NO175375B - Process for the preparation of binder for carbon masses - Google Patents

Process for the preparation of binder for carbon masses

Info

Publication number
NO175375B
NO175375B NO880411A NO880411A NO175375B NO 175375 B NO175375 B NO 175375B NO 880411 A NO880411 A NO 880411A NO 880411 A NO880411 A NO 880411A NO 175375 B NO175375 B NO 175375B
Authority
NO
Norway
Prior art keywords
binder
weight
boron oxide
carbon
base substance
Prior art date
Application number
NO880411A
Other languages
Norwegian (no)
Other versions
NO880411L (en
NO880411D0 (en
NO175375C (en
Inventor
Winfried Boenigk
Friedhelm Alsmeier
Original Assignee
Ruetgerswerke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ruetgerswerke Ag filed Critical Ruetgerswerke Ag
Publication of NO880411D0 publication Critical patent/NO880411D0/en
Publication of NO880411L publication Critical patent/NO880411L/en
Publication of NO175375B publication Critical patent/NO175375B/en
Publication of NO175375C publication Critical patent/NO175375C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/02Working-up pitch, asphalt, bitumen by chemical means reaction
    • C10C3/023Working-up pitch, asphalt, bitumen by chemical means reaction with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

Et bindemiddel for carbonmasser med nedsatt avbrann erholdes ved tilsetning av ca. 0,1 vekt% B0til bindemiddelutgangsmaterialet av en stenkulltjæredestiliasjonsrest. Inhibitorens virkning sammenlignet med tilsetning til det ferdige bindemiddel får derved en ca. tre gangers økning.A binder for carbon masses with reduced combustion is obtained by adding approx. 0.1% by weight of B0 to the binder starting material of a coal tar distillation residue. The effect of the inhibitor compared with addition to the finished binder thereby gets an approx. three times increase.

Description

Oppfinnelsen angår en fremgangsmåte for fremstilling av et bindemiddel med forbedrede egenskaper, på basis av steinkulltjære, for karbonmasser. The invention relates to a method for producing a binder with improved properties, based on coal tar, for carbon masses.

Karbonmasser for fremstilling av karbonformlegemer som anoder, elektroder og foringer, består av en blanding av fast karbon, som antrasitt, bekkoks, petroleumskoks, sot, osv., og et karbo- eller petroavledet bituminøst bindemiddel. Fortrinnsvis inneholder massene petroleumskoks og steinkulltjærebek. De blir overveiende anvendt for fremstilling av for-brente eller selvkalsinerende (Soderberg-)anoder for aluminiumelektrolyse. Forbruket av anodemateriale er som følge av bireaksjonene (oksidasjon) og anodenedbrytningen (avskalling) høyere enn hva som ville være nødvendig for reduksjonen av aluminiumoksidet. Carbon masses for the production of carbon moldings such as anodes, electrodes and linings consist of a mixture of solid carbon, such as anthracite, coke, petroleum coke, carbon black, etc., and a carbon or petro-derived bituminous binder. Preferably, the masses contain petroleum coke and coal tar pitch. They are predominantly used for the production of pre-fired or self-calcining (Soderberg) anodes for aluminum electrolysis. The consumption of anode material is, as a result of the side reactions (oxidation) and the anode breakdown (flaking), higher than what would be necessary for the reduction of the aluminum oxide.

Det er kjent at visse forurensninger i koksen og i bindemidlet, som natrium-, kalsium- og vanadiumforbindelser, påskynder oksidasjonen og at tilsetninger av bor- eller fosforforbindelser oppviser hemmende virkninger (Light Metals, 1982, s. 713-725). It is known that certain impurities in the coke and in the binder, such as sodium, calcium and vanadium compounds, accelerate the oxidation and that additions of boron or phosphorus compounds show inhibitory effects (Light Metals, 1982, pp. 713-725).

I US patentskrift 4188279 foreslås det å fremstille karbonformlegemer av karbonmasser med 15-35 vekt% bindemiddel In US patent document 4188279 it is proposed to produce carbon molded bodies from carbon masses with 15-35% by weight binder

og 0,1-3 vekt% borforbindelser henholdsvis 0,5-5 vekt% fosforforbindelser som oksidasjonsinhibitor..Derved blir inhibitoren tilsatt til den homogeniserte blanding eller innblandet i bin-demiddelkomponenten før tilsetningen av karbonkomponenten. and 0.1-3% by weight boron compounds respectively 0.5-5% by weight phosphorus compounds as oxidation inhibitor..Thereby the inhibitor is added to the homogenized mixture or mixed into the binder component before the addition of the carbon component.

Det er likeledes mulig samtidig å tilsette alle tre komponenter og å homogenisere, som beskrevet i eksemplet.' Av-brannen blir derved redusert med 15% ved tilsetning av 8 vekt% borsyre, basert på steinkulltjærebek-bindemidlet. It is also possible to add all three components at the same time and to homogenize, as described in the example.' The off-fire is thereby reduced by 15% by adding 8% by weight of boric acid, based on the coal tar pitch binder.

Det har nå vist seg at tilsetningen av borsyre i de angitte mengder fører til dannelse av VB og TB som krystal-liseres ut i aluminiumsmelten og ved den videre bearbeidelse av aluminiumet til folier fører til hulldannelse i foliene. It has now been shown that the addition of boric acid in the indicated quantities leads to the formation of VB and TB which crystallize out in the aluminum melt and, in the further processing of the aluminum into foils, leads to the formation of holes in the foils.

Fosforforbindelser, som P205, er likeledes mindre egnede inhibitorer da de reduserer strømutbyttet ved den elek-trolytiske prosess. Phosphorus compounds, such as P2O5, are likewise less suitable inhibitors as they reduce the current yield in the electrolytic process.

Det var derfor en oppgave å redusere mengden av in-hibitorene i bindemidlet henholdsvis i karbonmassene under It was therefore a task to reduce the amount of inhibitors in the binder or in the carbon masses below

samtidig forbedring av deres virksomhet. at the same time improving their business.

Oppgaven blir løst ifølge oppfinnelsen ved hjelp av en fremgangsmåte for fremstilling av et bindemiddel for karbonmasser på basis av steinkulltjære med tilsetninger av borforbindelser som oksidasjonsinhibitor, og fremgangsmåten er særpreget ved at en slik mengde boroksid tilsettes bindemiddelgrunnsubstansen at innholdet i det ferdige bindemiddel ikke overstiger 0,3 vekt%, og at bindemiddelgrunnsubstansen derpå bearbeides videre til bindemidlet på vanlig måte. The task is solved according to the invention by means of a method for producing a binder for carbon masses based on coal tar with additions of boron compounds as an oxidation inhibitor, and the method is characterized by the fact that such an amount of boron oxide is added to the binder base substance that the content of the finished binder does not exceed 0, 3% by weight, and that the binder base substance is then further processed into the binder in the usual way.

Som bindemiddelgrunnsubstans blir avtoppet steinkulltjære eller destillasjonsrester av denne tjære med et lavere mykningspunkt enn bindemidlet anvendt. Etter tilsetning av boroksidet (B203) blir grunnsubstansen opparbeidet til det ønskede bindemiddel i ett eller flere trinn ved vakuum-eller/og bærergassdestillasjon. As binder base substance, decanted coal tar or distillation residues of this tar with a lower softening point than the binder are used. After adding the boron oxide (B203), the basic substance is processed into the desired binder in one or more stages by vacuum and/or carrier gas distillation.

Det foretrekkes å anvende et steinkulltjærebek som grunnsubstans, slik<*> at opparbeidelsen i ett trinn, for eksempel i en røreverksretorte eller i en tynnsjiktsfordamper, kan utføres under skånsomme betingelser. It is preferred to use a coal-tar pitch as the base substance, so that the processing in one step, for example in a mixer retort or in a thin-layer evaporator, can be carried out under gentle conditions.

For ikke å redusere bindemidlets lagringsbestandighet bør destillasjonen utføres ved sumptemperaturer på under 380°C. Dette gjelder spesielt for fremstilling av bindemidler for Soderberg-masser. I det siste destillasjonstrinn bør den maksimale sumptemperatur ikke ligge under 350°C da en optimal homogenisering ellers ikke vil kunne oppnås. In order not to reduce the storage resistance of the binder, the distillation should be carried out at sump temperatures below 380°C. This applies in particular to the production of binders for Soderberg pulps. In the last distillation step, the maximum sump temperature should not be below 350°C, otherwise optimal homogenization will not be achieved.

Boroksidinnholdet i bindemidlet ligger innen området fra 0,03 til 0,3 vekt%, fortrinnsvis ved ca. 0,1 vekt%. Innen dette område utøver tilsetningen av B203 ingen negativ inn-virkning på bindemidlets fuktningsoppførsel eller på bek/koks-blandingers forkoksningsegenskaper. The boron oxide content in the binder lies within the range from 0.03 to 0.3% by weight, preferably at approx. 0.1% by weight. Within this range, the addition of B203 has no negative effect on the binder's wetting behavior or on the coking properties of pitch/coke mixtures.

Oppfinnelsen er nærmere beskrevet ved hjelp av eksempel 1 og sammenligningseksemplene 2 og 3. The invention is described in more detail using example 1 and comparative examples 2 and 3.

Eksempel 1 Example 1

1000 vektdeler av et steinkulltjærenormalbek som er karakterisert ved de i Tabell 1 oppførte analyseverdier, ble smeltet under inertgass, oppvarmet til 180°C og deretter blandet med 1 vektdel B203 i 2 timer under omrøring. Derpå ble blandingen destillert i en røreverksretorte under et trykk av 1000 parts by weight of a coal tar standard pitch which is characterized by the analytical values listed in Table 1 were melted under inert gas, heated to 180°C and then mixed with 1 part by weight of B2O3 for 2 hours with stirring. The mixture was then distilled in a stirrer retort under a pressure off

100 mbar inntil en sumptemperatur på 360°C. Et bindemiddel med de i Tabell 2 oppførte analysedata ble da oppnådd med et ut-bytte på 92%. 22 vektdeler av dette bindemiddel blandes med 78 vektdeler petroleumskoks med definert granulometri og presses til formlegemer. Formlegemene som er blitt brent ved 960°C, oksideres ved 960°C i en C02-strøm for å måle C02-reak-tiviteten. 100 mbar up to a sump temperature of 360°C. A binder with the analysis data listed in Table 2 was then obtained with a yield of 92%. 22 parts by weight of this binder are mixed with 78 parts by weight of petroleum coke with a defined granulometry and pressed into moulds. The moldings that have been fired at 960°C are oxidized at 960°C in a CO 2 stream to measure the CO 2 reactivity.

C02-reaktiviteten er et mål på anodeforbruket ved aluminiumelektrolyse. Den samlede avbrann er sammensatt av den direkte avbrann og av støvdannelsen, idet den sistnevnte også er avhengig av petroleumskoksens granulometri. Dessuten ble densiteten, den spesifikke elektriske motstand og bøynings-fastheten for prøvelegemene bestemt. Resultatene er gjengitt i Tabell 3. The C02 reactivity is a measure of the anode consumption in aluminum electrolysis. The overall burn-off is composed of the direct burn-off and the dust formation, the latter also depending on the granulometry of the petroleum coke. In addition, the density, specific electrical resistance and flexural strength of the specimens were determined. The results are reproduced in Table 3.

Eksempel 2 ( Sammenligning) Example 2 (Comparison)

Eksempel 2 svarer til Eksempel 1, men boroksidet ble imidlertid tilsatt til det til 200°C avkjølte bindemiddel først etter destillasjonen. Bindemiddelutbyttet ble derved ikke forandret. Bindemidlets egenskaper er gjengitt i Tabell 2, og måleresultatene for prøvelegemene er gjengitt i Tabell 3. Example 2 corresponds to Example 1, but the boron oxide was however added to the binder cooled to 200°C only after the distillation. The binder yield was thereby not changed. The properties of the binder are shown in Table 2, and the measurement results for the test specimens are shown in Table 3.

Eksempel 3 ( Sammenligning) Example 3 (Comparison)

Eksempel 3 svarer til Eksempel 2, men uten B203-tilsetning. Analyseverdiene for bindemidlet er gjengitt i Tabell 2, og undersøkelsesresultatene for prøvelegemene er gjengitt i Tabell 3. Example 3 corresponds to Example 2, but without B203 addition. The analysis values for the binder are shown in Table 2, and the examination results for the test specimens are shown in Table 3.

Det fremgår av Tabellene 2 og 3 at tilsetningen av boroksidet før eller etter destillasjonen hverken bevirker en forandring av analysedataene for bindemidlet eller en forandring av de elektriske eller mekaniske egenskaper til derav fremstilte prøvelegemer innenfor målenøyaktigheten. I motset-ning hertil fremgår det at C02-reaktiviteten er tydelig avhen- It appears from Tables 2 and 3 that the addition of the boron oxide before or after the distillation causes neither a change in the analysis data for the binder nor a change in the electrical or mechanical properties of test specimens produced from it within the measuring accuracy. In contrast, it appears that the C02 reactivity is clearly dependent

gig av B203-tilsetningen. gig of the B203 addition.

Således minsker den samlede avbrann med ca. 7 vekt% ved en B203-tilsetning etter destillasjonen og med ca. 22 vekt% ved tilsetning ifølge oppfinnelsen før destillasjonen. Såvel den direkte avbrann som støvdannelsen viser lignende resul-tater. Thus, the total fire is reduced by approx. 7% by weight with a B203 addition after the distillation and with approx. 22% by weight when added according to the invention before the distillation. Both the direct fire and the formation of dust show similar results.

Det er dermed blitt påvist at ved hjelp av den fore-liggende tilsetning av boroksid til bindemiddelgrunnsubstansen istedenfor, som kjent fra teknikkens stand, til det ferdige bindemiddel eller til karbonmassen, kan dets hemmende virkning økes flere ganger. Det er derved mulig med lave inhibitor-mengder som er tolererbare for aluminiumindustrien, å senke anode forbruket betyde1ig. It has thus been demonstrated that by means of the present addition of boron oxide to the binder base substance instead, as is known from the state of the art, to the finished binder or to the carbon mass, its inhibitory effect can be increased several times. It is thereby possible, with low inhibitor amounts that are tolerable for the aluminum industry, to significantly reduce anode consumption.

Claims (5)

1. Fremgangsmåte for fremstilling av et bindemiddel for karbonmasser på basis av steinkulltjære med tilsetninger av borforbindelser som oksidasjonsinhibitor, karakterisert ved at en slik mengde boroksid tilsettes bindemiddelgrunnsubstansen at innholdet i det ferdige bindemiddel ikke overstiger 0,3 vekt%, og at bindemiddelgrunnsubstansen derpå bearbeides videre til bindemidlet på vanlig måte.1. Method for the production of a binder for carbon masses based on coal tar with additions of boron compounds as an oxidation inhibitor, characterized in that such an amount of boron oxide is added to the binder base substance that the content of the finished binder does not exceed 0.3% by weight, and that the binder base substance is then processed further to the binder in the usual way. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at en destillasjonsrest fra steinkulltjæren, spesielt et steinkulltjærenormalbek, an-vendes som grunnsubstans.2. Method according to claim 1, characterized in that a distillation residue from the coal tar, in particular a coal tar normal pitch, is used as the base substance. 3. Fremgangsmåte ifølge krav 1, karakterisert ved at boroksidet tilsettes i en slik mengde at det ferdige bindemiddel inneholder 0,03-0,3 vekt%, fortrinnsvis ca. 0,1 vekt%, boroksid.3. Method according to claim 1, characterized in that the boron oxide is added in such an amount that the finished binder contains 0.03-0.3% by weight, preferably approx. 0.1% by weight, boron oxide. 4. Fremgangsmåte ifølge krav 1-3, karakterisert ved at boroksidet blandes med den flytende grunnsubstans og at blandingen bearbeides videre til karbonbindemidlet ved vakuum- eller/og bærergassdestillasjon i ett eller flere trinn.4. Method according to claims 1-3, characterized in that the boron oxide is mixed with the liquid base substance and that the mixture is further processed into the carbon binder by vacuum and/or carrier gas distillation in one or more stages. 5. Fremgangsmåte ifølge krav 4, karakterisert ved at den maksimale sumptemperatur ved det siste destillasjonstrinn ligger i området fra 350 til 380°C.5. Method according to claim 4, characterized in that the maximum sump temperature at the last distillation stage lies in the range from 350 to 380°C.
NO880411A 1987-01-31 1988-01-29 Process for the preparation of binder for carbon masses NO175375C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19873702950 DE3702950A1 (en) 1987-01-31 1987-01-31 BINDING AGENTS FOR CARBON MATERIALS AND METHOD FOR THE PRODUCTION THEREOF

Publications (4)

Publication Number Publication Date
NO880411D0 NO880411D0 (en) 1988-01-29
NO880411L NO880411L (en) 1988-08-01
NO175375B true NO175375B (en) 1994-06-27
NO175375C NO175375C (en) 1994-10-05

Family

ID=6319982

Family Applications (1)

Application Number Title Priority Date Filing Date
NO880411A NO175375C (en) 1987-01-31 1988-01-29 Process for the preparation of binder for carbon masses

Country Status (5)

Country Link
EP (1) EP0277284B1 (en)
CA (1) CA1305591C (en)
DE (2) DE3702950A1 (en)
ES (1) ES2002714T3 (en)
NO (1) NO175375C (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534363A1 (en) * 1995-09-15 1997-03-20 Schunk Kohlenstofftechnik Gmbh Additives for the production of boron-containing polyaromatic mesophase pitches, polyaromatic mesophases and carbons by liquid phase pyrolysis
CN112978725A (en) * 2021-02-07 2021-06-18 大连宏光锂业股份有限公司 Modified artificial graphite cathode material of power lithium ion battery and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1289081A (en) * 1970-01-02 1972-09-13
US4188279A (en) * 1976-10-26 1980-02-12 Mobil Oil Corporation Shaped carbon articles
EP0163597A1 (en) * 1984-04-27 1985-12-04 Schweizerische Aluminium Ag Process for diminution of the tendency towards oxidation at increased temperatures of carbon powders or of shaped carbon articles fabricated by using the afore-mentioned carbon powder

Also Published As

Publication number Publication date
CA1305591C (en) 1992-07-28
NO880411L (en) 1988-08-01
EP0277284A3 (en) 1989-09-13
NO880411D0 (en) 1988-01-29
EP0277284B1 (en) 1992-01-08
DE3702950A1 (en) 1988-08-11
DE3775917D1 (en) 1992-02-20
ES2002714T3 (en) 1993-07-16
EP0277284A2 (en) 1988-08-10
NO175375C (en) 1994-10-05
ES2002714A4 (en) 1988-10-01

Similar Documents

Publication Publication Date Title
US5746906A (en) Coal tar pitch blend having low polycyclic aromatic hydrocarbon content and method of making thereof
US5705139A (en) Method of producing high quality, high purity, isotropic graphite from coal
CA1054960A (en) Process for manufacturing needle coke
US3970542A (en) Method of preparing electrode pitches
NO175375B (en) Process for the preparation of binder for carbon masses
CA1276123C (en) High purity coke
JP5156242B2 (en) Binder pitch and manufacturing method thereof
JP5793108B2 (en) Binder pitch and manufacturing method thereof
RU2224782C1 (en) Charge for manufacture of metallurgical coke
US2864760A (en) Process for the manufacture of electrode pitches
RU2119522C1 (en) Method of preparing pitch binder for electrode materials
Doshlov Novel technology for production of petroleum pitches for non-ferrous metallurgy
CS261881B2 (en) Process for preparing binder for electrodes
US2848424A (en) Process of preparing carbon electrodes and a paste therefor
US4183802A (en) Process for the production of coke from pitch
RU2601766C1 (en) Method of compound electrode pitch producing for carbon materials and articles therefrom making
CS223894B2 (en) Method of making valuable carbon binders
RU2080417C1 (en) Carbon anode mass
US3284373A (en) Molded carbon bodies
JP2018127611A (en) Method for manufacturing coal tar pitch
US1946446A (en) Composition of matter and process of preparing the same
JP2000204375A (en) Production of binder pitch
CN109076657B (en) Electrode material
Turner Molten storage and carbonization characteristics of premium grade coal-tar pitch: Influence of crude tar type and distillation conditions
SU583205A1 (en) Electrode compound for manufacturing lining blocks