NO164721B - ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS. - Google Patents
ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS. Download PDFInfo
- Publication number
- NO164721B NO164721B NO882485A NO882485A NO164721B NO 164721 B NO164721 B NO 164721B NO 882485 A NO882485 A NO 882485A NO 882485 A NO882485 A NO 882485A NO 164721 B NO164721 B NO 164721B
- Authority
- NO
- Norway
- Prior art keywords
- oven
- furnaces
- rails
- ovens
- cathode
- Prior art date
Links
- 238000005868 electrolysis reaction Methods 0.000 claims description 8
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims 1
- 230000005291 magnetic effect Effects 0.000 description 8
- 239000004020 conductor Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 235000000396 iron Nutrition 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/06—Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
- C25C3/16—Electric current supply devices, e.g. bus bars
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Processing Of Solid Wastes (AREA)
- Massaging Devices (AREA)
- Press Drives And Press Lines (AREA)
Description
Denne oppfinnelse angår en anordning av skinnesystemet på store tverrstilte elektrolyseovner i anlegg for smelteelektrolytisk fremstilling av aluminium, spesielt beregnet på ovner med strømuttak gjennom bunnen av katodekassen for slike ovner. This invention relates to an arrangement of the rail system on large transversally positioned electrolysis furnaces in facilities for smelting electrolytic production of aluminium, especially intended for furnaces with a power outlet through the bottom of the cathode box for such furnaces.
Det er vanlig ved smelteelektrolytisk fremstilling av aluminium å plassere ovnene etter hverandre, slik at det dannes to eller flere rekker med en senteravstand mellom rekkene på fra 30 til 50 m. Det er en fordel å arrangere ovnene i to eller et større like antall ovnsrekker, der særskilte ledere for tilbakeføring av strømmen derved blir unngått. Strømretningen i to naborekker vil ha motsatt fortegn. It is common in the smelting electrolytic production of aluminum to place the furnaces one after the other, so that two or more rows are formed with a center distance between the rows of from 30 to 50 m. It is an advantage to arrange the furnaces in two or a larger equal number of furnace rows, where separate conductors for returning the current are thereby avoided. The current direction in two neighboring rows will have the opposite sign.
Et alvorlig problem ved slike smelteelektrolytiske prosesser som idag benytter seg av strømstyrker opptil 300 kA, består i at ovnsrekkene har en betydelig magnetisk innvirkning på hverandre, slik at det smeltede metall som danner katoden i bunnen av hver ovn, blir utsatt for elektromagnetiske krefter som følge av den elektriske strøm som flyter gjennom metallet. Avstanden mellom to ovnsrekker er i praksis så stor at naborekken bare påvirker den loddrette feltvektor. For å kompen-sere for den uønskede eller skjeve vertikale feltvektor som skyldes naborekken, føres normalt mer strøm rundt eller under den kortenden av en tverrstilt elektrolyseovn som vender mot naborekken, enn i den andre enden av ovnen. Dette er en velkjent metode som det er tatt ut en rekke patenter på. Med den kjente teknikk er det altså mulig å lage et vertikalt magnetfelt som er symmetrisk om ovnenes lengdeakse og kortakse, men absoluttverdiene i ovnens hjørner vil lett bli større en 30 gauss, i enkelte tilfeller opp mot 100 gauss. A serious problem with such melting electrolytic processes, which today use currents of up to 300 kA, is that the furnace rows have a significant magnetic effect on each other, so that the molten metal that forms the cathode at the bottom of each furnace is exposed to electromagnetic forces as a result of the electric current flowing through the metal. The distance between two furnace rows is in practice so large that the neighboring row only affects the vertical field vector. In order to compensate for the unwanted or skewed vertical field vector caused by the neighboring row, normally more current is passed around or under the short end of a transverse electrolysis furnace that faces the neighboring row, than at the other end of the furnace. This is a well-known method for which a number of patents have been issued. With the known technique, it is therefore possible to create a vertical magnetic field which is symmetrical about the oven's longitudinal axis and short axis, but the absolute values in the corners of the oven will easily be greater than 30 gauss, in some cases up to 100 gauss.
Disse kjente løsninger krever dessuten et større forbruk av strømskinner med derav følgende økte investeringskostnader. These known solutions also require a greater consumption of busbars with consequent increased investment costs.
Det har vært et formål med foreliggende oppfinnelse å skape en så god og stabil ovnsdrift som mulig ved å redusere/senke vertikalfeltets absoluttverdier til et lavest mulig nivå. Videre har det samtidig vært et formål å eliminere den magnetiske påvirkning fra naborekken og redusere forbruket av strømskinner for derved å minske investeringskostnadene. It has been an aim of the present invention to create as good and stable furnace operation as possible by reducing/lowering the absolute values of the vertical field to the lowest possible level. Furthermore, it has also been an aim to eliminate the magnetic influence from the neighboring row and reduce the consumption of power rails in order to thereby reduce investment costs.
I henhold til oppfinnelsen er dette oppnådd1 ved at katodesamleskinnen 31, som ligger lengst fra neste ovn i ovnsrekken føres til neste ovn via to strømskinner som ligger utenfor hver kortende av ovnene samt via to, fire eller flere strøm-skinner anordnet under ovnene, hvorav de to strømskinnene som går utenfor hver ovn har et så stort tverrsnitt at de trekker omtrent dobbelt på mye strøm som hver av skinnene under ovnene, som angitt i krav 1. According to the invention, this is achieved1 by the cathode busbar 31, which is located farthest from the next oven in the oven row, is led to the next oven via two busbars located outside each short end of the ovens as well as via two, four or more busbars arranged under the ovens, of which the the two power rails that go outside each oven have such a large cross-section that they draw approximately twice as much current as each of the rails under the ovens, as stated in claim 1.
Fordelaktige trekk ved oppfinnelsen er angitt i de uselv-stendige kravene 2 - 4. Advantageous features of the invention are indicated in the non-independent claims 2 - 4.
Oppfinnelsen skal forklares nærmere i det følgende, under henvisning til Figur 1 som viser et eksempel på en ovn (vertikalsnitt) med strømuttak gjennom bunnen, og Figur 2 som viser en prinsippskisse av skinnesystemet for en slik ovn sett ovenfra. The invention will be explained in more detail in the following, with reference to Figure 1 which shows an example of an oven (vertical section) with a power outlet through the bottom, and Figure 2 which shows a principle sketch of the rail system for such an oven seen from above.
Under elektrolyseprosessen går elektrisk strøm fra anodene During the electrolysis process, electric current flows from the anodes
A gjennom badet og det flytende metall og videre ned gjennom katodekull C til to katodejern I pr. katodekull (her 23). Normalt går disse katodejernene ut gjennom siden av ovnene, men i dette tilfellet er en elektrisk leder R, av jern eller kobber, sveiset midt på hvert katodestål. Strømmen går via den ene lederen gjennom bunnen og videre via en fleksibel F til en samleskinne Bl og gjennom den andre lederen til en samleskinne B2. A through the bath and the liquid metal and further down through the cathode carbon C to two cathode irons I per cathode carbon (here 23). Normally these cathode irons exit through the side of the furnaces, but in this case an electric conductor R, of iron or copper, is welded in the center of each cathode steel. The current flows via one conductor through the bottom and further via a flexible F to a busbar Bl and through the other conductor to a busbar B2.
Antall katodekull som ligger parallelt i ovnene avhenger av lengden på hver ovn og bredden av katodekullene, men på moderne store ovner kan antallet være opp til 26 katodekull, i dette eksemplet 23 kull, se Figur 1. The number of cathode coals lying parallel in the furnaces depends on the length of each furnace and the width of the cathode coals, but on modern large furnaces the number can be up to 26 cathode coals, in this example 23 coals, see Figure 1.
Den ene samleskinnen Bl ligger under elektrolyseovnene, rett ned for langsiden av katodekassen, og den strekker seg ca. 0,5 m utenfor begge kortsidene av ovnene. Den andre B2 ligger på motsatt langside rett ned for denne siden av katodekassen. The one busbar Bl is located below the electrolysis furnaces, directly down the long side of the cathode box, and it extends approx. 0.5 m outside both short sides of the ovens. The other B2 is on the opposite long side directly below this side of the cathode box.
Selv om det her er angitt at samleskinnen Bl, B2 ligger rett ned for langsiden av katodekassen, er oppfinnelsen slik den er definert i kravene ikke begrenset til dette eksempel. Således har teoretiske beregninger vist at samle-skinnene fordelaktig kan ligge noe utenfor katodekassen og fortrinnsvis ca. 0,5 m fra denne. Although it is stated here that the busbars B1, B2 lie directly below the long side of the cathode box, the invention as defined in the claims is not limited to this example. Thus, theoretical calculations have shown that the busbars can advantageously lie somewhat outside the cathode box and preferably approx. 0.5 m from this.
En del av den strømmen som samles opp i samleskinne Bl går videre til ovn nr. 2 via to skinner, Kl og K6, som ligger utenfor hver kortende av ovnen, omtrent i samme høyde eller litt lavere enn det flytende metall i ovnene, se Figur 2, ovn 2. Resten av strømmen føres fram til samleskinne B2 via 4 skinner, K2, K3, K4 og K5 under ovnen, og derfra til neste ovn via stigelederne Sl, S2, S3, S4 og S5. Part of the current that is collected in busbar Bl goes on to furnace no. 2 via two rails, Kl and K6, which are located outside each short end of the furnace, approximately at the same height or slightly lower than the liquid metal in the furnaces, see Figure 2, furnace 2. The rest of the current is led to busbar B2 via 4 rails, K2, K3, K4 and K5 under the furnace, and from there to the next furnace via risers Sl, S2, S3, S4 and S5.
Strømfordelingen i de 6 skinner som fører strøm fra samleskinnen Bl er i denne oppfinnelse primært avhengig av tverrsnitt på skinnene Kl til K6. Dersom de to rekkene av elektrolyseovner står langt fra hverandre, for eksempel 50 m eller mer, slik at naborekken kan ses bort fra, bør tverrsnittet på skinnene Kl og K6 være omtrent dobbelt på stort som tverrsnittet på skinnene K2, K3, K4 og K5, som alle har omtrent samme skinnetverrsnitt. Dette vil gi en strømstyrke i Kl og K6 som er omtrent dobbelt så stor som i K2 til K5, og denne strømfordelingen vil gi et svært gunstig magnetfelt. Ved å benytte matematiske modeller for beregning av strøm-fordel ing i alle skinner i skinnesystemet og magnetfeltet i metallreserven, er det mulig å bestemme helt nøyaktig de skinnetverrsnitt som gir best magnetfelt. In this invention, the current distribution in the 6 rails which carry current from the busbar Bl is primarily dependent on the cross-section of the rails Kl to K6. If the two rows of electrolytic furnaces are far apart, for example 50 m or more, so that the neighboring row can be ignored, the cross-section of the rails Kl and K6 should be approximately twice as large as the cross-section of the rails K2, K3, K4 and K5, which all have roughly the same rail cross-section. This will give a current strength in Kl and K6 which is approximately twice as great as in K2 to K5, and this current distribution will give a very favorable magnetic field. By using mathematical models for calculating current distribution in all rails in the rail system and the magnetic field in the metal reserve, it is possible to determine exactly the rail cross-sections that give the best magnetic field.
Med den her beskrevne løsning gir skinnesystemet svært lave maksimale absoluttverdier for det vertikale magnetfelt som er mindre enn 10 gauss under hele anoden. Samtidig er ovnene With the solution described here, the rail system gives very low maximum absolute values for the vertical magnetic field, which is less than 10 gauss under the entire anode. At the same time, the ovens are
helt kompensert for magnetisk påvirkning fra naborekken, og forbruket av strømskinner er vesentlig redusert. completely compensated for magnetic influence from the neighboring row, and the consumption of power rails is significantly reduced.
Claims (1)
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO882485A NO164721C (en) | 1988-06-06 | 1988-06-06 | ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS. |
ES198989305150T ES2039859T3 (en) | 1988-06-06 | 1989-05-22 | DISPOSITION OF CONDUCTIVE BARS IN LARGE ELECTROLYSIS BUCKETS ARRANGED TRANSVERSALLY. |
EP89305150A EP0345959B1 (en) | 1988-06-06 | 1989-05-22 | Arrangement of busbars on large, transversely disposed electrolysis cells |
DE8989305150T DE68905242T2 (en) | 1988-06-06 | 1989-05-22 | ARRANGEMENT OF THE RAIL FOR LARGE CROSS-SIDED ELECTROLYSIS CELLS. |
NZ229292A NZ229292A (en) | 1988-06-06 | 1989-05-26 | Busbar configuration for aluminium reduction cell potline |
SU4614216A RU1813124C (en) | 1988-06-06 | 1989-06-05 | Bus arrangement of aluminum electrolyzers |
AU36066/89A AU619299B2 (en) | 1988-06-06 | 1989-06-06 | Arrangement of busbars on large, transversally disposed electrolysis cells |
CN89103887A CN1020480C (en) | 1988-06-06 | 1989-06-06 | Arrangement of busbars on large, transversally disposed electrolysis cells |
BR898902633A BR8902633A (en) | 1988-06-06 | 1989-06-06 | COLLECTING BAR ARRANGEMENT FOR A LINE OF ALUMINUM POTS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO882485A NO164721C (en) | 1988-06-06 | 1988-06-06 | ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS. |
Publications (4)
Publication Number | Publication Date |
---|---|
NO882485D0 NO882485D0 (en) | 1988-06-06 |
NO882485L NO882485L (en) | 1989-12-07 |
NO164721B true NO164721B (en) | 1990-07-30 |
NO164721C NO164721C (en) | 1990-11-07 |
Family
ID=19890954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO882485A NO164721C (en) | 1988-06-06 | 1988-06-06 | ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS. |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0345959B1 (en) |
CN (1) | CN1020480C (en) |
AU (1) | AU619299B2 (en) |
BR (1) | BR8902633A (en) |
DE (1) | DE68905242T2 (en) |
ES (1) | ES2039859T3 (en) |
NO (1) | NO164721C (en) |
NZ (1) | NZ229292A (en) |
RU (1) | RU1813124C (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6358393B1 (en) * | 1997-05-23 | 2002-03-19 | Moltech Invent S.A. | Aluminum production cell and cathode |
US6087800A (en) * | 1999-03-12 | 2000-07-11 | Eaton Corporation | Integrated soft starter for electric motor |
CA2457363C (en) * | 2001-08-09 | 2009-07-28 | Alcoa Inc. | Component cathode collector bar |
CN100451177C (en) * | 2004-08-06 | 2009-01-14 | 贵阳铝镁设计研究院 | Asymmetric type tank bottom bus and current distributing style |
CN100439566C (en) * | 2004-08-06 | 2008-12-03 | 贵阳铝镁设计研究院 | Five power-on bus distributing style with different current |
NO332480B1 (en) * | 2006-09-14 | 2012-09-24 | Norsk Hydro As | Electrolysis cell and method of operation of the same |
NO331318B1 (en) * | 2007-04-02 | 2011-11-21 | Norsk Hydro As | Procedure for operation of electrolysis cells connected in series as well as busbar system for the same |
FI121472B (en) * | 2008-06-05 | 2010-11-30 | Outotec Oyj | Method for Arranging Electrodes in the Electrolysis Process, Electrolysis System and Method Use, and / or System Use |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO139829C (en) * | 1977-10-19 | 1979-05-16 | Ardal Og Sunndal Verk | DEVICE FOR COMPENSATION OF HARMFUL MAGNETIC EFFECT BETWEEN TWO OR MORE ROWS OF TRANSFERRED ELECTROLYSIS OILS FOR MELTING ELECTROLYTIC MANUFACTURE OF ALUMINUM |
US4194959A (en) * | 1977-11-23 | 1980-03-25 | Alcan Research And Development Limited | Electrolytic reduction cells |
CH648065A5 (en) * | 1982-06-23 | 1985-02-28 | Alusuisse | RAIL ARRANGEMENT FOR ELECTROLYSIS CELLS OF AN ALUMINUM HUT. |
FR2552782B1 (en) * | 1983-10-04 | 1989-08-18 | Pechiney Aluminium | ELECTROLYSIS TANK WITH INTENSITY HIGHER THAN 250,000 AMPERES FOR THE PRODUCTION OF ALUMINUM BY THE HALL-HEROULT PROCESS |
-
1988
- 1988-06-06 NO NO882485A patent/NO164721C/en unknown
-
1989
- 1989-05-22 EP EP89305150A patent/EP0345959B1/en not_active Expired - Lifetime
- 1989-05-22 DE DE8989305150T patent/DE68905242T2/en not_active Expired - Fee Related
- 1989-05-22 ES ES198989305150T patent/ES2039859T3/en not_active Expired - Lifetime
- 1989-05-26 NZ NZ229292A patent/NZ229292A/en unknown
- 1989-06-05 RU SU4614216A patent/RU1813124C/en active
- 1989-06-06 CN CN89103887A patent/CN1020480C/en not_active Expired - Fee Related
- 1989-06-06 AU AU36066/89A patent/AU619299B2/en not_active Ceased
- 1989-06-06 BR BR898902633A patent/BR8902633A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
NO164721C (en) | 1990-11-07 |
RU1813124C (en) | 1993-04-30 |
CN1038846A (en) | 1990-01-17 |
EP0345959B1 (en) | 1993-03-10 |
CN1020480C (en) | 1993-05-05 |
NO882485D0 (en) | 1988-06-06 |
AU3606689A (en) | 1989-12-07 |
BR8902633A (en) | 1990-01-23 |
ES2039859T3 (en) | 1993-10-01 |
DE68905242D1 (en) | 1993-04-15 |
NO882485L (en) | 1989-12-07 |
NZ229292A (en) | 1991-01-29 |
EP0345959A1 (en) | 1989-12-13 |
DE68905242T2 (en) | 1993-08-12 |
AU619299B2 (en) | 1992-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO164721B (en) | ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS. | |
AU2005214817B2 (en) | Process and plant for electrodepositing copper | |
CN103649376A (en) | Aluminum smelter including cells having a cathode outlet through the base of the casing, and a means for stabilizing the cells | |
NO122680B (en) | ||
US4194958A (en) | Arrangement for compensating for detrimental magnetic influence between two or more rows of transverse electrolytic pots or cells for producing aluminum, by electrolytic reduction | |
CA1123786A (en) | Electrolytic reduction cell with compensating components in its magnetic field | |
SU682143A3 (en) | Apparatus for compensating for magnetic field in group of aluminium electrolyzers | |
NO322258B1 (en) | A method for electrical coupling and magnetic compensation of reduction cells for aluminum, and a system for this | |
NO128335B (en) | ||
US4474611A (en) | Arrangement of busbars for electrolytic reduction cells | |
NO317172B1 (en) | Rail device for electrolytic cells | |
NO150364B (en) | DEVICE FOR IMPROVING THE ELECTRIC CELL POWER SUPPLY FOR ALUMINUM MANUFACTURING | |
PL132150B1 (en) | Method of elimination of magnetic interference in seriesof electrolysers of very high voltage,located crosswise and apparatus therefor | |
US3775281A (en) | Plant for production of aluminum by electrolysis | |
RU2722026C2 (en) | Series of electrolytic cells for producing aluminum, comprising means for balancing the magnetic fields at the end of the row | |
NO139525B (en) | DEVICE FOR COMPENSATION OF HORIZONTAL MAGNETIC FIELDS IN MELTING ELECTROLYSIS OVENS | |
US4359377A (en) | Busbar arrangement for electrolytic cells | |
RU2678624C1 (en) | Modular busbar for series of aluminum electrolysis cells | |
RU2548352C2 (en) | Bus arrangement of lengthways located aluminium electrolysers | |
RU2339742C2 (en) | Bus arrangement of lengthway located aluminum electrolysers | |
RU2505626C1 (en) | Bus arrangement of electrolysis cell for producing aluminium | |
RU2259428C2 (en) | Equipping of powerful aluminum electrolyzers with the bus-bars | |
RU27108U1 (en) | 60-80 KA ELECTROLYZER COVER WITH LATERAL CURRENT | |
RU2259427C2 (en) | Equipping of an aluminum electrolyzing bath with the bus-bars | |
RU2162901C2 (en) | Bus arrangement of electrolyzer producing aluminum |