NO128335B - - Google Patents

Download PDF

Info

Publication number
NO128335B
NO128335B NO04555/71*[A NO455571A NO128335B NO 128335 B NO128335 B NO 128335B NO 455571 A NO455571 A NO 455571A NO 128335 B NO128335 B NO 128335B
Authority
NO
Norway
Prior art keywords
cathode
carbon
blocks
furnace
current
Prior art date
Application number
NO04555/71*[A
Other languages
Norwegian (no)
Inventor
H Wittner
K Lauer
Original Assignee
Giulini Gmbh Geb
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19702061263 external-priority patent/DE2061263C3/en
Application filed by Giulini Gmbh Geb filed Critical Giulini Gmbh Geb
Publication of NO128335B publication Critical patent/NO128335B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

Av enkeltblokker oppbygget karbonkatode Carbon cathode made up of single blocks

i elektrolyseceller for fremstilling av aluminium. in electrolytic cells for the production of aluminium.

Oppf imelsens gjenstand er aluminiumfremstilling i elektrolyseovner med en katode av karbonblokker av avtrinnet ledningsevne. The object of the invention is aluminum production in electrolytic furnaces with a cathode of carbon blocks of graded conductivity.

Ved aluminiumfremstiilingen ved smelteelektrolyse av i kryolitt oppløst aluminiumoksyd anvendes som bekjent elektrolyseovner hvis bunner består av flere karbonblokker som danner katodene. Ved hjelp av en egnet forbindelsesmasse, f.eks; utbrent elektrodemasse, forbindes disse karbonblokker således med hverandre at det oppstår en for det derover hvilende flytende metall ugjennomtrengelig bunn. De i en ovnsbunn sammenføyde karbonblokker har de samme kjemiske og fysi-kalske egenskaper, således at det hittil kunne sees bor fra en bestemt rekkefølge ved anordning av karbonblokkene. In the production of aluminum by melt electrolysis of aluminum oxide dissolved in cryolite, electrolytic furnaces are used as is known, the bottoms of which consist of several carbon blocks which form the cathodes. By means of a suitable compound, e.g.; burned out electrode mass, these carbon blocks are connected to each other in such a way that a bottom is created that is impermeable to the liquid metal resting above it. The carbon blocks joined together in a furnace bottom have the same chemical and physical properties, so that until now boron could be seen from a specific order when arranging the carbon blocks.

Det har i praktisk élektrolysedrift imid^?tid vist' seg at således sammensatte karbonkatoder har ulemper for ovnsgangen, spesielt ved elektrolyseovner med høye strømstyrker. Således skyter eksempelvis ovnsbunnen opp i området for ovnsmidte, hvilket fører til en nedset-telse av katodearbeidstiden. Også strømytbyttet påvirkes...negativt på grunn av badopplivning på grunn av usymmetrier av magnetfeltene. In practical electrolysis operation, it has recently been shown that carbon cathodes composed in this way have disadvantages for the furnace process, especially in electrolysis furnaces with high currents. Thus, for example, the furnace bottom shoots up in the area of furnace scum, which leads to a reduction in the cathode working time. The current surface exchange is also affected...negatively due to bath excitation due to asymmetries of the magnetic fields.

Det forelå således den; oppgave å utforme katodens oppbygning således at de ovennevnte ulemper unngåes. Løsningen.er,basert på. den erkjennelse, at ved de kjente, av karbonblokker av samme elektriske ledningsevne oppbygde katoder eksisterer et elektrisk motstandsfall fra ovnsmidten (lengdeaksen) til de på siden anordnede strømbortførelser og at derved vil elektrolysestrømmenved inntreden i det flytende katode-aluminiumsjikt bli ført til ovnskarets ytre lengdesider. Det har til følge at elektrolysestrømmen knapt påvirker karbonkatoden i ovnsmidten, imidlertid meget sterkt mot ovnslengdesidene. There was thus the; task to design the structure of the cathode in such a way that the above-mentioned disadvantages are avoided. The solution is based on the recognition that with the known cathodes made up of carbon blocks of the same electrical conductivity, there is an electrical resistance drop from the middle of the furnace (longitudinal axis) to the side-arranged current removals and that the electrolytic current will thereby be led to the outer longitudinal sides of the furnace body upon entering the liquid cathode-aluminum layer. The result is that the electrolysis current hardly affects the carbon cathode in the middle of the furnace, but very strongly towards the longitudinal sides of the furnace.

Løsningen består nå i at elektrolysestrømmen utjevnes i-aluminiumelektrolyseovner over karbonkatoder. Strømtettheten har der-med over det samlede katodeområde samme eller omtrent samme verdi. The solution now consists in the electrolysis current being equalized in aluminum electrolysis furnaces over carbon cathodes. The current density therefore has the same or approximately the same value over the total cathode area.

Oppfinnelsen vedrører altså av enkeltblokker oppbygget karbonkatode i elektrolysecelle for fremstilling av aluminium, idet katoden er karakterisert ved at karbonblokker med forskjellig elektrisk ledningsevne er slik anordnet at motstanden av-den sammensatte katode øker i retning av den katodiske strømleder som forbinder katodebarenes ender med strømskinnene. The invention therefore relates to a carbon cathode made up of individual blocks in an electrolysis cell for the production of aluminium, the cathode being characterized by the fact that carbon blocks with different electrical conductivity are arranged in such a way that the resistance of the composite cathode increases in the direction of the cathodic current conductor which connects the ends of the cathode bars to the current rails.

I elektrolyseovner med horisontalt anordnede gjennomgående eller oppdelte katodebarer vil man følgelig anordne karbonblokkene i katoden således at den elektriske motstand av karbonblokkene øker fra katodemidten trinnvis i retning til den katodiske strømbortf ører. An-tallet av karbonblokker og deres motstandskarakteristika retter seg hver'gang etter ovnstype og ovnsstørrelse- og må derfor hver gang ny-beregnes for forskjellige aluminiumelektrolyseovner. In electrolytic furnaces with horizontally arranged continuous or divided cathode bars, the carbon blocks in the cathode will consequently be arranged in such a way that the electrical resistance of the carbon blocks increases step by step from the center of the cathode in the direction of the cathodic current conductor. The number of carbon blocks and their resistance characteristics each time depends on the furnace type and furnace size - and must therefore be recalculated each time for different aluminum electrolysis furnaces.

Oppfinnelsen er nærmere forklårt pa- den skjematiske tegn-ing, hvor The invention is explained in more detail on the schematic drawing, where

fig. 1 viser karbonkatoden av en elektrolyseovn .med 13 katodebarer, fig. 1 shows the carbon cathode of an electrolytic furnace with 13 cathode bars,

"fig. 2 a og b viser oppriss av en katodebarre med påsatte katodeblokker og snitt gjennom en katodeblokk ifølge fig. 1. "fig. 2 a and b show an elevation of a cathode bar with attached cathode blocks and a section through a cathode block according to fig. 1.

På fig. 1 er elektrolyseovnens katodeblokker betegnet med 1, katodebarrene med 2 og karbonblokkene med 3, 4 og 5- Belastes elektrolyseovner med slike tilstilte katoder med strømstyrker på 110.000 A, så innstiller det seg en jevn katodisk strømfordeling når. de spesifikke motstandsverdier gjg ^ og ^qQ av karbonblokkene 5, 4 og 3 ved 9,0, 22,2 og 35,5 flmm2. Referansetallene 6 og 7 antyder den elektriske motstand av jernbarrene mellom katodeblokkene. In fig. 1, the electrolytic furnace's cathode blocks are denoted by 1, the cathode ingots by 2 and the carbon blocks by 3, 4 and 5 - If electrolytic furnaces are loaded with such provided cathodes with currents of 110,000 A, then an even cathodic current distribution is established when. the specific resistance values gjg ^ and ^qQ of the carbon blocks 5, 4 and 3 at 9.0, 22.2 and 35.5 flmm2. Reference numbers 6 and 7 indicate the electrical resistance of the iron bars between the cathode blocks.

Claims (1)

Av enkeltblokker oppbygget karbonkatode i elektrolyseceller for fremstilling av aluminium, karakterisert ved at karbonblokker med forskjellig elektrisk ledningsevne (35 ^ og 5) er slik anordnet at motstanden av den sammensatte katode øker i retning av den katodiske strømleder som forbinder katodebarrenes (2) ender med strømskinnene.Carbon cathode made up of single blocks in electrolytic cells for the production of aluminium, characterized in that carbon blocks with different electrical conductivity (35 ^ and 5) are arranged in such a way that the resistance of the composite cathode increases in the direction of the cathodic current conductor which connects the ends of the cathode bars (2) with the current rails .
NO04555/71*[A 1970-12-12 1971-12-10 NO128335B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19702061263 DE2061263C3 (en) 1970-12-12 Aluminum production in an electrolysis furnace by fused-salt electrolysis with a cathode made of carbon blocks of graded conductivity

Publications (1)

Publication Number Publication Date
NO128335B true NO128335B (en) 1973-10-29

Family

ID=5790788

Family Applications (1)

Application Number Title Priority Date Filing Date
NO04555/71*[A NO128335B (en) 1970-12-12 1971-12-10

Country Status (7)

Country Link
US (1) US3787311A (en)
JP (1) JPS5539630B1 (en)
CA (1) CA968744A (en)
FR (1) FR2117960B1 (en)
IT (1) IT940400B (en)
NL (1) NL7117021A (en)
NO (1) NO128335B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001104A (en) * 1974-01-03 1977-01-04 Union Carbide Corporation Cemented collector bar assemblies for aluminum cell carbon bottom block
CH620948A5 (en) * 1976-05-13 1980-12-31 Alusuisse
US4194959A (en) * 1977-11-23 1980-03-25 Alcan Research And Development Limited Electrolytic reduction cells
FR2566002B1 (en) * 1984-06-13 1986-11-21 Pechiney Aluminium MODULAR CATHODE BLOCK AND LOW VOLTAGE DROP CATHODE FOR HALL-HEROULT ELECTROLYSIS TANKS
NO157462C (en) * 1985-10-24 1988-03-23 Hydro Aluminium As LAMINATED CARBON CATHOD FOR CELLS-MELT-ELECTROLYTIC ALUMINUM PREPARATION.
FR2789091B1 (en) 1999-02-02 2001-03-09 Carbone Savoie GRAPHITE CATHODE FOR ALUMINUM ELECTROLYSIS
EP1233083A1 (en) * 2001-02-14 2002-08-21 Alcan Technology & Management AG Carbon bottom of electrolysis cell used in the production of aluminum
DE10164011C1 (en) * 2001-12-28 2003-05-08 Sgl Carbon Ag Process, for graphitizing cathode blocks, involves arranging the blocks in a longitudinal graphitizing furnace, maintaining the a lowest possible distance between the surfaces of the blocks, and passing a current between the blocks
DE10164014C1 (en) * 2001-12-28 2003-05-22 Sgl Carbon Ag Process for graphitizing cathode blocks comprises arranging cathode blocks in a longitudinal graphitizing oven so that the conducting joint between the individual blocks are produced by a conducting contact body
DE10164013C1 (en) * 2001-12-28 2003-04-03 Sgl Carbon Ag Longitudinal graphitization of cathode blocks for electrolytic production of aluminum comprises arranging blocks with gap between their ends, conductive moldings being placed between blocks
NO2650404T3 (en) * 2012-04-12 2018-06-09
CN104451777A (en) * 2013-09-25 2015-03-25 贵阳铝镁设计研究院有限公司 Collocation method of anode on electrolytic bath
NO20141572A1 (en) 2014-12-23 2016-06-24 Norsk Hydro As A modified electrolytic cell and a method for modifying the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2728109A (en) * 1952-06-06 1955-12-27 Savoie Electrodes Refract Method of making cathodic electrodes for electrolysis furnaces
US2786024A (en) * 1953-04-16 1957-03-19 Elektrokemisk As Arrangement of cathode bars in electrolytic pots
US3582483A (en) * 1962-06-29 1971-06-01 Elektrokemisk As Process for electrolytically producing aluminum
DE1187809B (en) * 1963-11-22 1965-02-25 Vaw Ver Aluminium Werke Ag Electrolysis cell for the production of aluminum by melt flow electrolysis
US3385778A (en) * 1964-10-21 1968-05-28 Aluminum Co Of America Current collecting method and apparatus for aluminum reduction cells
US3514520A (en) * 1967-02-01 1970-05-26 Montedison Spa Linings of electrolysis,remelting,and similar furnaces,containing molten metals,alone or together with molten salts

Also Published As

Publication number Publication date
NL7117021A (en) 1972-06-14
US3787311A (en) 1974-01-22
IT940400B (en) 1973-02-10
CA968744A (en) 1975-06-03
DE2061263B2 (en) 1975-06-26
JPS5539630B1 (en) 1980-10-13
FR2117960B1 (en) 1974-11-15
FR2117960A1 (en) 1972-07-28
DE2061263A1 (en) 1972-06-29

Similar Documents

Publication Publication Date Title
US6387237B1 (en) Cathode collector bar with spacer for improved heat balance and method
NO128335B (en)
JPS5943890A (en) Metal electrolytic manufacture and device
US10407786B2 (en) Systems and methods for purifying aluminum
EP1147246B1 (en) Cathode collector bar with spacer for improved heat balance
GB1169012A (en) Furnace and Process for Producing, in Fused Bath, Metals from their Oxides, and Electrolytic Furnaces having Multiple Cells formed by Horizontal Bipolar Carbon Electrodes
US3219563A (en) Multi-electrolytic cell comprising a plurality of diaphragm-free unit cells and the use of same for preparing alkali metal chlorates
AU2005214817B2 (en) Process and plant for electrodepositing copper
US4882017A (en) Method and apparatus for making light metal-alkali metal master alloy using alkali metal-containing scrap
US3067124A (en) Furnace for fused-bath electrolysis, particularly for aluminum production from alo
US4110179A (en) Process and device for the production of aluminium by the electrolysis of a molten charge
NO840881L (en) CELL FOR REFINING ALUMINUM
US3202600A (en) Current conducting element for aluminum reduction cells
US3775281A (en) Plant for production of aluminum by electrolysis
GB1046705A (en) Improvements in or relating to the operation of electrolytic reduction cells for theproduction of aluminium
GB1352268A (en) Electrolytic cells for manufacture of aluminium
US3161579A (en) Electrolytic cell for the production of aluminum
US2539743A (en) Electrolytic refining of impure aluminum
US3736244A (en) Electrolytic cells for the production of aluminum
US2552423A (en) Process for the direct production of refined aluminum
US2511686A (en) Tank for aqueous electrolysis
US3503857A (en) Method for producing magnesium ferrosilicon
GB812817A (en) Electrolytic production of titanium
US3676323A (en) Fused salt electrolyzer for magnesium production
JPS5993894A (en) Electrolytic winning of metallic mg using low density bath