NO162059B - DEVICE FOR TEMPERATURE CONTROL AND VENTILATION FOR VEHICLES TRANSPORTING PASSENGERS. - Google Patents

DEVICE FOR TEMPERATURE CONTROL AND VENTILATION FOR VEHICLES TRANSPORTING PASSENGERS. Download PDF

Info

Publication number
NO162059B
NO162059B NO860492A NO860492A NO162059B NO 162059 B NO162059 B NO 162059B NO 860492 A NO860492 A NO 860492A NO 860492 A NO860492 A NO 860492A NO 162059 B NO162059 B NO 162059B
Authority
NO
Norway
Prior art keywords
chamber
salt
anolyte
aqueous
catholyte
Prior art date
Application number
NO860492A
Other languages
Norwegian (no)
Other versions
NO162059C (en
NO860492L (en
Inventor
Torsten Ulrikson
Original Assignee
Uwe Verken Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uwe Verken Ab filed Critical Uwe Verken Ab
Publication of NO860492L publication Critical patent/NO860492L/en
Publication of NO162059B publication Critical patent/NO162059B/en
Publication of NO162059C publication Critical patent/NO162059C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00371Air-conditioning arrangements specially adapted for particular vehicles for vehicles carrying large numbers of passengers, e.g. buses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00207Combined heating, ventilating, or cooling devices characterised by the position of the HVAC devices with respect to the passenger compartment
    • B60H2001/00235Devices in the roof area of the passenger compartment

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Ventilation (AREA)

Description

Elektrolytisk fremgangsmåte ved fremstilling Electrolytic method of manufacture

av kvartære alkylammoniumhydroxyder. of quaternary alkylammonium hydroxides.

Foreliggende oppfinnelse angår en elektrolytisk fremgangsmåte ved fremstilling av kvartære alkylammoniumhydroxyder fra bis-kvartære ammoniumsulfatsalter, The present invention relates to an electrolytic process for the production of quaternary alkylammonium hydroxides from bis-quaternary ammonium sulphate salts,

Kvartære alkylammoniumhydroxyder har en rekke anvendelser. Blant disse er deres anvendelse som et forløpermateriale ved fremstilling av salter av forskjellige syrer, Noen av disse salter er ganske nyttige som bæreelektrolytter i organiske elektrolyse-prosesser. Noen slike salter er særlig nyttige som bæreelektrolytt i en nylig utviklet fremgangsmåte for elektrohydrodimerisering av acrylnitril til adiponitril, et utgangsmateriale for hexamethylen-diammoniumadipat. Kvartære alkylammoniumhydroxyder selv er nød-vendige for å regulere pH i en vandig oppløsning av det tilsvarende bæreelektrolyttsalt. Quaternary alkylammonium hydroxides have a variety of applications. Among these is their use as a precursor material in the preparation of salts of various acids. Some of these salts are quite useful as carrier electrolytes in organic electrolysis processes. Some such salts are particularly useful as a carrier electrolyte in a recently developed process for the electrohydrodimerization of acrylonitrile to adiponitrile, a starting material for hexamethylene diammonium adipate. Quaternary alkylammonium hydroxides themselves are necessary to regulate the pH of an aqueous solution of the corresponding carrier electrolyte salt.

Forskjellige metoder har vært utviklet for å fremstille kvartære alkylammoniumhydroxyder. Disse metoder innbefatter en elektrolytisk prosess for å fremstille de ønskede hydroxyder fra kvartære alkylammoniumklorider. En annen fremgangsmåte innbefatter omsetning av kvartære alkylammoniumsulfatsalter og calciumhydroxyd hvorved der felles calciumsulfat. Elektrolytiske ionebytteprosesser for fremstilling av hydroxydene fra det tilsvarende kvartære alkyl-ammoniumklorid har en tydelig ulempe ved at fritt klor, et meget korroderende materiale frigjøres. Dessuten er kvartære ammonium-klorider relativt dyre. Produktet som fåes ved reaksjonen mellom calciumhydroxyd og kvartært ammoniumsulfat, inneholder forurensende metallioner og er uegnet for mange anvendelser. Various methods have been developed to prepare quaternary alkylammonium hydroxides. These methods involve an electrolytic process to prepare the desired hydroxides from quaternary alkyl ammonium chlorides. Another method involves the reaction of quaternary alkylammonium sulphate salts and calcium hydroxide whereby calcium sulphate is combined. Electrolytic ion exchange processes for producing the hydroxides from the corresponding quaternary alkyl ammonium chloride have a clear disadvantage in that free chlorine, a highly corrosive material, is released. Moreover, quaternary ammonium chlorides are relatively expensive. The product obtained from the reaction between calcium hydroxide and quaternary ammonium sulphate contains polluting metal ions and is unsuitable for many applications.

Det er kjent fra US patentskrift 2.363.387 å fremstille kvartære alkylammoniumhydroxyder ved elektrolyse av mon>kvartære ammoniumalkylsalter i en elektrolysecelle med tre kammere skilt ved keramiske diafragmaer. It is known from US patent 2,363,387 to produce quaternary alkylammonium hydroxides by electrolysis of mon>quaternary ammonium alkyl salts in an electrolysis cell with three chambers separated by ceramic diaphragms.

Ifølge foreliggende oppfinnelse anvendes bis-kvartære alkyl-ammoniumsulf at er . Skjønt den elektrolytiske fremstilling av et kvartært alkylammoniumhydroxyd burde foregå like tilfredsstillende med begge disse utgangsmaterialer, ville det mono-kvartære alkyl-ammoniumsalt ifølge det nevnte patent gi alkylsulfationer som biprodukt, og disse ioner er sterkt korroderende på de vanlig fore-trukne anodematerialer som bly, og disse ioner vil migrere mot anoden enten de kjemiske diafragmaer ifølge patentet erstattes med ionebyttemembraner eller ikke. Biprodukt-sulfationer ved foreliggende fremgangsmåte forbinder seg med hydrogenioner og danner (istedenfor å forurense) svovelsyreanolytten og påskynder ikke korrosjonen av anoden. According to the present invention, bis-quaternary alkyl ammonium sulphate is used. Although the electrolytic preparation of a quaternary alkylammonium hydroxide should proceed equally satisfactorily with both of these starting materials, the mono-quaternary alkylammonium salt would, according to the aforementioned patent, give alkylsulfate ions as a by-product, and these ions are strongly corrosive to the commonly preferred anode materials such as lead, and these ions will migrate towards the anode whether the chemical diaphragms according to the patent are replaced with ion exchange membranes or not. By-product sulfate ions of the present process combine with hydrogen ions to form (rather than contaminate) the sulfuric acid anolyte and do not accelerate corrosion of the anode.

Fremgangsmåten ifølge patentet for fremstilling av kvartært alkylammoniumhydroxyd fra et kvartært alkylammoniumsulfat er derfor ikke så praktisk og så bekvem som den ifølge foreliggende frem» gangsmåte, som ved anvendelse av et bis-saltmateriale gir et bi» produkt (sulfation) som er fordelaktig istedenfor skadelig. The process according to the patent for the production of quaternary alkylammonium hydroxide from a quaternary alkylammonium sulphate is therefore not as practical and as convenient as the process according to the present, which by using a bis-salt material gives a bi-product (sulfation) which is beneficial instead of harmful.

Foreliggende fremgangsmåte skiller seg også fra fremgangsmåten ifølge patentet ved at der anvendes membraner av organiske ione-bytteharpikser istedenfor de keramiske diafragmaer. i det nevnte patent er det anført at organiske materialer i alminnelighet ikke er tilfredsstillende til diafragmaer da de angripes av halogener, oxygen og kvartære ammoniumhydroxyder. På dette punkt skiller således foreliggende fremgangsmåte seg klart fra fremgangsmåten ifølge det nevnte patent. The present method also differs from the method according to the patent in that membranes of organic ion-exchange resins are used instead of the ceramic diaphragms. in the aforementioned patent it is stated that organic materials are generally not satisfactory for diaphragms as they are attacked by halogens, oxygen and quaternary ammonium hydroxides. On this point, the present method thus clearly differs from the method according to the aforementioned patent.

Det er derfor et mål ved foreliggende oppfinnelse å skaffe en fremgangsmåte for fremstilling av kvartære alkylammoniumhydroxyder i meget ren tilstand til en rimelig pris fra bis-kvartære alkyl-ammoniumsulf at sal ter. It is therefore an aim of the present invention to provide a method for producing quaternary alkylammonium hydroxides in a very pure state at a reasonable price from bis-quaternary alkyl-ammonium sulphate salts.

Ved foreliggende fremgangsmåte fremstilles et kvartært alkylammoniumhydroxyd hvor hver alkylgruppe inneholder 1-4 carbonatomer, i en elektrolysecelle som ved membraner er delt i tre kammere, et anolyttkammer med en anode, et katolyttkammer med en katode og et kammer inneholdende en saltoppløsning beliggende mellom anolytt- og katolyttkammeret, idet saltkammeret er skilt fra katolyttkammeret ved en kationbytteharpiksmembran, og en vandig svovelsyreoppløsning sirkuleres gjennom anolyttkammeret, idet der anvendes en celle hvor saltkammeret er skilt fra anolyttkammeret ved en sterkt basisk anionbytteharpiksmembran, at en vandig oppløs-ning av bis-kvartært alkylammoniumsulfatsalt hvor hver av alkylgruppene har 1-4 carbonatomer, kontinuerlig sirkuleres gjennom saltkammeret, at en vandig kvartær alkylammoniumhydroxydoppløsning hvor hver alkylgruppe inneholder 1-4 carbonatomer, sirkuleres gjennom katolyttkammeret, at der tilveiebringes et elektrisk potensial mellom anode og katode som er tilstrekkelig til å gi en ens» rettet elektrisk strøm gjennom cellen med en tetthet pa fra 0,05 til 1,00 A/cm effektiv katodeflate, hvorved sulfationer bringes til å migrere gjennom den sterkt basiske anionbytteharpiksmembran inn i anolyttkammeret og kvartære ammoniumioner bringes til å migrere gjennom den sterkt sure kationbytteharpiksmembran inn i katolyttkammeret, at der opprettholdes en svovelsyrekonsentrasjon i den vandige svovelsyreoppløsning mellom 0,05 og 3,0 N, at der opprettholdes en kvartær alkylammoniumhydroxydkonséntrasjon i den vandige kvartære ammoniumhydroxydoppløsning mellom 0,1 og 1,0 N, og at der som produkt trekkes av en del av den vandige kvartære alkyl-ammoniumhydroxydoppløsning. Et elektrisk potensial tilveiebringes mellom anoden og katoden tilstrekkelig til å frembringe en ensrettet elektrolytisk strøm med en tetthet på fra 0,05 til 1,0 A/cm effektivt katodeareal. på grunn av den elektriske strøm migrerer sulfationer gjennom den sterkt basiske anionbytteharpiksmembran inn i anolytten mens kvartære ammoniumioner migrerer gjennom den sterkt sure kationbytteharpiksmembran inn i katolytten. Svovelsyrekonsentrasjonen i den vandige svovelsyreoppløsning holdes mellom 0,05 og 3,0 No Den kvartære ammoniumhydroxydkonsentrasjon i den vandige kvartære ammoniumhydroxydoppløsning holdes mellom 0,1 og 1,0 N0With the present method, a quaternary alkylammonium hydroxide is produced where each alkyl group contains 1-4 carbon atoms, in an electrolysis cell which is divided by membranes into three chambers, an anolyte chamber with an anode, a catholyte chamber with a cathode and a chamber containing a salt solution situated between the anolyte and the catholyte chamber, the salt chamber being separated from the catholyte chamber by a cation exchange resin membrane, and an aqueous sulfuric acid solution is circulated through the anolyte chamber, using a cell where the salt chamber is separated from the anolyte chamber by a strongly basic anion exchange resin membrane, that an aqueous solution of bis-quaternary alkylammonium sulfate salt where each of the alkyl groups have 1-4 carbon atoms, is continuously circulated through the salt chamber, that an aqueous quaternary alkylammonium hydroxide solution in which each alkyl group contains 1-4 carbon atoms is circulated through the catholyte chamber, that an electrical potential is provided between anode and cathode which is sufficient to provide a uniformly directed electric current through the cell with a density of from 0.05 to 1.00 A/cm effective cathode surface, whereby sulfate ions are caused to migrate through the strongly basic anion exchange resin membrane into the anolyte chamber and quaternary ammonium ions are caused to migrate through the strongly acidic cation exchange resin membrane into the catholyte chamber, that a sulfuric acid concentration in the aqueous sulfuric acid solution between 0.05 and 3.0 N is maintained, that a quaternary alkylammonium hydroxide concentration in the aqueous quaternary ammonium hydroxide solution is maintained between 0.1 and 1.0 N, and that a part of the aqueous quaternary alkyl-ammonium hydroxide solution is extracted as a product. An electrical potential is provided between the anode and the cathode sufficient to produce a unidirectional electrolytic current having a density of from 0.05 to 1.0 A/cm effective cathode area. due to the electric current, sulfate ions migrate through the strongly basic anion exchange resin membrane into the anolyte while quaternary ammonium ions migrate through the strongly acidic cation exchange resin membrane into the catholyte. The sulfuric acid concentration in the aqueous sulfuric acid solution is kept between 0.05 and 3.0 No The quaternary ammonium hydroxide concentration in the aqueous quaternary ammonium hydroxide solution is kept between 0.1 and 1.0 N0

Produktet ved fremgangsmåten fåes ved kontinuerlig å trekke av en del av den vandige kvartære ammoniumhydroxydoppløsning fra katolyttkammeret . The product in the process is obtained by continuously withdrawing part of the aqueous quaternary ammonium hydroxide solution from the catholyte chamber.

Utstyret for å utføre foreliggende fremgangsmåte består av to grunnenheter; cellen og et tilhørende sirkulasjonssystem. Sirkula-sjonssystemet inneholder det vanlige utstyr, dvs, rørledninger, pumper, lagringskar, ventiler, kjølere, etc. For å beskrive foreliggende oppfinnelse er det tilstrekkelig å si at dette system ut-fører den funksjon å kontinuerlig bevege væske gjennom de forskjellige kammere i cellen med en fastsatt hastighet og kjøler strømmene hvis dette er nødvendig. The equipment for carrying out the present method consists of two basic units; the cell and an associated circulatory system. The circulation system contains the usual equipment, i.e. pipelines, pumps, storage vessels, valves, coolers, etc. To describe the present invention, it is sufficient to say that this system performs the function of continuously moving liquid through the various chambers in the cell at a set speed and cools the streams if necessary.

Til en celle som anvendes for utførelse av foreliggende fremgangsmåte, er der en rekke generelle krav. Den må ha et kammer hvorigjennom anolytten kan sirkuleres kontinuerlig. En anode er anbrakt i dette kammer eller danner en side av kammeret. Ved den celleform som fortrinnsvis anvendes ved utførelse av foreliggende fremgangsmåte, danner anoden en side av kammeret. Anoden kan fremstilles av et hvilket som helst elektrisk ledende materiale som er egnet til å formes til en elektrode som er relativt upåvirket av svovelsyre, som bly inneholdende en mindre mengde sølv. There are a number of general requirements for a cell used for carrying out the present method. It must have a chamber through which the anolyte can be continuously circulated. An anode is placed in this chamber or forms one side of the chamber. In the cell form that is preferably used in carrying out the present method, the anode forms one side of the chamber. The anode may be made of any electrically conductive material suitable for forming an electrode which is relatively unaffected by sulfuric acid, such as lead containing a small amount of silver.

Cellen må ha et kammer hvorigjennom katolytten kan sirkuleres kontinuerlig. En katode er enten anbrakt i kammeret eller danner en del av kammeret. Katoden er fremstilt av elektrisk ledende materiale som kan formes til en elektrode som er upåvirkelig overfor alkalisk angrep, som rustfritt stål. The cell must have a chamber through which the catholyte can be continuously circulated. A cathode is either placed in the chamber or forms part of the chamber. The cathode is made of electrically conductive material that can be formed into an electrode that is unaffected by alkaline attack, such as stainless steel.

Et tredje kammer er anbrakt mellom anolytt- og katolytt-kamrene. Dette kammer er anordnet for kontinuerlig sirkulering gjennom det av en vandig oppløsning av bis-kvartært ammoniumsulfat-salt. Dette saltkammer er skilt fra anolyttkammeret ved en membran av en sterkt basisk anionbytteharpiks. Saltkammeret er skilt fra katolyttkammeret ved en membran fremstilt av en sterkt sur kation-bytteharpiks. Begge membraner er meget selektive overfor gjennom-trengning. A third chamber is placed between the anolyte and catholyte chambers. This chamber is arranged for continuous circulation through it of an aqueous solution of bis-quaternary ammonium sulfate salt. This salt chamber is separated from the anolyte chamber by a membrane of a strongly basic anion exchange resin. The salt chamber is separated from the catholyte chamber by a membrane made of a strongly acidic cation exchange resin. Both membranes are highly selective for penetration.

Et eksempel på sterkt basiske anionbytteharpikser er en poly-styren-divinylbenzencopolymer som som funksjonelle grupper bundet dertil, har kvartære ammonium- eller aminogrupper. Et eksempel på egnede sterkt sure kationbytteharpikser er polystyren-divinyl-benzencopolymer med SO^H, COOH eller lignende funksjonelle grupper bundet til det«An example of strongly basic anion exchange resins is a polystyrene-divinylbenzene copolymer which has quaternary ammonium or amino groups as functional groups bound to it. An example of suitable strongly acidic cation exchange resins is polystyrene-divinyl-benzene copolymer with SO^H, COOH or similar functional groups attached to it.

For å utføre foreliggende fremgangsmåte opprettes en strøm av vandig saltoppløsning gjennom saltkammeret. Samtidig opprettes en strøm av anolytt og katolytt gjennom de angjeldende kammere. Kon-sentrasjonen av salt i den vandige saltoppløsning holdes på et nivå som er tilstrekkelig til å gi maksimal strømeffekt. Saltkonsentra-sjoner fra 5 til 60 vekt% har vist seg å være helt tilstrekkelig, skjønt konsentrasjoner fra 20 - 60 vekt% foretrekkes. For å skaffe begynnelsesstrøm over cellen må en mengde svovelsyre være tilstede i anolytten og en mengde hydroxyd svarende til det bis-kvartære ammoniumsulfat salt må være tilstede i katolytten. Den nødvendige mengde må være tilstrekkelig til å skaffe en begynnelsesgjennom-gang av elektrisk strøm. To carry out the present method, a flow of aqueous salt solution is created through the salt chamber. At the same time, a flow of anolyte and catholyte is created through the relevant chambers. The concentration of salt in the aqueous salt solution is maintained at a level which is sufficient to provide maximum power output. Salt concentrations from 5 to 60% by weight have proven to be completely sufficient, although concentrations from 20 - 60% by weight are preferred. To provide initial current across the cell, an amount of sulfuric acid must be present in the anolyte and an amount of hydroxide corresponding to the bis-quaternary ammonium sulfate salt must be present in the catholyte. The required amount must be sufficient to provide an initial passage of electric current.

Når først sirkulasjon gjennom kamrene er begynt, opprettes et elektrisk potensial mellom anode og katode. Dette potensial er tilstrekkelig til å gi en ensrettet strøm med en tetthet på 0,05 til 1,0 A/cm effektivt katodeareal. Once circulation through the chambers has begun, an electrical potential is created between anode and cathode. This potential is sufficient to provide a unidirectional current with a density of 0.05 to 1.0 A/cm effective cathode area.

Gjennomgangen av strømmen gjennom de vandige elektrisk ledende oppløsninger og membranene bevirker migrering av sulfat ioner inn i anolyttkammeret og migrering av kvartære ammoniumioner inn i katolyttkammeret. Sulfationene forener seg med hydrogenioner under dannelse av svovelsyre, Kvartære ammoniumioner forener seg med hydroxylioner under dannelse av et kvartært ammoniumhydroxyd. Den sterkt basiske anionbytteharpiksmembran som skiller saltkammeret og anolyttkammeret, tillater gjennomgang av sulfationer fra saltkammeret til anolyttkammeret, men hindrer gjennomgangen av hydrogenioner fra anolytten inn i saltkammeret, Kvartære ammoniumioner passerer gjennom den sterkt sure kationbytteharpiksmembran som skiller saltkammeret og katolyttkammeret, mens hydroxylioner forhindres fra å passere fra katolyttkammeret inn i saltkammeret. Både sulfat- og kvartære ammoniumioner er sterkt hydratisert under passeringen gjennom membranene og overfører derfor vann fra saltkammeret inn i både katolytt og anolytt. Under driften av cellen frigjøres hydrogen ved katoden og oxygen ved anoden og fri- The passage of the current through the aqueous electrically conductive solutions and the membranes causes migration of sulfate ions into the anolyte chamber and migration of quaternary ammonium ions into the catholyte chamber. The sulfate ions combine with hydrogen ions to form sulfuric acid, Quaternary ammonium ions combine with hydroxyl ions to form a quaternary ammonium hydroxide. The strongly basic anion exchange resin membrane that separates the salt chamber and the anolyte chamber allows the passage of sulfate ions from the salt chamber to the anolyte chamber, but prevents the passage of hydrogen ions from the anolyte into the salt chamber, Quaternary ammonium ions pass through the strongly acidic cation exchange resin membrane that separates the salt chamber and the catholyte chamber, while hydroxyl ions are prevented from passing from the catholyte chamber into the salt chamber. Both sulphate and quaternary ammonium ions are strongly hydrated during the passage through the membranes and therefore transfer water from the salt chamber into both catholyte and anolyte. During the operation of the cell, hydrogen is released at the cathode and oxygen at the anode, and

gjør selvsagt henholdsvis hydroxylioner og hydrogenioner. of course make hydroxyl ions and hydrogen ions respectively.

Eftersom sulfationer passerer inn i anolytten, økes derved begynnelseskonsentrasjonen av svovelsyre. For derfor å opprettholde svovelsyrekonsentrasjonen i området 0,05 til 3 N er det nødvendig å fjerne en del av anolytten og erstatte den med vann. Et gunstig syrenormalitets.område er mellom 0,1 og 1,0 N. Der fåes således et annet produkt, svovelsyre, som en vandig oppløsning. As sulfate ions pass into the anolyte, the initial concentration of sulfuric acid is thereby increased. In order therefore to maintain the sulfuric acid concentration in the range 0.05 to 3 N, it is necessary to remove part of the anolyte and replace it with water. A favorable acid normality range is between 0.1 and 1.0 N. Another product, sulfuric acid, is thus obtained as an aqueous solution.

Den kvartære ammoniumhydroxydkonsentrasjon i katolytten øker over begynnelseskonsentrasjonen eftersom kvartære ammoniumioner passerer fra saltkammeret inn i katolyttkammeret og forener seg med hydroxylioner. For å holde katolyttkonsentrasjonsområdet mellom 0,1 og 1,0 N (foretrukket område 0,25 til 0,75 N) trekkes en del av anolytten av og erstattes med vann. Der fåes således et produkt be-stående av en praktisk talt ren vandig kvartær ammoniumhydroxyd-oppløsning med fra 2 -20 vekt% kvartært ammoniumhydroxyd. The quaternary ammonium hydroxide concentration in the catholyte increases above the initial concentration because quaternary ammonium ions pass from the salt chamber into the catholyte chamber and combine with hydroxyl ions. To keep the catholyte concentration range between 0.1 and 1.0 N (preferred range 0.25 to 0.75 N), part of the anolyte is withdrawn and replaced with water. A product is thus obtained consisting of a practically pure aqueous quaternary ammonium hydroxide solution with from 2-20% by weight of quaternary ammonium hydroxide.

Salt oppløsningen, katolytten og anolytten resirkuleres alle gjennom angjeldende kammere. Resirkuleringshastigheten er slik at der skaffes en lineær strømningshastighet som er tilstrekkelig til å holde temperaturøkningen i cellen på ikke mere enn lO°C og for-hindre konsentrasjonspolariseringseffekter i cellen. En lineær strømningshastighet mellom 15 og 90 cm/sek gjennom de forskjellige kammere har vist seg å være helt tilstrekkelig. Selvsagt vil total-strømningen variere med strømtetthet og cellekonstruksjon. The salt solution, the catholyte and the anolyte are all recycled through the respective chambers. The recycling rate is such that a linear flow rate is obtained which is sufficient to keep the temperature increase in the cell at no more than 10°C and prevent concentration polarization effects in the cell. A linear flow rate between 15 and 90 cm/sec through the various chambers has proven to be completely sufficient. Of course, the total flow will vary with current density and cell construction.

Da sulfat- og kvartære ammoniumioner og vann migrerer fra saltkammeret, må disse materialer for å opprettholde driften av cellen kontinuerlig fornyes ved tilsetning av mere vandig saltoppløs-ning. Denne tilsetning er tilstrekkelig til å skaffe kontinuerlig sirkulasjon og opprettholde saltkonsentrasjonen, som som før nevnt, på mellom 5 og 6o vekt%. As sulphate and quaternary ammonium ions and water migrate from the salt chamber, these materials must be continuously renewed by the addition of more aqueous salt solution to maintain the operation of the cell. This addition is sufficient to provide continuous circulation and maintain the salt concentration, which, as previously mentioned, is between 5 and 6o% by weight.

Der skal så gies et eksempel for å belyse oppfinnelsen nærmere. An example will then be given to illustrate the invention in more detail.

Eksempel Example

En elektrolysecelle med tre kammere (saltkammer, katolyttkammer og anolyttkammer) med en anode av blysølvlegering (1% sølv) og en katode fremstilt av 3o4 rustfritt stål ble satt sammen. En membran av sulfonert copolymer av styren og divinylbenzen anbrakt på en glassduk ble anbrakt mellom katolytt- og saltkammeret. En membran fremstilt av copolymer av styren og divinylbenzen med kvartært ammoniumfunksjonelle grupper ble anbrakt mellom salt- og anolyttkammeret . An electrolytic cell with three chambers (salt chamber, catholyte chamber and anolyte chamber) with an anode of lead-silver alloy (1% silver) and a cathode made of 3o4 stainless steel was assembled. A membrane of sulfonated copolymer of styrene and divinylbenzene placed on a glass cloth was placed between the catholyte and salt chambers. A membrane made of copolymer of styrene and divinylbenzene with quaternary ammonium functional groups was placed between the salt and anolyte chambers.

l800 ml 0,512 N svovelsyre ble anbrakt i et anolytt-matekar. 1500 ml 1,856 N bis-tetramethylammoniumsulfat ble anbrakt i et salt» matekar. 3500 ml 0,491 N tetramethylammoniumhydroxyd ble anbrakt i et katolytt-matekar. 1800 ml of 0.512 N sulfuric acid was placed in an anolyte feed vessel. 1500 ml of 1.856 N bis-tetramethylammonium sulfate was placed in a "salt" feeding vessel. 3500 ml of 0.491 N tetramethylammonium hydroxide was placed in a catholyte feed vessel.

Sirkulasjonspumper ble så satt i gang og innstilt slik at strømmen gjennom kamrene var slik at 70 g/cm positivt trykk ble utøvet fra saltkammeret mot både anolytt- og katolyttkammeret. De således anvendte strømningshastigheter var 40,5, 46,9 og 4o,5 cm/sek for henholdsvis anolytt, saltoppløsning og katolytt. Circulation pumps were then started and adjusted so that the flow through the chambers was such that 70 g/cm positive pressure was exerted from the salt chamber towards both the anolyte and catholyte chambers. The flow rates thus used were 40.5, 46.9 and 40.5 cm/sec for anolyte, salt solution and catholyte respectively.

Et elektrisk potensial ble så opprettet over cellen og innstilt på å o gi en ensrettet strøm med en tetthet på o 0,25 A/cm<2 >effektiv katodeoverflate. I løpet av de første 30 minutters drift øket anolytt-temperaturen til 44°C, saltoppløsningstemperaturen øket til 52°C, og katolytt-temperaturen steg til 51°C. Under resten av forsøket forble temperaturene stort sett på disse tall. Cellespenningen falt fra 16 V til å begynne med til 11 V under prøven mens saltoppløsningens pH øket fra 7,0 til 13,2, Den totale forsøkstid var 5,5 timer i løpet av hvilken 5,13 faraday strøm ble forbrukt. An electric potential was then created across the cell and set to o provide a unidirectional current with a density of o 0.25 A/cm<2 > effective cathode surface. During the first 30 minutes of operation, the anolyte temperature increased to 44°C, the brine temperature increased to 52°C, and the catholyte temperature increased to 51°C. During the rest of the experiment, the temperatures mostly remained at these numbers. The cell voltage dropped from 16 V initially to 11 V during the test as the saline pH increased from 7.0 to 13.2. The total test time was 5.5 hours during which 5.13 faraday current was consumed.

775 ml 4,05 N saltoppløsning ble tilsatt til saltoppløsningen som sirkulerte igjennom saltkammeret, men ingen tilsetninger ble gjort til katolytt eller anolytt. Tilstrekkelig vandig svovelsyre ble trukket av fra anolytten, og tilstrekkelig vandig tetramethylammoniumhydroxyd ble trukket av fra katolytten til å holde den sir-kulerende mengde derav praktisk talt konstant. Den samlede begynnelses- og fremstilt svovelsyre var 1910 ml av 1,619 N vandig opp-løsning. Begynnelses- og elektrolytisk fremstilt tetramethylammoniumhydroxyd utgjorde 4200 ml 0,853 N vandig oppløsning. Ved slutten av forsøket var der utvunnet 1500 ml 1,798 N vandig salt (0,134 ekvivalenter fri alkalitet). 775 ml of 4.05 N salt solution was added to the salt solution circulating through the salt chamber, but no additions were made to catholyte or anolyte. Sufficient aqueous sulfuric acid was withdrawn from the anolyte, and sufficient aqueous tetramethylammonium hydroxide was withdrawn from the catholyte to keep the circulating amount thereof practically constant. The total starting and produced sulfuric acid was 1910 ml of 1.619 N aqueous solution. Initial and electrolytically prepared tetramethylammonium hydroxide constituted 4200 ml of 0.853 N aqueous solution. At the end of the experiment, 1500 ml of 1.798 N aqueous salt (0.134 equivalents of free alkalinity) had been recovered.

Tetramethylammoniumhydroxydproduktet inneholdt 0,28% sulfat, beregnet som svovelsyre. The tetramethylammonium hydroxide product contained 0.28% sulfate, calculated as sulfuric acid.

Forsøksbetingelsene og -resultatene er angitt i tabellen nedenfor. The experimental conditions and results are indicated in the table below.

(Ekvivalenter tet ramethylammonium-hydroxyd/f araday) (Equivalents of ramethylammonium hydroxide/fa araday)

Oppfinnelsen har den åpenbare fordel at den gir et produkt av temmelig høy renhet. Fremgangsmåten er relativt enkel og gir et ønsket produkt til rimelig pris. Råmaterialer for anvendelse i fremgangsmåten er relativt billige. The invention has the obvious advantage that it gives a product of fairly high purity. The procedure is relatively simple and provides a desired product at a reasonable price. Raw materials for use in the method are relatively cheap.

Claims (1)

Elektrolytisk fremgangsmåte ved fremstilling av et kvartært alkylammoniumhydroxyd hvor hver alkylgruppe inneholder 1-4 carbonatomer, i en elektrolysecelle som ved membraner er delt i tre kammere, et anolyttkammer med en anode, et katolyttkammer med en katode og et kammer inneholdende en saltoppløsning beliggende mellom anolytt- og katolyttkammeret, idet saltkammeret er skilt fra katolyttkammeret ved en kationbytteharpiksmembran, og en vandig svovel-syreoppløsning sirkuleres gjennom anolyttkammeret, karakterisert ved at der anvendes en celle hvor saltkammeret er skilt fra anolyttkammeret ved en sterkt basisk anionbytteharpiksmembran, at en vandig oppløsning av bis-kvartært alkylammoniumsulfatsalt hvor hver av alkylgruppene har 1-4 carbonatomer, kontinuerlig sirkuleres gjennom saltkammeret, at en vandig kvartær alkylammoniumhydroxydoppløsning hvor hver alkylgruppe inneholder 1-4 carbonatomer, sirkuleres gjennom katolyttkammeret, at der tilveiebringes et elektrisk potensial mellom anode og katode som er tilstrekkelig til å gi en ensrettet elektrisk strøm gjennom cellen med en tetthet på fra 0,05 til 1,00 A/cm effektiv katodeflate, hvorved sulfationer bringes til å migrere gjennom den sterkt basiske anionbytteharpiksmembran inn i anolyttkammeret og kvartære ammoniumioner bringes til å migrere gjennom den sterkt sure kationbytteharpiksmembran inn i katolyttkammeret, at der opprettholdes en svovelsyrekonsentrasjon i den vandige svovelsyreoppløsning mellom 0,05 og 3)0 N, at der opprettholdes en kvartær alkylammoniumhydroxyd-konsentrasjon i den vandige kvartære ammoniumhydroxydoppløsning mellom 0,1 og 1,0 N, og at der som produkt trekkes av en del av den vandige kvartære alkylammoniumhydroxydoppløsning.Electrolytic method for the production of a quaternary alkylammonium hydroxide where each alkyl group contains 1-4 carbon atoms, in an electrolytic cell which is divided by membranes into three chambers, an anolyte chamber with an anode, a catholyte chamber with a cathode and a chamber containing a salt solution situated between the anolyte and the catholyte chamber, the salt chamber being separated from the catholyte chamber by a cation exchange resin membrane, and an aqueous sulfuric acid solution is circulated through the anolyte chamber, characterized in that a cell is used where the salt chamber is separated from the anolyte chamber by a strongly basic anion exchange resin membrane, that an aqueous solution of bis-quaternary alkylammonium sulfate salt where each of the alkyl groups has 1-4 carbon atoms is continuously circulated through the salt chamber, that an aqueous quaternary alkylammonium hydroxide solution where each alkyl group contains 1-4 carbon atoms is circulated through the catholyte chamber, that an electrical potential is provided between anode o g cathode sufficient to provide a unidirectional electric current through the cell with a density of from 0.05 to 1.00 A/cm effective cathode surface, causing sulfate ions to migrate through the strongly basic anion exchange resin membrane into the anolyte chamber and quaternary ammonium ions are brought to migrate through the strongly acidic cation exchange resin membrane into the catholyte chamber, that a sulfuric acid concentration in the aqueous sulfuric acid solution between 0.05 and 3)0 N is maintained, that a quaternary alkylammonium hydroxide concentration in the aqueous quaternary ammonium hydroxide solution is maintained between 0.1 and 1 .0 N, and that as a product a part of the aqueous quaternary alkylammonium hydroxide solution is extracted.
NO860492A 1985-10-24 1986-02-12 DEVICE FOR TEMPERATURE CONTROL AND VENTILATION FOR VEHICLES TRANSPORTING PASSENGERS. NO162059C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE8505028A SE455776B (en) 1985-10-24 1985-10-24 TEMPERATURE CONTROL AND VENTILATION DEVICE FOR PASSENGER TRANSPORTING VEHICLES

Publications (3)

Publication Number Publication Date
NO860492L NO860492L (en) 1987-04-27
NO162059B true NO162059B (en) 1989-07-24
NO162059C NO162059C (en) 1989-11-01

Family

ID=20361909

Family Applications (1)

Application Number Title Priority Date Filing Date
NO860492A NO162059C (en) 1985-10-24 1986-02-12 DEVICE FOR TEMPERATURE CONTROL AND VENTILATION FOR VEHICLES TRANSPORTING PASSENGERS.

Country Status (10)

Country Link
AT (1) AT395395B (en)
BE (1) BE904291A (en)
CH (1) CH671927A5 (en)
DE (1) DE3604742A1 (en)
DK (1) DK164581C (en)
FI (1) FI79264C (en)
GB (1) GB2182134B (en)
IT (1) IT1204856B (en)
NO (1) NO162059C (en)
SE (1) SE455776B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000732A1 (en) * 1990-01-12 1991-07-18 Daimler Benz Ag CEILING CHANNEL ARRANGEMENT IN A OMNIBUS
SE468002B (en) * 1991-01-11 1992-10-19 Uwe Verken Ab DEVICE FOR WATER-CURRENT HEATING SYSTEM FOR VEHICLES.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3008694A (en) * 1951-06-29 1961-11-14 Gen Motors Corp Coach heating, cooling and ventilating system
GB729769A (en) * 1952-08-27 1955-05-11 Dewandre Co Ltd C Improvements in or relating to air heating devices
GB730723A (en) * 1952-09-19 1955-05-25 Weathershields Ltd A new or improved heating and ventilating system for motor coaches and like vehicles
DE2634711B2 (en) * 1976-08-02 1979-03-15 Karl Kaessbohrer Fahrzeugwerke Gmbh, 7900 Ulm Method and device for ventilating and tempering the interior of buses
DE2838425A1 (en) * 1978-09-02 1980-03-13 Daimler Benz Ag HEATING AND VENTILATION DEVICE FOR THE UPPER ZONE (HEAD AREA) OF A PASSENGER ROOM OF A VEHICLE
DE2838397A1 (en) * 1978-09-02 1980-03-13 Daimler Benz Ag Heater system for bus - includes separate head and feet ventilators and with limit on head duct
DE3133501A1 (en) * 1981-08-25 1983-03-31 Karl Kässbohrer Fahrzeugwerke GmbH, 7900 Ulm Device for ventilating and air-conditioning the interior of a bus
DE3210710A1 (en) * 1982-03-24 1984-03-22 Brunnquell GmbH Fabrik elektrotechnischer Apparate, 8070 Ingolstadt REMOTE CONTROL RECEIVER, ESPECIALLY FOR CONTROLLING ELECTRICAL DEVICES

Also Published As

Publication number Publication date
FI79264C (en) 1989-12-11
SE8505028L (en) 1987-04-25
FI860595A (en) 1987-04-25
DK64486D0 (en) 1986-02-10
FI79264B (en) 1989-08-31
IT8619959A0 (en) 1986-04-03
DK164581B (en) 1992-07-20
SE8505028D0 (en) 1985-10-24
GB2182134B (en) 1990-07-11
IT1204856B (en) 1989-03-10
BE904291A (en) 1986-06-16
DK64486A (en) 1987-04-25
CH671927A5 (en) 1989-10-13
GB8603406D0 (en) 1986-03-19
AT395395B (en) 1992-12-10
NO162059C (en) 1989-11-01
NO860492L (en) 1987-04-27
ATA82286A (en) 1992-05-15
DK164581C (en) 1992-12-14
FI860595A0 (en) 1986-02-10
DE3604742A1 (en) 1987-05-07
SE455776B (en) 1988-08-08
GB2182134A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
US4636295A (en) Method for the recovery of lithium from solutions by electrodialysis
KR101711854B1 (en) Method for manufacturing lithium hydroxide and lithium carbonate
US3773634A (en) Control of an olyte-catholyte concentrations in membrane cells
US4308124A (en) Apparatus for electrolytic production of alkali metal hypohalite
AU651359B2 (en) Chlorine dioxide generation from chloric acid
CA1132481A (en) Process for electrolysis of sodium chloride by use of cation exchange membrane
FI94063C (en) Process for simultaneous preparation of alkali metal or ammonium peroxodisulfate salts and alkali metal hydroxide
US3402115A (en) Preparation of quaternary ammonium hydroxides by electrodialysis
JPS6327429B2 (en)
CN106801233A (en) A kind of electrolysis prepares the system and method for high-purity TPAOH
US4149946A (en) Recovery of spent pickle liquor and iron metal
WO2020162796A9 (en) Method for producing lithium hydroxide monohydrate
KR950008575B1 (en) Synthesis of palladium hydroxide compound
RU2196735C1 (en) Process of extracting monohydrate of high-purity lithium hydroxide from materials containing lithium carbonate
JPH033747B2 (en)
CA1272982A (en) Method for the recovery of lithium from solutions by electrodialysis
KR101587577B1 (en) Sodium hypochlorite generator using electrolyzor with 3-compartment
US4510026A (en) Process for electrolysis of sea water
NO162059B (en) DEVICE FOR TEMPERATURE CONTROL AND VENTILATION FOR VEHICLES TRANSPORTING PASSENGERS.
JP3265495B2 (en) Method for producing nickel hypophosphite
US5242553A (en) Chloric acid-alkali metal chlorate mixtures for chlorine dioxide generation
CA1313161C (en) Process for the production of alkali metal chlorate
US5348683A (en) Chloric acid - alkali metal chlorate mixtures and chlorine dioxide generation
WO2009000050A1 (en) Electrolytic method for controlling the precipitation of alumina
US5258105A (en) Chloric acid - alkali metal chlorate mixtures and chlorine dioxide generation