NO168571B - MAGNETIC POWER SYSTEM FOR FRICTION-FREE TRANSPORT OF LOAD - Google Patents

MAGNETIC POWER SYSTEM FOR FRICTION-FREE TRANSPORT OF LOAD Download PDF

Info

Publication number
NO168571B
NO168571B NO874460A NO874460A NO168571B NO 168571 B NO168571 B NO 168571B NO 874460 A NO874460 A NO 874460A NO 874460 A NO874460 A NO 874460A NO 168571 B NO168571 B NO 168571B
Authority
NO
Norway
Prior art keywords
profile
magnets
magnet
magnetic
transport
Prior art date
Application number
NO874460A
Other languages
Norwegian (no)
Other versions
NO874460D0 (en
NO168571C (en
NO874460L (en
Inventor
Peter Schuster
Original Assignee
Peter Schuster
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE3635258A external-priority patent/DE3635258C1/en
Priority to DE3635258A priority Critical patent/DE3635258C1/en
Priority to RO130197A priority patent/RO105679B1/en
Priority to PCT/EP1987/000100 priority patent/WO1987005271A1/en
Priority to BR8706040A priority patent/BR8706040A/en
Priority to EP87102547A priority patent/EP0234543B1/en
Priority to ES89710065T priority patent/ES2022760B3/en
Priority to AT89710065T priority patent/ATE63267T1/en
Priority to HU871813A priority patent/HU205302B/en
Priority to JP62501792A priority patent/JPH088724B2/en
Priority to RO148863A priority patent/RO105680B1/en
Priority to ES87102547T priority patent/ES2017652B3/en
Priority to EP89710065A priority patent/EP0356370B1/en
Priority to KR1019870700986A priority patent/KR970011355B1/en
Priority to SU874203537A priority patent/RU2069156C1/en
Priority to AU71251/87A priority patent/AU594756B2/en
Priority to CA000530639A priority patent/CA1270913A/en
Priority to PT84386A priority patent/PT84386B/en
Priority to MX005400A priority patent/MX168302B/en
Priority to TR149/87A priority patent/TR23073A/en
Priority to CN87102608A priority patent/CN1007505B/en
Priority to MA21122A priority patent/MA20886A1/en
Priority to CN89108553A priority patent/CN1014504B/en
Priority to YU00315/87A priority patent/YU31587A/en
Priority to DK545487A priority patent/DK167748B1/en
Priority to FI874694A priority patent/FI89886C/en
Publication of NO874460D0 publication Critical patent/NO874460D0/en
Application filed by Peter Schuster filed Critical Peter Schuster
Publication of NO874460L publication Critical patent/NO874460L/en
Priority to OA59331A priority patent/OA08832A/en
Priority to JP1304523A priority patent/JPH088726B2/en
Priority to AU57099/90A priority patent/AU617253B2/en
Priority to NO904687A priority patent/NO174497B/en
Priority to GR90400921T priority patent/GR3001078T3/en
Priority to DK015291A priority patent/DK168622B1/en
Priority to GR91401034T priority patent/GR3002334T3/en
Publication of NO168571B publication Critical patent/NO168571B/en
Publication of NO168571C publication Critical patent/NO168571C/en
Priority to LVP-92-682A priority patent/LV10411B/en
Priority to LVP-92-683A priority patent/LV10412B/en

Links

Landscapes

  • Braking Arrangements (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

Oppfinnelsen vedrører et magnetsystem for lavfriksjonstran-sport av last, som angitt i krav l's innledning. The invention relates to a magnetic system for low-friction transport of cargo, as stated in the introduction of claim 1.

De kjente magnetkraftsystemer, også benevnt glidesystemer, beveger seg praktisk talt friksjonsløst over bæreskinner, i en bestemt avstand fra disse. Disse systemer er relativt dyre og kompliserte og derfor økonomisk sett tvilsomme. The known magnetic force systems, also referred to as sliding systems, move practically frictionless over carrier rails, at a certain distance from them. These systems are relatively expensive and complicated and therefore economically questionable.

Således beskrives eksempelvis magnetbanen "Transrapid 06" fra Emden i VDI-Nachrichten nr. 1, 3. Januar 1986. Det går frem at det er teknisk meget krevende å oppnå en løfting av kjøretøyet 1 cm. Det nødvendige energiforbruk for å holde det 320 tonn tunge kjøretøy svevende, angis ikke. Et passasjér-antall på 196 gir imidlertid en vekt på 612 kg pr. person (gjennomsnittlig personvekt 80 kg). Hertil kommer den dyre anvendelsesteknikk og de ennå uløste problemer i forbindelse med sne og is. Thus, for example, the magnetic track "Transrapid 06" from Emden is described in VDI-Nachrichten No. 1, 3 January 1986. It appears that it is technically very demanding to achieve a lift of the vehicle of 1 cm. The necessary energy consumption to keep the 320-tonne vehicle floating is not stated. However, a passenger number of 196 gives a weight of 612 kg per person (average person weight 80 kg). Added to this is the expensive application technology and the still unsolved problems in connection with snow and ice.

Enda større vanskeligheter byr de kjente Japanske svevebaner på. Noen løsninger baserer seg på bruk av hjul helt til man har nådd en hastighet på 200 km pr. time, hvor svevingen begynner. Even greater difficulties are offered by the famous Japanese cable cars. Some solutions are based on the use of wheels until a speed of 200 km per hour has been reached. hour, when the levitation begins.

På lignende måte virker den i DE-OS 2426053 beskrevne såkalte "Berliner Magnetbann", hvor forskjellen dog består i at styrerullene føres over magnetfeltet. The so-called "Berliner Magnetbann" described in DE-OS 2426053 works in a similar way, where the difference, however, consists in that the guide rollers are guided over the magnetic field.

Dessuten er det fra den franske patensøknad 2228650 kjent et magnettransportsystem hvor det benyttes magneter, særlig permanentmagneter, tilordnet ferromagnetiske profiler. Magnetene er imidlertid anordnet etter antrekkingsprinsippet, dvs. at ulike poler står overfor hverandre, i forhold til profilene. Dessuten er de i hovedsaken tilordnet horisontalt liggende ferromagnetiske vegger. Dette gir en relativ liten bæreevne. Totalvekten er flere ganger større enn nyttevekten. Fra DE-OS 3347635 er det kjent et magnetkraftsystem hvor anordningen av magnetene relativt bæreprofilene også bygger på antrekningsprinsippet, dvs. at motsatte poler med hensyn til de ferromagnetiske vegger, står overfor hverandre. Også her oppnås bare en forholdsmessig liten bærekraft. Dessuten er den benyttede konstruksjon dyr og krevende, fordi det må benyttes mange magneter for å kunne løfte en bestemt last. Furthermore, a magnet transport system is known from the French patent application 2228650 in which magnets, in particular permanent magnets, assigned to ferromagnetic profiles are used. However, the magnets are arranged according to the attraction principle, i.e. that different poles face each other, in relation to the profiles. Moreover, they are mainly assigned to horizontally lying ferromagnetic walls. This gives a relatively small carrying capacity. The total weight is several times greater than the useful weight. From DE-OS 3347635 a magnetic force system is known where the arrangement of the magnets relative to the support profiles is also based on the attraction principle, i.e. that opposite poles with respect to the ferromagnetic walls face each other. Here, too, only a relatively small amount of sustainability is achieved. In addition, the construction used is expensive and demanding, because many magnets must be used to be able to lift a specific load.

Dessuten er det fra DE-OS 2146143 kjent et magnetkraftsystem med minst en magnet og minst en polflate, hvortil lasten er festet. Dessuten benyttes det en på en stasjonær bærer anbragt, mykmagnetisk bæreprofil hvis profllvegg er vertikalt orientert og hvis profilflate rager ut i retning over bæreren. Det anvendes imidlertid et føringssystem med regulerte elektromagneter som sidestyring, noe som ytterlig-ere kompliserer systemets oppbygning. Furthermore, from DE-OS 2146143 a magnetic power system with at least one magnet and at least one pole face, to which the load is attached, is known. In addition, a soft magnetic carrier profile placed on a stationary carrier is used whose profile wall is vertically oriented and whose profile surface protrudes in a direction above the carrier. However, a guide system with regulated electromagnets is used as lateral control, which further complicates the system's structure.

Fra det britiske patent 1.392.591 er det kjent en anordning hvor det dreier seg om det grunnprinsipp som er anvendt i den foran nevnte Transrapid-bane. Ved denne kjente anordning er det under en bæreskinne festet en nedad åpen U-profil av laminerte tynnplater. Nedenfra rager elektromagneter opp, på en slik måte at polene til elektromagnetene står overfor benene i U-profilen. En elektronisk regulering for elektromagnetene sørger horisontalt og vertikalt for den ønskede avstand. Den translatoriske bevegelse overtas av en lineærmotor, hvis stator er festet til kjøretøyet. From the British patent 1,392,591, a device is known where it concerns the basic principle used in the above-mentioned Transrapid track. With this known device, a downwards open U-profile made of laminated thin plates is fixed under a carrier rail. Electromagnets protrude from below, in such a way that the poles of the electromagnets face the legs of the U-profile. An electronic regulation for the electromagnets ensures the desired distance horizontally and vertically. The translational movement is taken over by a linear motor, the stator of which is attached to the vehicle.

Fra US-A 4.324.185 er det kjent et transportsystem hvor lasten henger i etter hverandre anordnede permanentmagneter, med vekslende poler i kjøreretningen. På begge polsidene til permanentmagnetene er det anordnet to av ferromagnetiske blikkpakker dannede skinner, som danner i hovedsaken vertikale, innbyrdes og relativt magnetpolene parallelle vegger. Magnetene er anordnet etter hverandre med luftspalte og med vekslende polretning,, slik at det går en i hovedsaken horisontal magnetlinjestrrøm mellom to på hverandre følgende magneter. Konstantholdingen av luftspalten mellom bære-prof liene og magnetene er realisert ved hjelp av styreruller. I de for unngåelse av virvelstrømmer som bllkkpakker oppbyggede bæreprofiler er det langs hele kjørestrekningen lagt Inn elektromagnetiske spoler, som med tilsvarende ekstern styring sammen med de til lasten festede, i kjøre-retningen med vekselpoler anordnede permanentmagneter sørger for fremdrift og delvis også for svevingen. Den lamellaktige oppbygging av bæreprofilene og de i disse innarbeidede spoler bevirker en relativt sterk redusering av virkningsgraden til anordningen. Det dreier seg om en komplisert og dyr utfør-else, særlig fordi hele kjørestrekningen må innbefatte bllkkpakker med spoler. From US-A 4,324,185, a transport system is known where the load hangs in successively arranged permanent magnets, with alternating poles in the direction of travel. On both pole sides of the permanent magnets, two rails formed from ferromagnetic tin packs are arranged, which form essentially vertical walls parallel to each other and relative to the magnetic poles. The magnets are arranged one behind the other with an air gap and with alternating polarity, so that a mainly horizontal magnetic line current flows between two successive magnets. The constant maintenance of the air gap between the bearing profiles and the magnets is realized with the help of guide rollers. In the carrier profiles constructed to avoid eddy currents like bubble packs, electromagnetic coils have been inserted along the entire travel distance, which, with corresponding external control, together with the permanent magnets attached to the load, arranged in the direction of travel with alternating poles, ensure propulsion and partly also the hovering. The lamellar structure of the support profiles and the coils incorporated in them causes a relatively strong reduction in the efficiency of the device. It is a complicated and expensive design, especially because the entire route must include blank packages with coils.

Hensikten med foreliggende oppfinnelse er å tilveiebringe et magnetkraftsystem av den innledningsvis nevnte type, hvilket system kan realiseres uten regulering og således har en enkel og lett oppbygging, med sikker funksjon samtidig med at energiforbruket er lavt. The purpose of the present invention is to provide a magnetic power system of the type mentioned at the outset, which system can be realized without regulation and thus has a simple and light structure, with safe function while the energy consumption is low.

Dette oppnås ifølge oppfinnelsen med et magnetkraftsystem som angitt i krav 1, med de der i karakteristikken angitte kjennetegn. This is achieved according to the invention with a magnetic power system as stated in claim 1, with the characteristics stated there in the characteristic.

Ifølge oppfinnelsen er bæreprofilet av ferromagnetlsk materiale en nedad åpen U-profil. I så tilfelle er det tilstrekkelig med minst én magnet, idet magnetpolene er rettet horisontalt, dvs. sideveis i retning mot benene til U-profilen. Magnetlinjene løper gjennom den oventil lukkede U-profil. Dette er den konstruktivt sett enkleste løsning, som dessuten også er meget økonomisk. According to the invention, the carrier profile of ferromagnetic material is a downward open U-profile. In that case, at least one magnet is sufficient, as the magnetic poles are directed horizontally, i.e. sideways in the direction of the legs of the U-profile. The magnetic lines run through the top-closed U-profile. This is the structurally simplest solution, which is also very economical.

Magnetkraftsystemet ifølge oppfinnelsen kan fordelaktig utformes som angitt i de uselvstendige krav. Med de i de uselvstendige krav fremhevede trekk kan man øke systemets bærekraft vesentlig. En avskjerming av den indre magnet medfører at magnetkraftiinjene vil gå i vertikale plan, med den fordel at virvelstrømmene i systemet da bare vil kunne oppstå i sterk redusert grad. The magnetic force system according to the invention can advantageously be designed as indicated in the independent claims. With the features highlighted in the non-independent requirements, the sustainability of the system can be significantly increased. A shielding of the inner magnet means that the magnetic power injection will run in a vertical plane, with the advantage that the eddy currents in the system will then only be able to occur to a greatly reduced extent.

Det nye magnetkraftsystem muliggjør bruk i forskjellige konstruktive løsninger. The new magnetic power system enables use in various constructive solutions.

Oppfinnelsen skal beskrives nærmere under henvisning til tegningen hvor figurene 1-8 viser ulike utførelsesformer og anordninger av de i det nye magnetkraftsystem anvendte bæreprofiler og magneter, idet The invention shall be described in more detail with reference to the drawing, where Figures 1-8 show various embodiments and arrangements of the carrier profiles and magnets used in the new magnetic power system, as

fig. l viser en første utførelsesform med U-formet bæreprofil og mellom profilbenene anordnede fig. l shows a first embodiment with a U-shaped support profile and arranged between the profile legs

magneter, ubelastet, magnets, unloaded,

fig. 2 viser anordningen i fig. 1, med en belastet og i fig. 2 shows the device in fig. 1, with a charged and i

retning nedover ut av profilen trukket magnet, fig. 3 viser en utførelse med en oppad åpen kort-slutnings-U-profil for de ytre magneter, direction downwards out of the profile drawn magnet, fig. 3 shows an embodiment with an upwardly open short-circuit U-profile for the outer magnets,

fig. 4 viser et horisontalsnitt etter linjen IV-IV i fig. 1, med nærmere anvisning av hvordan styrerullene på magnetene er anordnet i forhold fig. 4 shows a horizontal section along the line IV-IV in fig. 1, with detailed instructions on how the guide rollers on the magnets are arranged in relation

til profilbenene, og to the profile legs, and

fig. 5-8 viser anordningsmuligheter for systemet med hensyn til betongbærekonstruksjonen og last, idet fig. 5 viser en første anordningsmåte med lastens plassert hengende under profil/magnetan-ordningen, fig. 5-8 show arrangement options for the system with regard to the concrete support structure and load, as fig. 5 shows a first method of arrangement with the load placed hanging below the profile/magnet arrangement,

fig. 6 viser en stående anordning, altså med lasten fig. 6 shows a standing device, i.e. with the load

over profil/magnetanordningen, above the profile/magnet device,

fig. 7 viser et sideriss av systemet med hengende last, fig. 7 shows a side view of the suspended load system,

idet lasten er et person-transportkjøretøy, as the load is a passenger transport vehicle,

fig. 8 viser et tverrsnitt av fig. 7. fig. 8 shows a cross section of fig. 7.

I det i fig. 1 og 2 viste utførelseseksempel er det som bæreprofil 2 benyttet en U-formet skinne av ferromagnetlsk materiale. Mellom de to vertikale benene til nedad åpne profil 2 er en magnet 1 slik anordnet at de to polflatene befinner seg like overfor sideveggene og går i hovedsaken parallelt med disse. Magnetkraftlinjene kan da fra den ene pol gå via den nærmeste sidevegg, gjennom profilbunnen og til den andre magnetpol gjennom den andre sidevegg. De magnetiske kraftlinjer får således et optimalt forløp. In that in fig. 1 and 2 shows a U-shaped rail of ferromagnetic material used as support profile 2. Between the two vertical legs of the downwardly open profile 2, a magnet 1 is arranged in such a way that the two pole surfaces are just opposite the side walls and run essentially parallel to them. The magnetic force lines can then go from one pole via the nearest side wall, through the bottom of the profile and to the other magnetic pole through the other side wall. The magnetic lines of force thus have an optimal course.

Fig. 2 viser situasjonen ved en meget stor last. Jo lengere magneten trekkes ned under påvirkning av en dertil festet vekt, desto større blir den motvirkende kraft (svevekraft). Ved belastning trekkes magnetene så langt ut av profilen at tiltrekningskraften utlignes med lasten. Det er således ikke nødvendig med noen regulering for magnetens loddrette stilling. Fig. 2 shows the situation with a very large load. The further the magnet is pulled down under the influence of a weight attached to it, the greater the counteracting force (levitation force). When loaded, the magnets are pulled so far out of the profile that the attraction force is equalized by the load. There is thus no need for any regulation for the magnet's vertical position.

Den i fig. 3 viste utførelse er en kraftforsterket utførel-sesform, hvor bæreprofilen 2 er en nedad åpen U-profil. Her er det anordnet magneter både på innsiden såvel som på utsiden av profilbenene. Det er også her sørget for at motliggende polflater har samme polaritet, slik at kraft-linjene, med de innbyrdes frastøting, vil ha et tilsvarende forløp gjennom de ferromagnetiske bærevegger henholdsvis kortslutningsplater. The one in fig. The embodiment shown in 3 is a power-reinforced embodiment, where the support profile 2 is a downwardly open U-profile. Here, magnets are arranged both on the inside as well as on the outside of the profile legs. It has also been ensured here that opposite pole surfaces have the same polarity, so that the lines of force, with their mutual repulsion, will have a corresponding course through the ferromagnetic load-bearing walls or short-circuit plates.

De ytre, tett på hverandre følgende magneter 1 kortsluttet ved hjelp av en oppad åpen U-profil 4. De indre magneter 1 har en avstand fra kortslutningsprofilen 4, eksempelvis ved hjelp av en isolasjonsplate 8. Ved denne utførelsen fore-ligger det i praksis to magnetlinjekretsløp. Det første går fra den indre magnet 1 over den indre U-profil 2, på samme måte som i fig. 1. Det andre går via kortslutningsprofilen 4, de ytre magneter og den indre profil 2. The outer, closely following magnets 1 are short-circuited by means of an upwardly open U-profile 4. The inner magnets 1 have a distance from the short-circuit profile 4, for example by means of an insulating plate 8. In this design, there are in practice two magnetic line circuit. The first goes from the inner magnet 1 over the inner U-profile 2, in the same way as in fig. 1. The other goes via the short circuit profile 4, the outer magnets and the inner profile 2.

I fig. 4 er vist hvordan magneten 1 er anordnet i forhold til sideveggene på bæreprofilen 2. Styreruller 3 er anordnet slik at magnetene også ved kjøring i krumme baner vil holdes nøyaktig sentralt mellom veggene. In fig. 4 shows how the magnet 1 is arranged in relation to the side walls of the support profile 2. Guide rollers 3 are arranged so that the magnets, even when driving in curved paths, will be held exactly centrally between the walls.

Fig. 5 viser en anvendelsesmulighet for systemet 1,2 i en hengende anordning. På en betongbærerkonstruksjon 6 er det på undersiden festet bæreprofilet 2, men det på oversiden av en derunder anordnet last 7, eksempelvis et transportkjøretøy, er det anordnet magneter 1 beregnet for samvirke med profilene 2. På lasten henholdsvis kjøretøyet 7 er det på oversiden anordnet styreruller 3 som samvirker med den sentrale bæreskinne. Transportbevegelsen tilveiebringes her med en sentralt anordnet lineærmotor 5. Fig. 6 viser en stående anordning av lasten 7 relativt systemet 1,2. Prof ilbærerne 2 befinner seg også her på undersiden av en betongbærekonstruksjon, henholdsvis på armer på en betongbærekonstruksjon 6. Lasten henholdsvis kjøretøyet 7 er anordnet over bæreren 6 og griper inn under sidearmene. Magnetene 1 er plassert slik at de får samvirke med bærerne 2. Betongbærekonstruksjonen 6 har på sin overside en sentral styreskinne for de her ikke viste styreruller og lineærmoto-ren 5 for transportbevegelsen. Fig. 5 shows an application possibility for the system 1,2 in a hanging device. On a concrete carrier structure 6, the supporting profile 2 is attached on the underside, but on the upper side of a load 7 arranged underneath, for example a transport vehicle, there are magnets 1 intended for cooperation with the profiles 2. On the load or the vehicle 7, guide rollers are arranged on the upper side 3 which interacts with the central support rail. The transport movement is provided here with a centrally arranged linear motor 5. Fig. 6 shows a standing arrangement of the load 7 relative to the system 1,2. The profile carriers 2 are also here on the underside of a concrete support structure, respectively on arms of a concrete support structure 6. The load or the vehicle 7 is arranged above the carrier 6 and engages under the side arms. The magnets 1 are positioned so that they interact with the carriers 2. The concrete support structure 6 has on its upper side a central guide rail for the guide rollers, not shown here, and the linear motor 5 for the transport movement.

I fig. 7 og 8 er det vist et praktisk utførelseseksempel. Lasten henholdsvis kjøretøyet 7 er her et passasjer-kjøretøy. På oversiden av kjøretøyet er magnetene 1 festet, og de griper inn i en nedad åpen U-bærer. Man ser at kjøretøyet 7 således henger. In fig. 7 and 8 a practical design example is shown. The load or the vehicle 7 is here a passenger vehicle. On the upper side of the vehicle, the magnets 1 are attached, and they engage in a downwards open U-carrier. It can be seen that the vehicle 7 is thus hanging.

Claims (5)

1. Magnetkraftsystem for friksjonsfri transport av laster, med minst en til en stasjonær bærer festet mykmagnetisk bærerprofil (2) med to vertikale og samtidig i forhold til transportretningen parallelt orienterte profilvegger, minst en permanentmagnet (1) som er anordnet mellom profilveggene, parallelt med disse og med på tvers av transportretningen innrettede poler, en respektiv, i hovedsaken konstant luftspalte mellom magnet og bærerprofil, idet lastene er festet til magneten, og mekaniske midler (3) for konstant opprettholdelse av luftspalten,karakterisert vedat bærer-profilen (2) er en nedad åpen U-profil (2), hvis to ben danner de innbyrdes parallelle vertikale profilvegger.1. Magnetic power system for friction-free transport of loads, with at least one soft magnetic carrier profile (2) attached to a stationary carrier with two vertical and at the same time profile walls oriented parallel to the direction of transport, at least one permanent magnet (1) which is arranged between the profile walls, parallel to these and with poles arranged across the direction of transport, a respective, essentially constant air gap between magnet and carrier profile, as the loads are attached to the magnet, and mechanical means (3) for constant maintenance of the air gap, characterized in that the carrier profile (2) is a downward open U-profile (2), whose two legs form mutually parallel vertical profile walls. 2. Magnetkraftsystem ifølge krav 1,karakterisertved at det ved anordning mellom de to prof il vegger av minst to i lengderetningen henholdsvis transportretningen etter hverandre anordnede magneter, har magnetene, sett i transportretningen, en respektiv likepolet innretting, uten noen luftspalte mellom de på hverandre følgende magneter (1).2. Magnetic force system according to claim 1, characterized in that, when arranged between the two profile walls of at least two magnets arranged one behind the other in the longitudinal direction or the direction of transport, the magnets, seen in the direction of transport, have a respective equipolar alignment, without any air gap between the successive magnets ( 1). 3. Magnetkraftsystem ifølge krav 1,karakterisertved at det på den respektive utside av profilveggene er anordnet minst en med magneten/e mellom profilveggene korresponderende magnet (1), idet respektive likepolede magnetflater med hensyn på vertikalveggene er vendt mot hverandre.3. Magnetic force system according to claim 1, characterized in that at least one magnet (1) corresponding to the magnet/s between the profile walls is arranged on the respective outside of the profile walls, the respective magnetic surfaces of equal polarity facing each other with respect to the vertical walls. 4. Magnetkraftsystem ifølge krav 3,karakterisertved at de ytre magneter (1) er kortsluttede ved hjelp av en oppad åpen U-profil (4) og at den indre magnet (1) er avskjermet mot denne U-profil (4) ved hjelp av en isolasjonsplate (8).4. Magnetic power system according to claim 3, characterized in that the outer magnets (1) are short-circuited by means of an upwardly open U-profile (4) and that the inner magnet (1) is shielded against this U-profile (4) by means of an insulation plate (8). 5. Magnetkraftsystem ifølge de foregående krav,karakterisert vedat for øking av bærelasten er flere U-profiler (2) med tilsvarende tilordnede magneter (1) anordnet ved siden av hverandre.5. Magnetic power system according to the preceding claims, characterized in that, to increase the carrying load, several U-profiles (2) with correspondingly assigned magnets (1) are arranged next to each other.
NO874460A 1986-02-27 1987-10-26 MAGNETIC POWER SYSTEM FOR FRICTION-FREE TRANSPORT OF LOAD NO168571C (en)

Priority Applications (34)

Application Number Priority Date Filing Date Title
DE3635258A DE3635258C1 (en) 1986-02-27 1986-10-16 Magnetic force system for low-friction transport of loads
RO130197A RO105679B1 (en) 1986-02-27 1987-02-23 Magnetic system for transporting with reduced frictions of loads
PCT/EP1987/000100 WO1987005271A1 (en) 1986-02-27 1987-02-23 Magnetic power system for transporting charges without friction
BR8706040A BR8706040A (en) 1986-02-27 1987-02-23 MAGNETIC FORCE SYSTEM FOR THE TRANSPORT OF REDUCED FRICTION LOADS
EP87102547A EP0234543B1 (en) 1986-02-27 1987-02-23 Magnetic force system for low-friction transportation of loads
ES89710065T ES2022760B3 (en) 1986-02-27 1987-02-23 MAGNETIC FORCE SYSTEM FOR THE TRANSPORT WITHOUT LOADING OF LOADS
AT89710065T ATE63267T1 (en) 1986-02-27 1987-02-23 MAGNETIC POWER SYSTEM FOR LOW-FRICTION TRANSPORT OF LOADS.
HU871813A HU205302B (en) 1986-02-27 1987-02-23 Magnetic system for forwarding loads with low friction loss
JP62501792A JPH088724B2 (en) 1986-02-27 1987-02-23 Magnetic devices for low-friction transport of loads
RO148863A RO105680B1 (en) 1986-02-27 1987-02-23 Magnetic system for with reduced frictions of louds
ES87102547T ES2017652B3 (en) 1986-02-27 1987-02-23 MAGNETIC FORCE SYSTEM TO TRANSPORT LOADS WITH MINIMUM FRICTION.
EP89710065A EP0356370B1 (en) 1986-02-27 1987-02-23 Magnetic force system for low-friction transportation of loads
KR1019870700986A KR970011355B1 (en) 1986-02-27 1987-02-23 Magnetic power system for transporting charges without friction
SU874203537A RU2069156C1 (en) 1986-02-27 1987-02-23 Magnetic power system for transportation of load with low friction losses
AU71251/87A AU594756B2 (en) 1986-02-27 1987-02-23 Magnetic power system for transporting charges without friction
CA000530639A CA1270913A (en) 1986-02-27 1987-02-26 Magnetic power system for low-friction transportation of loads
CN87102608A CN1007505B (en) 1986-02-27 1987-02-27 Magnetic system for frictionless load-carring transport
MX005400A MX168302B (en) 1986-02-27 1987-02-27 MAGNETIC FORCE SYSTEM THROUGH GRIP ARMS FOR CARGO TRANSPORTATION
TR149/87A TR23073A (en) 1986-02-27 1987-02-27 MAGNETIC GUEC SYSTEM FOR CARRYING HIGHWAYS WITH LOW WATERPROOFING
PT84386A PT84386B (en) 1986-02-27 1987-02-27 MAGNETIC FORCE SYSTEM FOR THE TRANSPORT OF LOADS WITH REDUCED ATTRIT
MA21122A MA20886A1 (en) 1986-02-27 1987-02-27 Magnetic force system for load transport with little friction
CN89108553A CN1014504B (en) 1986-02-27 1987-02-27 Magnetic system for load transportion without friction
YU00315/87A YU31587A (en) 1986-02-27 1987-03-02 Low friction system for loads transporting based on magnetic forces
DK545487A DK167748B1 (en) 1986-02-27 1987-10-19 Magnetic power system for low-friction transport of loads
FI874694A FI89886C (en) 1986-02-27 1987-10-26 Magnetic power system for low-friction transport of loads
OA59331A OA08832A (en) 1986-02-27 1988-04-15 magnetic force system.
JP1304523A JPH088726B2 (en) 1986-02-27 1989-11-22 Magnetic devices for low-friction transport of loads
AU57099/90A AU617253B2 (en) 1986-02-27 1990-06-13 Magnetic force system for low-friction transportation of loads
NO904687A NO174497B (en) 1986-02-27 1990-10-29 Magnetic power system for low friction transport of cargo
GR90400921T GR3001078T3 (en) 1986-02-27 1990-11-15 Magnetic force system for low-friction transportation of loads
DK015291A DK168622B1 (en) 1986-02-27 1991-01-29 Magnetic power system for low friction transport of loads
GR91401034T GR3002334T3 (en) 1986-02-27 1991-07-18 Magnetic force system for low-friction transportation of loads
LVP-92-682A LV10411B (en) 1986-02-27 1992-12-30 Magnetic power system for transporting charges without friction
LVP-92-683A LV10412B (en) 1986-02-27 1992-12-30 Magnetic power system for transporting charges without friction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3606459 1986-02-27
DE3635258A DE3635258C1 (en) 1986-02-27 1986-10-16 Magnetic force system for low-friction transport of loads
PCT/EP1987/000100 WO1987005271A1 (en) 1986-02-27 1987-02-23 Magnetic power system for transporting charges without friction

Publications (4)

Publication Number Publication Date
NO874460D0 NO874460D0 (en) 1987-10-26
NO874460L NO874460L (en) 1987-10-26
NO168571B true NO168571B (en) 1991-12-02
NO168571C NO168571C (en) 1992-03-11

Family

ID=27194068

Family Applications (1)

Application Number Title Priority Date Filing Date
NO874460A NO168571C (en) 1986-02-27 1987-10-26 MAGNETIC POWER SYSTEM FOR FRICTION-FREE TRANSPORT OF LOAD

Country Status (2)

Country Link
MC (1) MC1861A1 (en)
NO (1) NO168571C (en)

Also Published As

Publication number Publication date
NO874460D0 (en) 1987-10-26
MC1861A1 (en) 1988-12-19
NO168571C (en) 1992-03-11
NO874460L (en) 1987-10-26

Similar Documents

Publication Publication Date Title
NO174497B (en) Magnetic power system for low friction transport of cargo
CN100372215C (en) Suspending, guiding and propelling vehicles using magnetic forces
US3158765A (en) Magnetic system of transportation
RU99124397A (en) INSTALLATION FOR MOVING PEOPLE FROM THE UPPER END TERMINAL STATION OF THE ROPE ROAD TO THE LOWER END STATION OF THE ROPE ROPE
US4142469A (en) Magnetic suspension system for railway vehicle with lifting force control
CN107190595A (en) Permanent magnetic levitation train rail system
US10487457B2 (en) Vertical switching in a magnetic levitation guideway transportation system
CN107735350A (en) Linear electric machine
CN111284330B (en) High-temperature superconducting electric magnetic suspension train
US3850109A (en) Transportation system employing magnetic levitation, guidance and propulsion
US5343811A (en) Magnetic power system for low-friction transportation of loads
US3896737A (en) Switch for a suspension railroad
CN108382264A (en) Permanent magnetism magnetic suspension linear electromagnetic propulsion system
US5253592A (en) Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor
CN114261287B (en) Permanent magnet-high temperature superconductive magnetic suspension rail transit system
CN109094422A (en) Suspension type rail transit equipment and magnetoelectricity mix suspending rail system therein
Suzuki et al. HSST-03 system
US5275112A (en) Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
US5222436A (en) Propulsion and stabilization system for magnetically levitated vehicles
NO168571B (en) MAGNETIC POWER SYSTEM FOR FRICTION-FREE TRANSPORT OF LOAD
US3760737A (en) Monorail
CN1257799A (en) Low-cost superhigh-speed magnetic hovertrain
Atherton et al. Flat guidance schemes for magnetically levitated high‐speed guided ground transport
US5476046A (en) Magnetic suspension and guidance system and method
KR970011355B1 (en) Magnetic power system for transporting charges without friction