NO164721B - ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS. - Google Patents

ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS. Download PDF

Info

Publication number
NO164721B
NO164721B NO882485A NO882485A NO164721B NO 164721 B NO164721 B NO 164721B NO 882485 A NO882485 A NO 882485A NO 882485 A NO882485 A NO 882485A NO 164721 B NO164721 B NO 164721B
Authority
NO
Norway
Prior art keywords
oven
furnaces
rails
ovens
cathode
Prior art date
Application number
NO882485A
Other languages
Norwegian (no)
Other versions
NO882485D0 (en
NO882485L (en
NO164721C (en
Inventor
Hans Georg Tidemann Nebell
Fredrik Skatvedt
Original Assignee
Norsk Hydro As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19890954&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO164721(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Publication of NO882485D0 publication Critical patent/NO882485D0/en
Priority to NO882485A priority Critical patent/NO164721C/en
Application filed by Norsk Hydro As filed Critical Norsk Hydro As
Priority to DE8989305150T priority patent/DE68905242T2/en
Priority to ES198989305150T priority patent/ES2039859T3/en
Priority to EP89305150A priority patent/EP0345959B1/en
Priority to NZ229292A priority patent/NZ229292A/en
Priority to SU4614216A priority patent/RU1813124C/en
Priority to BR898902633A priority patent/BR8902633A/en
Priority to CN89103887A priority patent/CN1020480C/en
Priority to AU36066/89A priority patent/AU619299B2/en
Publication of NO882485L publication Critical patent/NO882485L/en
Publication of NO164721B publication Critical patent/NO164721B/en
Publication of NO164721C publication Critical patent/NO164721C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Massaging Devices (AREA)
  • Press Drives And Press Lines (AREA)
  • Processing Of Solid Wastes (AREA)

Description

Denne oppfinnelse angår en anordning av skinnesystemet på store tverrstilte elektrolyseovner i anlegg for smelteelektrolytisk fremstilling av aluminium, spesielt beregnet på ovner med strømuttak gjennom bunnen av katodekassen for slike ovner. This invention relates to an arrangement of the rail system on large transversally positioned electrolysis furnaces in facilities for smelting electrolytic production of aluminium, especially intended for furnaces with a power outlet through the bottom of the cathode box for such furnaces.

Det er vanlig ved smelteelektrolytisk fremstilling av aluminium å plassere ovnene etter hverandre, slik at det dannes to eller flere rekker med en senteravstand mellom rekkene på fra 30 til 50 m. Det er en fordel å arrangere ovnene i to eller et større like antall ovnsrekker, der særskilte ledere for tilbakeføring av strømmen derved blir unngått. Strømretningen i to naborekker vil ha motsatt fortegn. It is common in the smelting electrolytic production of aluminum to place the furnaces one after the other, so that two or more rows are formed with a center distance between the rows of from 30 to 50 m. It is an advantage to arrange the furnaces in two or a larger equal number of furnace rows, where separate conductors for returning the current are thereby avoided. The current direction in two neighboring rows will have the opposite sign.

Et alvorlig problem ved slike smelteelektrolytiske prosesser som idag benytter seg av strømstyrker opptil 300 kA, består i at ovnsrekkene har en betydelig magnetisk innvirkning på hverandre, slik at det smeltede metall som danner katoden i bunnen av hver ovn, blir utsatt for elektromagnetiske krefter som følge av den elektriske strøm som flyter gjennom metallet. Avstanden mellom to ovnsrekker er i praksis så stor at naborekken bare påvirker den loddrette feltvektor. For å kompen-sere for den uønskede eller skjeve vertikale feltvektor som skyldes naborekken, føres normalt mer strøm rundt eller under den kortenden av en tverrstilt elektrolyseovn som vender mot naborekken, enn i den andre enden av ovnen. Dette er en velkjent metode som det er tatt ut en rekke patenter på. Med den kjente teknikk er det altså mulig å lage et vertikalt magnetfelt som er symmetrisk om ovnenes lengdeakse og kortakse, men absoluttverdiene i ovnens hjørner vil lett bli større en 30 gauss, i enkelte tilfeller opp mot 100 gauss. A serious problem with such melting electrolytic processes, which today use currents of up to 300 kA, is that the furnace rows have a significant magnetic effect on each other, so that the molten metal that forms the cathode at the bottom of each furnace is exposed to electromagnetic forces as a result of the electric current flowing through the metal. The distance between two furnace rows is in practice so large that the neighboring row only affects the vertical field vector. In order to compensate for the unwanted or skewed vertical field vector caused by the neighboring row, normally more current is passed around or under the short end of a transverse electrolysis furnace that faces the neighboring row, than at the other end of the furnace. This is a well-known method for which a number of patents have been issued. With the known technique, it is therefore possible to create a vertical magnetic field which is symmetrical about the oven's longitudinal axis and short axis, but the absolute values in the corners of the oven will easily be greater than 30 gauss, in some cases up to 100 gauss.

Disse kjente løsninger krever dessuten et større forbruk av strømskinner med derav følgende økte investeringskostnader. These known solutions also require a greater consumption of busbars with consequent increased investment costs.

Det har vært et formål med foreliggende oppfinnelse å skape en så god og stabil ovnsdrift som mulig ved å redusere/senke vertikalfeltets absoluttverdier til et lavest mulig nivå. Videre har det samtidig vært et formål å eliminere den magnetiske påvirkning fra naborekken og redusere forbruket av strømskinner for derved å minske investeringskostnadene. It has been an aim of the present invention to create as good and stable furnace operation as possible by reducing/lowering the absolute values of the vertical field to the lowest possible level. Furthermore, it has also been an aim to eliminate the magnetic influence from the neighboring row and reduce the consumption of power rails in order to thereby reduce investment costs.

I henhold til oppfinnelsen er dette oppnådd1 ved at katodesamleskinnen 31, som ligger lengst fra neste ovn i ovnsrekken føres til neste ovn via to strømskinner som ligger utenfor hver kortende av ovnene samt via to, fire eller flere strøm-skinner anordnet under ovnene, hvorav de to strømskinnene som går utenfor hver ovn har et så stort tverrsnitt at de trekker omtrent dobbelt på mye strøm som hver av skinnene under ovnene, som angitt i krav 1. According to the invention, this is achieved1 by the cathode busbar 31, which is located farthest from the next oven in the oven row, is led to the next oven via two busbars located outside each short end of the ovens as well as via two, four or more busbars arranged under the ovens, of which the the two power rails that go outside each oven have such a large cross-section that they draw approximately twice as much current as each of the rails under the ovens, as stated in claim 1.

Fordelaktige trekk ved oppfinnelsen er angitt i de uselv-stendige kravene 2 - 4. Advantageous features of the invention are indicated in the non-independent claims 2 - 4.

Oppfinnelsen skal forklares nærmere i det følgende, under henvisning til Figur 1 som viser et eksempel på en ovn (vertikalsnitt) med strømuttak gjennom bunnen, og Figur 2 som viser en prinsippskisse av skinnesystemet for en slik ovn sett ovenfra. The invention will be explained in more detail in the following, with reference to Figure 1 which shows an example of an oven (vertical section) with a power outlet through the bottom, and Figure 2 which shows a principle sketch of the rail system for such an oven seen from above.

Under elektrolyseprosessen går elektrisk strøm fra anodene During the electrolysis process, electric current flows from the anodes

A gjennom badet og det flytende metall og videre ned gjennom katodekull C til to katodejern I pr. katodekull (her 23). Normalt går disse katodejernene ut gjennom siden av ovnene, men i dette tilfellet er en elektrisk leder R, av jern eller kobber, sveiset midt på hvert katodestål. Strømmen går via den ene lederen gjennom bunnen og videre via en fleksibel F til en samleskinne Bl og gjennom den andre lederen til en samleskinne B2. A through the bath and the liquid metal and further down through the cathode carbon C to two cathode irons I per cathode carbon (here 23). Normally these cathode irons exit through the side of the furnaces, but in this case an electric conductor R, of iron or copper, is welded in the center of each cathode steel. The current flows via one conductor through the bottom and further via a flexible F to a busbar Bl and through the other conductor to a busbar B2.

Antall katodekull som ligger parallelt i ovnene avhenger av lengden på hver ovn og bredden av katodekullene, men på moderne store ovner kan antallet være opp til 26 katodekull, i dette eksemplet 23 kull, se Figur 1. The number of cathode coals lying parallel in the furnaces depends on the length of each furnace and the width of the cathode coals, but on modern large furnaces the number can be up to 26 cathode coals, in this example 23 coals, see Figure 1.

Den ene samleskinnen Bl ligger under elektrolyseovnene, rett ned for langsiden av katodekassen, og den strekker seg ca. 0,5 m utenfor begge kortsidene av ovnene. Den andre B2 ligger på motsatt langside rett ned for denne siden av katodekassen. The one busbar Bl is located below the electrolysis furnaces, directly down the long side of the cathode box, and it extends approx. 0.5 m outside both short sides of the ovens. The other B2 is on the opposite long side directly below this side of the cathode box.

Selv om det her er angitt at samleskinnen Bl, B2 ligger rett ned for langsiden av katodekassen, er oppfinnelsen slik den er definert i kravene ikke begrenset til dette eksempel. Således har teoretiske beregninger vist at samle-skinnene fordelaktig kan ligge noe utenfor katodekassen og fortrinnsvis ca. 0,5 m fra denne. Although it is stated here that the busbars B1, B2 lie directly below the long side of the cathode box, the invention as defined in the claims is not limited to this example. Thus, theoretical calculations have shown that the busbars can advantageously lie somewhat outside the cathode box and preferably approx. 0.5 m from this.

En del av den strømmen som samles opp i samleskinne Bl går videre til ovn nr. 2 via to skinner, Kl og K6, som ligger utenfor hver kortende av ovnen, omtrent i samme høyde eller litt lavere enn det flytende metall i ovnene, se Figur 2, ovn 2. Resten av strømmen føres fram til samleskinne B2 via 4 skinner, K2, K3, K4 og K5 under ovnen, og derfra til neste ovn via stigelederne Sl, S2, S3, S4 og S5. Part of the current that is collected in busbar Bl goes on to furnace no. 2 via two rails, Kl and K6, which are located outside each short end of the furnace, approximately at the same height or slightly lower than the liquid metal in the furnaces, see Figure 2, furnace 2. The rest of the current is led to busbar B2 via 4 rails, K2, K3, K4 and K5 under the furnace, and from there to the next furnace via risers Sl, S2, S3, S4 and S5.

Strømfordelingen i de 6 skinner som fører strøm fra samleskinnen Bl er i denne oppfinnelse primært avhengig av tverrsnitt på skinnene Kl til K6. Dersom de to rekkene av elektrolyseovner står langt fra hverandre, for eksempel 50 m eller mer, slik at naborekken kan ses bort fra, bør tverrsnittet på skinnene Kl og K6 være omtrent dobbelt på stort som tverrsnittet på skinnene K2, K3, K4 og K5, som alle har omtrent samme skinnetverrsnitt. Dette vil gi en strømstyrke i Kl og K6 som er omtrent dobbelt så stor som i K2 til K5, og denne strømfordelingen vil gi et svært gunstig magnetfelt. Ved å benytte matematiske modeller for beregning av strøm-fordel ing i alle skinner i skinnesystemet og magnetfeltet i metallreserven, er det mulig å bestemme helt nøyaktig de skinnetverrsnitt som gir best magnetfelt. In this invention, the current distribution in the 6 rails which carry current from the busbar Bl is primarily dependent on the cross-section of the rails Kl to K6. If the two rows of electrolytic furnaces are far apart, for example 50 m or more, so that the neighboring row can be ignored, the cross-section of the rails Kl and K6 should be approximately twice as large as the cross-section of the rails K2, K3, K4 and K5, which all have roughly the same rail cross-section. This will give a current strength in Kl and K6 which is approximately twice as great as in K2 to K5, and this current distribution will give a very favorable magnetic field. By using mathematical models for calculating current distribution in all rails in the rail system and the magnetic field in the metal reserve, it is possible to determine exactly the rail cross-sections that give the best magnetic field.

Med den her beskrevne løsning gir skinnesystemet svært lave maksimale absoluttverdier for det vertikale magnetfelt som er mindre enn 10 gauss under hele anoden. Samtidig er ovnene With the solution described here, the rail system gives very low maximum absolute values for the vertical magnetic field, which is less than 10 gauss under the entire anode. At the same time, the ovens are

helt kompensert for magnetisk påvirkning fra naborekken, og forbruket av strømskinner er vesentlig redusert. completely compensated for magnetic influence from the neighboring row, and the consumption of power rails is significantly reduced.

Claims (1)

Skinnesystem for store tverrstilte elektrolyseovner med minst ett strømuttak (R) pr. katodehull som er ført gjennom bunnen av elektrolyseovnene, og hvor omtrent halvparten av elektrolysestrømmen føres til en katodesamleskinne (Bl) og resten av elektrolysestrømmen føres til en katodesamleskinne (B2) ,karakterisert ved at katodesamleskinnene (B1,B2) respektive er anordnet under hver av ovnene og ved hver sin side av disse, og at elektrisk strøm fra katodesamleskinnen (Bl), som ligger lengst fra neste ovn i ovnsrekken, føres til neste ovn via to strømskinner (K1,K6) som ligger utenfor hver kortende av ovnene samt via parvis to (K2,K5), fire (K2,K3,K4,K5) eller flere strømskinner anordnet under ovnene, hvorav de to strømskinnene (K1,K6) som går utenfor hver ovn har et så stort tverrsnitt at de trekker omtrent dobbelt så mye strøm som hver av skinnene (K2-K5) under ovnene. Skinnesystem ifølge krav 1,karakterisert ved at det er anordnet to strømskinner (K2,K5) under ovnene og at disse er beliggende ved ovnenes kortsider. Skinnesystem ifølge krav 1,karakterisert ved at det er anordnet fire strømskinner (K2-K5) og at to av disse (K2 og K5) hver er anordnet ved ovnenes kortsider, mens de to andre strømskinnene (K3 og K4) hver er anordnet midt mellom kortsidenes ender og ovnenes midtparti. 4. Skinnesystem ifølge krav 1,Rail system for large transverse electrolysis furnaces with at least one power outlet (R) per cathode hole which is led through the bottom of the electrolysis furnaces, and where approximately half of the electrolysis current is led to a cathode busbar (Bl) and the rest of the electrolysis current is led to a cathode busbar (B2), characterized in that the cathode busbars (B1, B2) are respectively arranged under each of the furnaces and at each side of these, and that electric current from the cathode busbar (Bl), which is located furthest from the next oven in the oven row, is led to the next oven via two current rails (K1, K6) which are located outside each short end of the ovens and via paired two (K2,K5), four (K2,K3,K4,K5) or more busbars arranged under the ovens, of which the two busbars (K1,K6) that go outside each oven have such a large cross-section that they draw approximately twice as much electricity as each of the rails (K2-K5) under the ovens. Rail system according to claim 1, characterized in that two power rails (K2, K5) are arranged under the ovens and that these are located on the short sides of the ovens. Rail system according to claim 1, characterized in that there are four power rails (K2-K5) and that two of these (K2 and K5) are each arranged at the short sides of the oven, while the other two power rails (K3 and K4) are each arranged in the middle the ends of the short sides and the middle part of the oven. 4. Rail system according to claim 1, karakterisert ved atcharacterized by that skinnene (K1,K6) som ligger utenfor hver kortende av ovnene er beliggende i høyde med det flytende metall i ovnene.the rails (K1,K6) which are located outside each short end of the furnaces are located at the height of the liquid metal in the furnaces.
NO882485A 1988-06-06 1988-06-06 ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS. NO164721C (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
NO882485A NO164721C (en) 1988-06-06 1988-06-06 ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS.
DE8989305150T DE68905242T2 (en) 1988-06-06 1989-05-22 ARRANGEMENT OF THE RAIL FOR LARGE CROSS-SIDED ELECTROLYSIS CELLS.
ES198989305150T ES2039859T3 (en) 1988-06-06 1989-05-22 DISPOSITION OF CONDUCTIVE BARS IN LARGE ELECTROLYSIS BUCKETS ARRANGED TRANSVERSALLY.
EP89305150A EP0345959B1 (en) 1988-06-06 1989-05-22 Arrangement of busbars on large, transversely disposed electrolysis cells
NZ229292A NZ229292A (en) 1988-06-06 1989-05-26 Busbar configuration for aluminium reduction cell potline
SU4614216A RU1813124C (en) 1988-06-06 1989-06-05 Bus arrangement of aluminum electrolyzers
AU36066/89A AU619299B2 (en) 1988-06-06 1989-06-06 Arrangement of busbars on large, transversally disposed electrolysis cells
CN89103887A CN1020480C (en) 1988-06-06 1989-06-06 Arrangement of busbars on large, transversally disposed electrolysis cells
BR898902633A BR8902633A (en) 1988-06-06 1989-06-06 COLLECTING BAR ARRANGEMENT FOR A LINE OF ALUMINUM POTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO882485A NO164721C (en) 1988-06-06 1988-06-06 ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS.

Publications (4)

Publication Number Publication Date
NO882485D0 NO882485D0 (en) 1988-06-06
NO882485L NO882485L (en) 1989-12-07
NO164721B true NO164721B (en) 1990-07-30
NO164721C NO164721C (en) 1990-11-07

Family

ID=19890954

Family Applications (1)

Application Number Title Priority Date Filing Date
NO882485A NO164721C (en) 1988-06-06 1988-06-06 ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS.

Country Status (9)

Country Link
EP (1) EP0345959B1 (en)
CN (1) CN1020480C (en)
AU (1) AU619299B2 (en)
BR (1) BR8902633A (en)
DE (1) DE68905242T2 (en)
ES (1) ES2039859T3 (en)
NO (1) NO164721C (en)
NZ (1) NZ229292A (en)
RU (1) RU1813124C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7074598A (en) * 1997-05-23 1998-12-11 Moltech Invent S.A. Aluminium production cell and cathode
US6087800A (en) * 1999-03-12 2000-07-11 Eaton Corporation Integrated soft starter for electric motor
CA2457363C (en) * 2001-08-09 2009-07-28 Alcoa Inc. Component cathode collector bar
CN100439566C (en) * 2004-08-06 2008-12-03 贵阳铝镁设计研究院 Five power-on bus distributing style with different current
CN100451177C (en) * 2004-08-06 2009-01-14 贵阳铝镁设计研究院 Asymmetric type tank bottom bus and current distributing style
NO332480B1 (en) * 2006-09-14 2012-09-24 Norsk Hydro As Electrolysis cell and method of operation of the same
NO331318B1 (en) * 2007-04-02 2011-11-21 Norsk Hydro As Procedure for operation of electrolysis cells connected in series as well as busbar system for the same
FI121472B (en) * 2008-06-05 2010-11-30 Outotec Oyj Method for Arranging Electrodes in the Electrolysis Process, Electrolysis System and Method Use, and / or System Use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO139829C (en) * 1977-10-19 1979-05-16 Ardal Og Sunndal Verk DEVICE FOR COMPENSATION OF HARMFUL MAGNETIC EFFECT BETWEEN TWO OR MORE ROWS OF TRANSFERRED ELECTROLYSIS OILS FOR MELTING ELECTROLYTIC MANUFACTURE OF ALUMINUM
US4194959A (en) * 1977-11-23 1980-03-25 Alcan Research And Development Limited Electrolytic reduction cells
CH648065A5 (en) * 1982-06-23 1985-02-28 Alusuisse RAIL ARRANGEMENT FOR ELECTROLYSIS CELLS OF AN ALUMINUM HUT.
FR2552782B1 (en) * 1983-10-04 1989-08-18 Pechiney Aluminium ELECTROLYSIS TANK WITH INTENSITY HIGHER THAN 250,000 AMPERES FOR THE PRODUCTION OF ALUMINUM BY THE HALL-HEROULT PROCESS

Also Published As

Publication number Publication date
RU1813124C (en) 1993-04-30
DE68905242D1 (en) 1993-04-15
EP0345959A1 (en) 1989-12-13
EP0345959B1 (en) 1993-03-10
CN1020480C (en) 1993-05-05
AU619299B2 (en) 1992-01-23
AU3606689A (en) 1989-12-07
ES2039859T3 (en) 1993-10-01
NZ229292A (en) 1991-01-29
DE68905242T2 (en) 1993-08-12
CN1038846A (en) 1990-01-17
NO882485D0 (en) 1988-06-06
NO882485L (en) 1989-12-07
NO164721C (en) 1990-11-07
BR8902633A (en) 1990-01-23

Similar Documents

Publication Publication Date Title
NO164721B (en) ASSEMBLY OF SKIN SYSTEMS ON LARGE TRANSFERRED ELECTRIC OVERS.
CN101092712A (en) A device for compensating a magnetic field induced in a linearly arranged series of electrolysis cells by an adjacent generally parallel line of cells
CN103649376A (en) Aluminum smelter including cells having a cathode outlet through the base of the casing, and a means for stabilizing the cells
AU2005214817B2 (en) Process and plant for electrodepositing copper
NO122680B (en)
US4194958A (en) Arrangement for compensating for detrimental magnetic influence between two or more rows of transverse electrolytic pots or cells for producing aluminum, by electrolytic reduction
CA1123786A (en) Electrolytic reduction cell with compensating components in its magnetic field
KR850001537B1 (en) A process for eliminating magnetic disturbances in transversely positioned very high intensity electrolytic cells
NO322258B1 (en) A method for electrical coupling and magnetic compensation of reduction cells for aluminum, and a system for this
NO128335B (en)
US4474611A (en) Arrangement of busbars for electrolytic reduction cells
NO317172B1 (en) Rail device for electrolytic cells
NO150364B (en) DEVICE FOR IMPROVING THE ELECTRIC CELL POWER SUPPLY FOR ALUMINUM MANUFACTURING
US3775281A (en) Plant for production of aluminum by electrolysis
RU2722026C2 (en) Series of electrolytic cells for producing aluminum, comprising means for balancing the magnetic fields at the end of the row
NO130121B (en)
NO139525B (en) DEVICE FOR COMPENSATION OF HORIZONTAL MAGNETIC FIELDS IN MELTING ELECTROLYSIS OVENS
US4359377A (en) Busbar arrangement for electrolytic cells
RU2548352C2 (en) Bus arrangement of lengthways located aluminium electrolysers
RU2339742C2 (en) Bus arrangement of lengthway located aluminum electrolysers
RU2505626C1 (en) Bus arrangement of electrolysis cell for producing aluminium
RU2259428C2 (en) Equipping of powerful aluminum electrolyzers with the bus-bars
RU2678624C1 (en) Modular busbar for series of aluminum electrolysis cells
RU27108U1 (en) 60-80 KA ELECTROLYZER COVER WITH LATERAL CURRENT
RU2259427C2 (en) Equipping of an aluminum electrolyzing bath with the bus-bars