) 1994-05-26
EP0668806B1 (en) 1998-08-26
EP0668806A1 (en) 1995-08-30
JP2821269B2 (en) 1998-11-05
AU5578594A (en) 1994-06-08
DE69320649T2 (en) 1999-04-01
DE69320649D1 (en) 1998-10-01
NO175543C (en) 1994-10-26
NO924442D0 (en) 1992-11-18
JPH08502554A (en) 1996-03-19
NO924442L (en) 1994-05-19
ATE170114T1 (en) 1998-09-15

Similar Documents

Publication Publication Date Title
US5273569A (en) Magnesium based metal matrix composites produced from rapidly solidified alloys
US4729790A (en) Rapidly solidified aluminum based alloys containing silicon for elevated temperature applications
US4582536A (en) Production of increased ductility in articles consolidated from rapidly solidified alloy
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
US4676829A (en) Cold worked tri-nickel aluminide alloy compositions
US3902862A (en) Nickel-base superalloy articles and method for producing the same
NO175543B (en) Silicon-based alloy, method of making such alloy, and method of producing consolidated products from silicon-based alloy
US4878967A (en) Rapidly solidified aluminum based, silicon containing alloys for elevated temperature applications
US20130143070A1 (en) Aluminium Material Which Can Be Exposed To High Temperatures, Is Alloyed With Scandium And Has Improved Extrudability
US4732610A (en) Al-Zn-Mg-Cu powder metallurgy alloy
CN107236913B (en) A kind of zirconium-base amorphous alloy and preparation method thereof
US20110091346A1 (en) Forging deformation of L12 aluminum alloys
US5833772A (en) Silicon alloy, method for producing the alloy and method for production of consolidated products from silicon
US4851193A (en) High temperature aluminum-base alloy
US4609528A (en) Tri-nickel aluminide compositions ductile at hot-short temperatures
US4613480A (en) Tri-nickel aluminide composition processing to increase strength
NO168899B (en) QUICKLY STRUCTURED ALUMINUM-BASED ALLOY AND USE OF THIS
US20030185701A1 (en) Process for the production of Al-Fe-V-Si alloys
US4879095A (en) Rapidly solidified aluminum based silicon containing, alloys for elevated temperature applications
US4661156A (en) Nickel aluminide base compositions consolidated from powder
NO862577L (en) ALUMINUM ALLOY.
US5067988A (en) Low temperature hydrogenation of gamma titanium aluminide
Hebsur et al. Influence of processing on the microstructure and mechanical properties of a NbAl3-base alloy
RU2624562C1 (en) METHOD OF PRODUCING BILLETS FROM ALLOYS BASED ON INTERMETALLIDES OF Nb-Al SYSTEM
WO2020032235A1 (en) NITRIDE-DISPERSED MOLDED BODY WHICH IS FORMED OF Ni-BASED ALLOY

Legal Events

Date Code Title Description
MM1K Lapsed by not paying the annual fees

Free format text: LAPSED IN MAY 2003