NO158951B - POLYAMPHOLYTE POLYMERS AND THEIR APPLICATION FOR AA PREVENTION CORROSION AND STONE PROVISIONS IN Aqueous Systems. - Google Patents

POLYAMPHOLYTE POLYMERS AND THEIR APPLICATION FOR AA PREVENTION CORROSION AND STONE PROVISIONS IN Aqueous Systems. Download PDF

Info

Publication number
NO158951B
NO158951B NO82824198A NO824198A NO158951B NO 158951 B NO158951 B NO 158951B NO 82824198 A NO82824198 A NO 82824198A NO 824198 A NO824198 A NO 824198A NO 158951 B NO158951 B NO 158951B
Authority
NO
Norway
Prior art keywords
carbon atoms
weight
hydrogen
polyampholyte
monomer
Prior art date
Application number
NO82824198A
Other languages
Norwegian (no)
Other versions
NO158951C (en
NO824198L (en
Inventor
Christine A Costello
Gary F Matz
Nancy S Sherwood
Bennett P Boffardi
Monica A Yorke
Zahid Amjad
Original Assignee
Calgon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27569682&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO158951(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US06/331,101 external-priority patent/US4455240A/en
Priority claimed from US06/378,921 external-priority patent/US4533708A/en
Priority claimed from US06/411,174 external-priority patent/US4460477A/en
Priority claimed from US06/411,167 external-priority patent/US4484631A/en
Application filed by Calgon Corp filed Critical Calgon Corp
Publication of NO824198L publication Critical patent/NO824198L/en
Publication of NO158951B publication Critical patent/NO158951B/en
Publication of NO158951C publication Critical patent/NO158951C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/882Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/12Clay-free compositions containing synthetic organic macromolecular compounds or their precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/18Clay-containing compositions characterised by the organic compounds
    • C09K8/22Synthetic organic compounds
    • C09K8/24Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/528Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning inorganic depositions, e.g. sulfates or carbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/54Compositions for in situ inhibition of corrosion in boreholes or wells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/003Means for stopping loss of drilling fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

Denne oppfinnelse angår polyamfolyttpolymerer og deres anvendelse for å hindre korrosjon og avsetninger i vandige systemer. This invention relates to polyampholyte polymers and their use to prevent corrosion and deposits in aqueous systems.

Polyamfolyttpolymerer er polymerer som inneholder både kationiske og anioniske monomerenheter. Også ikke-ioniske monomerenheter kan eventuelt være tilstede. Polyampholyte polymers are polymers that contain both cationic and anionic monomer units. Non-ionic monomer units may also optionally be present.

Polyamfolyttpolymerer har funnet anvendelse spesielt som retensjonshjelpemidler i papirindustrien, se f.eks. US patentskrift nr. 3 639 208 og 4 171 417. Deres anvendelse som midler for å hindre korrosjon og avsetninger i vandige systemer kan ikke sees å være kjent. Polyamfolyttpolymerer har funnet en viss anvendelse i oljeboringsindustrien, se f.eks. britisk patentsøknad nr. 2 044 341 A (publisert) og US patentskrifter nr. 4 293 427 og 4 330 450. Polyampholyte polymers have found use in particular as retention aids in the paper industry, see e.g. US Patent Nos. 3,639,208 and 4,171,417. Their use as agents to prevent corrosion and deposits in aqueous systems cannot be seen to be known. Polyampholyte polymers have found some use in the oil drilling industry, see e.g. British Patent Application No. 2,044,341 A (published) and US Patent Nos. 4,293,427 and 4,330,450.

Steinavsetninger er skorpeaktige belegg som kan være dannet fra en lang rekke enkle og komplekse uorganiske salter som av en rekke forskjellige grunner samler seg på metalliske overflater av vannførende systemer. En lang rekke forskjellige industrielle og kommersielle vannførende systemer er utsatt for slike problemer med steinavsetninger. Steinavsetninger er spesielt et problem i varmevekslingssystemer hvor det benyttes vann, f.eks. i kjelsystemer og åpne vannkjølingssyste-mer méd resirkulasjon av vannet. Rock deposits are crusty coatings that can be formed from a wide variety of simple and complex inorganic salts that, for a variety of reasons, accumulate on metallic surfaces of water-bearing systems. A wide variety of industrial and commercial water-carrying systems are subject to such scale problems. Stone deposits are particularly a problem in heat exchange systems where water is used, e.g. in boiler systems and open water cooling systems with recirculation of the water.

Korrosjon av metall i vannførende systemer forårsakes vanligvis ved at det er tilstede oppløst oxygen i vannet. Korrosjonsinhibitorer som for tiden er tilgjengelige, innbe-fatter f.eks. fosforholdige uorganiske og organiske forbindel-ser, zink, kromater, polyacrylater, polyacrylamider, poly-carboxylater som f.eks. polymaleinsyreanhydrid, og addukter derav. Corrosion of metal in water-bearing systems is usually caused by the presence of dissolved oxygen in the water. Corrosion inhibitors currently available include e.g. phosphorus-containing inorganic and organic compounds, zinc, chromates, polyacrylates, polyacrylamides, polycarboxylates such as e.g. polymaleic anhydride, and adducts thereof.

For det formål å hindre korrosjon og steinavsetninger For the purpose of preventing corrosion and stone deposits

i vandige systemer tilveiebringes det nu en polyamfolyttpolymer med egenviskositet på 0,05-4,5 dl/g i 1,0 M NaCl, som er særpreget ved at de er fremstilt ved polymerisering av: in aqueous systems, a polyampholyte polymer with an intrinsic viscosity of 0.05-4.5 dl/g in 1.0 M NaCl is now provided, which is characterized by the fact that they are produced by polymerization of:

(i) 5 - 90 vekt% av minst én carboxylisk funksjonell monomer med formelen: (i) 5 - 90% by weight of at least one carboxylic functional monomer of the formula:

hvor where

R er hydrogen, fenyl, alkyl med 1-3 carbonatomer R is hydrogen, phenyl, alkyl with 1-3 carbon atoms

eller en gruppe -COOX, or a group -COOX,

R^" er en forgrenet eller rettkjedet carbonkjede R^" is a branched or straight-chain carbon chain

med fra 0 til 12 carbonatomer, og with from 0 to 12 carbon atoms, and

X er hydrogen eller et alkalimetall eller jordalkalimetall, X is hydrogen or an alkali metal or alkaline earth metal,

(ii) 0,5 - 85 vekt% av minst én kationholdig monomer valgt blant forbindelsene med de generelle formler: (ii) 0.5 - 85% by weight of at least one cationic monomer selected from the compounds with the general formulas:

hvor: where:

R er hydrogen, en fenylgruppe eller en alkylgruppe med 1-3 carbonatomer, fortrinnsvis hydrogen eller methylen, 4 R er en rettkjede.t eller forgrenet alkylgruppe med 1-12 carbonatomer, fortrinnsvis 1-3 carbonatomer og X er et anion, fortrinnsvis et halogen eller alkylsul-fat, og (iii) 0-85 vekt% av minst én ikke-ionisk monomer med formelen: R is hydrogen, a phenyl group or an alkyl group with 1-3 carbon atoms, preferably hydrogen or methylene, 4 R is a straight chain or branched alkyl group with 1-12 carbon atoms, preferably 1-3 carbon atoms and X is an anion, preferably a halogen or alkyl sulfate, and (iii) 0-85% by weight of at least one non-ionic monomer of the formula:

hvor where

R er hydrogen, fenyl eller alkyl med 1-3 carbonatomer, og R is hydrogen, phenyl or alkyl with 1-3 carbon atoms, and

R 2, som kan være like eller forskjellige, er hydrogen eller alkyl med 1-3 carbonatomer. R 2 , which may be the same or different, is hydrogen or alkyl of 1-3 carbon atoms.

Oppfinnelsen angår også anvendelse av den ovenfor be-skrevne polyamfolyttpolymer for å inhibere korrosjon og steinavsetninger i et vandig system. The invention also relates to the use of the above-described polyampholyte polymer to inhibit corrosion and stone deposits in an aqueous system.

Polyamfolyttpolymerene ifølge oppfinnelsen har vist The polyampholyte polymers according to the invention have shown

seg særlig nyttige for å inhibere avsetninger av kalsiumfosfat og polymerisasjon av silisiumdioxyd, men de inhiberer også dannelsen av avsetninger av magnesiumhydroxyd, kalsium-klorid, kalsiumcarbonat, kalsiumsulfat o.a. are particularly useful for inhibiting deposits of calcium phosphate and polymerisation of silicon dioxide, but they also inhibit the formation of deposits of magnesium hydroxide, calcium chloride, calcium carbonate, calcium sulphate etc.

Eksempler på carboxylisk funksjonelle monomerer av Examples of carboxylic functional monomers of

den eller de carboxyliske monomerer (i) som er anvendelige ved fremstilling av polyamfolyttpolymerene ifølge oppfinnelsen, er acrylsyre, crotonsyre, methacrylsyre, vinyleddiksyre, allyleddiksyre, 4-methyl-4-pentensyre og dicarboxylsyrer som maleinsyre og itaconsyre og alkalimetall- og jordalkalime-tallsaltene derav. De foretrukne carboxylisk funksjonelle monomerer er acrylsyre og methacrylsyre og de tilsvarende salter derav. Også blandinger av ds; carboxylisk funksjonelle monomerer kan anvendes ved fremstillingen av polyamfolyttpolymerene. the carboxylic monomer(s) (i) which are applicable in the production of the polyampholyte polymers according to the invention are acrylic acid, crotonic acid, methacrylic acid, vinylacetic acid, allylacetic acid, 4-methyl-4-pentenoic acid and dicarboxylic acids such as maleic acid and itaconic acid and the alkali metal and alkaline earth salts thereof . The preferred carboxylic functional monomers are acrylic acid and methacrylic acid and the corresponding salts thereof. Also mixes of ds; carboxylic functional monomers can be used in the production of the polyampholyte polymers.

Eksempler på X i de ovenstående formler for de kationholdige monomerer (ii) er halogen, sulfat, sulfonat, fosfat, hydroxyd, borat, cyanid, carbonat, thiocyanat, thiosulfat, iso-cyanat, sulfitt, bisulfitt, nitrat, nitritt, oxalat, sili-kat, sulfid, cyanat, acetat og andre vanlige uorganiske og organiske ioner. Examples of X in the above formulas for the cationic monomers (ii) are halogen, sulfate, sulfonate, phosphate, hydroxide, borate, cyanide, carbonate, thiocyanate, thiosulfate, isocyanate, sulfite, bisulfite, nitrate, nitrite, oxalate, silicon -cation, sulphide, cyanate, acetate and other common inorganic and organic ions.

Spesifikke eksempler på de mest foretrukne kationholdige monomerer (ii) er diethyldiallylammoniumklorid, dimethyl-diallylammoniumklorid, methacryloyloxy-ethyl-trimethylammo-niummethylsulfat og methacrylamido-propyl-trimethylammonium-klorid. Også blandinger av kationholdige monomerer (ii) kan anvendes ved fremstillingen av polyamfolyttpolymerene. Specific examples of the most preferred cation-containing monomers (ii) are diethyldiallylammonium chloride, dimethyldiallylammonium chloride, methacryloyloxyethyltrimethylammonium methylsulfate and methacrylamidopropyltrimethylammonium chloride. Mixtures of cationic monomers (ii) can also be used in the production of the polyampholyte polymers.

Eksempler på de ikke-ioniske monomerer (iii) er acrylamid og dets derivater, som methacrylamid og N,N-dimethyl-acrylamid. Den foretrukne ikke-ioniske monomer er acrylamid. Også blandinger av ikke-ioniske monomerer (iii) kan anvendes ved fremstillingen av polyamfolyttpolymerene. Examples of the non-ionic monomers (iii) are acrylamide and its derivatives, such as methacrylamide and N,N-dimethyl-acrylamide. The preferred nonionic monomer is acrylamide. Mixtures of non-ionic monomers (iii) can also be used in the production of the polyampholyte polymers.

Polyamfolyttpolymerene kan fremstilles ved at man blan-der monomerene i nærvær av en fri-radikal-initiator. En hvilken som helst fri-radikal-initiator kan anvendes. Eksempler på slike er peroxyder, azo-initiatorer og redox-systemer. The polyampholyte polymers can be prepared by mixing the monomers in the presence of a free radical initiator. Any free radical initiator can be used. Examples of such are peroxides, azo initiators and redox systems.

De foretrukne katalysatorer er natriumpersulfat eller en blan-ding av ammoniumpersulfat og en hvilken som helst azotype-initiator som 2,2'-azobis-(2,4-dimethyl)-4-methoxyvaleronit-ril). Polymerisasjonen kan også initieres fotokjemisk. The preferred catalysts are sodium persulfate or a mixture of ammonium persulfate and any azo-type initiator such as 2,2'-azobis-(2,4-dimethyl)-4-methoxyvaleronitrile). The polymerization can also be initiated photochemically.

Polyamfolyttpolymerene kan fremstilles etter en rekke forskjellige fremgangsmåter, f.eks. ved oppløsningspolymeri-sering, suspensjonspolymerisering, massepolymerisering og emulsjonspolymerisering. The polyampholyte polymers can be produced by a number of different methods, e.g. by solution polymerisation, suspension polymerisation, mass polymerisation and emulsion polymerisation.

Temperaturen er ikke av avgjørende betydning. Reak-sjon vil vanligvis finne sted ved temperaturer mellom 10 og 100°C, og polymerisasjonen utføres fortrinnsvis ved temperatur mellom 40 og 60°C. Det er vanligvis ikke praktisk å ut-føre polymerisasjonen ved temperatur under værelsestempera-tur, da polymerisasjonen i de tilfeller er for langsom. Ved temperaturer over 60°C har polymerens molekylvekt en tilbøye-lighet til å avta. Reaksjonen vil, avhengig av temperaturen, vanligvis ta fra 1 til. 12 timer. Målinger av restmengdene av monomerer vil gi indikasjon om når reaksjonen er fullført. The temperature is not of decisive importance. Reaction will usually take place at temperatures between 10 and 100°C, and the polymerization is preferably carried out at temperatures between 40 and 60°C. It is not usually practical to carry out the polymerization at a temperature below room temperature, as the polymerization in those cases is too slow. At temperatures above 60°C, the molecular weight of the polymer has a tendency to decrease. The reaction will, depending on the temperature, usually take from 1 to 12 hours. Measurements of the residual amounts of monomers will give an indication of when the reaction is complete.

Reaksjonsblandingens pH-verdi er ikke av kritisk betydning. pH-verdien er vanligvis i området fra 4,5 til 9,0. The pH value of the reaction mixture is not of critical importance. The pH is usually in the range of 4.5 to 9.0.

Det er vanskelig å måle molekylvekten av polyamfolyttpolymerer nøyaktig. Polymerene blir i stedet vanligvis inden-tifisert ved egenviskositeten. Egenviskositeten av polyamfo-lyttpolymeren ifølge oppfinnelsen skal være på 0,05-4,5 dl/g i 1,0 M NaCl (målt i et Cannon Ubbelohde-kapillærviskosime-ter) . It is difficult to accurately measure the molecular weight of polyampholyte polymers. The polymers are instead usually identified by their intrinsic viscosity. The intrinsic viscosity of the polyampholyte polymer according to the invention must be 0.05-4.5 dl/g in 1.0 M NaCl (measured in a Cannon Ubbelohde capillary viscometer).

Ved fremstillingen av polyamfolyttpolymerene ifølge oppfinnelsen foretrekkes det å benytte 22,5-70 vekt% av den eller de carboxylisk funksjonelle monomerer (i), 2,5-25 vekt% av den eller de kationholdige monomerer (ii) og 1,5-85 vekt%, aller helst 5-67,5 vekt%, av den eller de ikke-ioniske monomerer (iii). In the production of the polyampholyte polymers according to the invention, it is preferred to use 22.5-70% by weight of the carboxylic functional monomer(s) (i), 2.5-25% by weight of the cationic monomer(s) (ii) and 1.5-85 % by weight, most preferably 5-67.5% by weight, of the non-ionic monomer(s) (iii).

Konsentrasjonen av polyamfolyttpolymeren ifølge oppfinnelsen som benyttes for å inhibere korrosjon og steinavsetninger i vandige systemer, er i alminnelighet minst 0,1 ppm og er fortrinnsvis 0,1-500 ppm, regnet på grunnlag av vekten av det vandige system som behandles. Fortrinnsvis vil kon-sentrasjonsnivået være på fra 1,0 til 200 ppm. The concentration of the polyampholyte polymer according to the invention, which is used to inhibit corrosion and scale deposits in aqueous systems, is generally at least 0.1 ppm and is preferably 0.1-500 ppm, calculated on the basis of the weight of the aqueous system being treated. Preferably, the concentration level will be from 1.0 to 200 ppm.

Det vandige system i hvilket polyamfolyttpolymerene The aqueous system in which the polyampholyte polymers

er anvendelige for å hindre korrosjon og steinavsetninger, kan være et hvilket som helst vandig system, f.eks. et kjøle-vann, et kjelevann, vannet i et avsaltningsanlegg eller vannet i et gasskrubbesystem. Dersom systemet er et avsaltningssys-tem, bør polyamfolyttpolymeren ha en egenviskositet som er lavere enn 2,8 dl/g i 1,0 M natriumklorid. are applicable to prevent corrosion and scale deposits, can be any aqueous system, e.g. a cooling water, a boiler water, the water in a desalination plant or the water in a gas scrubber system. If the system is a desalination system, the polyampholyte polymer should have an intrinsic viscosity lower than 2.8 dl/g in 1.0 M sodium chloride.

Nedenfor vil anvendelsen av de nye polyamfolyttpolymerer beskrives nærmere i en rekke eksempler. Fremstillingen av polymerene som benyttes i disse eksempler, skal imidlertid først beskrives. Below, the use of the new polyampholyte polymers will be described in more detail in a number of examples. However, the production of the polymers used in these examples must first be described.

Fremstilling av polymerene benyttet i eksemplene. Preparation of the polymers used in the examples.

Polyamfolyttpolymerene ble fremstilt ved at man blandet anionisk monomer (i), kationisk monomer (ii) og ikke-ionisk monomer (iii ) i de i tabell I angitte mengder, under anven-deise av de der angitte faststoffkonsentrasjoner, begynnel-ses temperaturer og pH-verdier. Monomerblandingen ble gjennom-spylt med nitrogen i 1 time. Som oppløsningsmiddel ble det benyttet avionisert vann. Initiatoren ble tilsatt, og bestand-delene ble tillatt å reagere i ca. 3 timer. De i tabell I oppførte polymerer 31-37 ble fremstilt ved at man blandet anionisk monomer (i), kationisk monomer (ii) og ikke-ionisk monomer (iii) i de i tabell I angitte mengdeforhold, hvor-etter oppløsningene ble nøytralisert til pH 7,0 med 50%-ig natriumhydroxyd. Kjedeoverføringsmiddel og katalysator ble tilsatt i de mengder som er angitt i tabell I. Oppløsningene ble anbragt under fluorescerende lys i 60 minutter. De dannede geler ble fortynnet til 600 mg/l aktiv polymer. The polyampholyte polymers were prepared by mixing anionic monomer (i), cationic monomer (ii) and non-ionic monomer (iii) in the quantities indicated in Table I, using the solids concentrations, initial temperatures and pH indicated there -values. The monomer mixture was flushed with nitrogen for 1 hour. Deionized water was used as solvent. The initiator was added, and the components were allowed to react for approx. 3 hours. The polymers 31-37 listed in Table I were prepared by mixing anionic monomer (i), cationic monomer (ii) and non-ionic monomer (iii) in the proportions given in Table I, after which the solutions were neutralized to pH 7.0 with 50% sodium hydroxide. Chain transfer agent and catalyst were added in the amounts indicated in Table I. The solutions were placed under fluorescent light for 60 minutes. The gels formed were diluted to 600 mg/l active polymer.

Eksempler 1- 31 ( kjølevann) Examples 1-31 (cooling water)

Inhiberingen av kalsiumfosfatavsetningen ble testet under anvendelse av 2 50 ppm Ca<++> og 6,0 mg/l PO^ med 10 ppm inhibitor, av pH 8,5 og ved 60°C i 24 timer. Den prosentvise inhibering, som er angitt i tabell II, ble bestemt ved å måle PO^ -konsentrasjonen i oppløsningen før og etter en 2 4 timers periode. The inhibition of calcium phosphate deposition was tested using 250 ppm Ca<++> and 6.0 mg/l PO^ with 10 ppm inhibitor, of pH 8.5 and at 60°C for 24 hours. The percent inhibition, shown in Table II, was determined by measuring the PO 3 concentration in the solution before and after a 24 hour period.

Den prosentvise inhibering av kalsiumfosfat ble målt under anvendelse av 2,5 ppm og 5 ppm inhibitor, etter metoden angitt i eksempler 1-23. Resultatene er angitt i tabell III. The percentage inhibition of calcium phosphate was measured using 2.5 ppm and 5 ppm inhibitor, following the method set forth in Examples 1-23. The results are shown in Table III.

Eksempler 32 - 40 ( avsaltning) Examples 32 - 40 (desalination)

Damp ble ført gjennom et U-rør av metall for å holde temperaturen på 151°C. U-røret ble neddykket i en sylindrisk celle. Sjøvann, med en konsentrasjonsfaktor på 1,6 ganger vanlig sjøvann (av pH 8,2) ble ført gjennom cellen med en hastighet på 600 ml/h. Etter 24 timer ble steinavsetningen på U-røret fjernet, veiet og analysert. Effektiviteten er angitt som den prosentvise inhibering, definert ved ligningen: % inhibering = Steam was passed through a metal U-tube to maintain the temperature at 151°C. The U-tube was immersed in a cylindrical cell. Seawater, with a concentration factor of 1.6 times normal seawater (of pH 8.2) was passed through the cell at a rate of 600 ml/h. After 24 hours, the stone deposit on the U-tube was removed, weighed and analyzed. The efficiency is indicated as the percentage inhibition, defined by the equation: % inhibition =

Avsetningene ble bestemt ved ligningen: The provisions were determined by the equation:

Den prosentvise inhibering oppnådd med et antall avset-ningsinhibitorblandinger er angitt i tabell IV. The percentage inhibition achieved with a number of deposition inhibitor compositions is given in Table IV.

Eksempler 41 - 56 ( kjølevann) Examples 41 - 56 (cooling water)

Polymer 11 ble tilsatt i mengder som angitt i eksempel V til prøver av syntetisk kjelevann inneholdende varierende mengder av P04 OH , Si02, Mg++ og chelant (natriumnit-rilotrieddiksyre). I hvert eksempel ble det foretatt prøving under tre betingelser: uten noen terpolymer, med 1 mg/ml terpolymer og med 10 mg/l terpolymer. Blandingene ble oppvar-met til 90°C og holdt ved denne temperatur under forsøkene. pH-verdien ble holdt mellom 10 og 12. Hver prøve ble observert ettér 1 time, 4 eller 5 timer, og 21 eller 22 timer. Observasjonene er angitt i tabell V. Forsøket anvendes til å forutsi effektiviteten av inhibitorene i kjelevannsystemer. I spaltene som angir observasjonene, angir A det mest foretrukne resultat, mens F angir det minst foretrukne resultat. Polymer 11 was added in amounts as indicated in Example V to samples of synthetic boiler water containing varying amounts of PO 4 OH , SiO 2 , Mg ++ and chelant (sodium nitrite-rilotriacetic acid). In each example, testing was carried out under three conditions: without any terpolymer, with 1 mg/ml terpolymer and with 10 mg/l terpolymer. The mixtures were heated to 90°C and kept at this temperature during the experiments. The pH value was kept between 10 and 12. Each sample was observed after 1 hour, 4 or 5 hours, and 21 or 22 hours. The observations are set out in table V. The experiment is used to predict the effectiveness of the inhibitors in boiler water systems. In the columns indicating the observations, A indicates the most preferred outcome, while F indicates the least preferred outcome.

Fotnote til tabell V Footnote to Table V

A klar A ready

B små partikler dispergert i hele blandingen B small particles dispersed throughout the mixture

C små partikler avsatt på bunnen C small particles deposited on the bottom

D partikler agglomerert på bunnen til størrelsen av små D particles agglomerated on the bottom to the size of small

bomullskuler cotton balls

E partikler agglomerert på bunnen til størrelsen av en E particles agglomerated on the bottom to the size of a

middels stor bomullskule medium sized cotton ball

F partikler agglomerert på bunnen til størrelsen av en stor bomullskule F particles agglomerated on the bottom to the size of a large cotton ball

Eksempler 57 - 72 ( gasskrubbere) Examples 57 - 72 (gas scrubbers)

Zeta-potensialet er et mål på partikkeloverflatelad-ningen ved partikkel/vann-skjærflaten. En effektiv inhibitor vil øke ladningen og således øke den frastøtende kraft mellom partikler. Dette vil øke dispergerbarheten av partiklene og nedsette koaguleringen, utfeiningen og den påfølgende avset-ning . The zeta potential is a measure of the particle surface charge at the particle/water interface. An effective inhibitor will increase the charge and thus increase the repulsive force between particles. This will increase the dispersibility of the particles and reduce the coagulation, the sweeping and the subsequent deposition.

Zeta-potensialene for partikler av magnetitt (jern-oxyd) og av kalsiumcarbonat og magnetitt i en 70/30-vektblan-ding ble bestemt for 1000 ppm suspensjoner i avionisert vann ved varierende pH-verdier. 0,5 ppm og 5 ppm av forskjellige polymerer ble tilsatt til suspensjonene, og Zeta-potensialet ble igjen målt. Forandringen i Zeta-potensialet etter inhibi-tortilsetning, eller økningen i Zeta-potensialet, er angitt i tabell VI. Når Zeta-potensialet øket, ble mer stabile suspensjoner dannet. Blandede avsetninger av magnetitt og kalsiumcarbonat er særlig typiske for avsetninger funnet i mange gasskrubbesysterner. The zeta potentials of particles of magnetite (iron oxide) and of calcium carbonate and magnetite in a 70/30 weight mixture were determined for 1000 ppm suspensions in deionized water at varying pH values. 0.5 ppm and 5 ppm of different polymers were added to the suspensions and the Zeta potential was again measured. The change in Zeta potential after inhibitor addition, or the increase in Zeta potential, is indicated in Table VI. As the Zeta potential increased, more stable suspensions were formed. Mixed deposits of magnetite and calcium carbonate are particularly typical of deposits found in many gas scrubbing cisterns.

Eksempler 73 - 75 ( siliciumdioxydinhibering) Examples 73 - 75 (silicon dioxide inhibition)

20,0 ml 1,0 M natriumklorid, 8 ml 0,1 M natriumsilikat-oppløsning og eventuelt en forutbestemt mengde inhibitor ble blandet og fortynnet med destillert vann til 100 ml slutt-volum. Blandingens temperatur ble holdt ved ca. 40°C under forsøket, og pH-verdien ble innstilt på 8,0 ved tilsetning av saltsyre. Siliciumdioxydmonomerkonsentrasjonen ble bestemt etter molybdatmetoden [Alexander, G.B.; J.A.C.S. 75, 5055 20.0 ml of 1.0 M sodium chloride, 8 ml of 0.1 M sodium silicate solution and optionally a predetermined amount of inhibitor were mixed and diluted with distilled water to a final volume of 100 ml. The temperature of the mixture was kept at approx. 40°C during the experiment, and the pH value was adjusted to 8.0 by adding hydrochloric acid. The silicon dioxide monomer concentration was determined by the molybdate method [Alexander, G.B.; J.A.C.S. 75, 5055

(1953)] etter 5,0 minutter og senere med visse mellomrom. Dataene ble anaylsert ved anvendelse av en annen grads kine-tisk kurve, og polymerisasjonshastigheten ble bestemt. Tabell VII viser virkningen av inhibitoren på siliciumdioxyd-polyme-risasjonsprosessen. En reduksjon i denne polymerisasjonshas-tighet indikerer en forventet nedsettelse i mengden av sili-ciumdioxydavsetning på varmeoverførings- og vanntransport-overflater i vandige systemer. (1953)] after 5.0 minutes and later at certain intervals. The data were analyzed using a second order kinetic curve and the rate of polymerization was determined. Table VII shows the effect of the inhibitor on the silicon dioxide polymerization process. A reduction in this polymerization rate indicates an expected reduction in the amount of silicon dioxide deposition on heat transfer and water transport surfaces in aqueous systems.

Eksempel 76 (- korrosjon) Example 76 (- corrosion)

Ved prøvestykke-neddykkingsprøven ble det benyttet In the specimen immersion test, it was used

et sylindrisk batterikar med en kapasitet på 8 liter. En Haake neddykningssirkulator (Model D-52)) for opprettholdelse av konstant temperatur ble anvendt til å regulere oppløsnings-temperaturen og omrøre det regulerte bad. Enheten inneholdt en 1000 watts fullt innstillbar oppvarmningsinnretning av rustfritt stål som tillot temperaturregulering på - 0,01°C, a cylindrical battery vessel with a capacity of 8 litres. A Haake immersion circulator (Model D-52)) for maintaining constant temperature was used to regulate the solution temperature and agitate the regulated bath. The unit contained a 1000 watt fully adjustable stainless steel heating device that allowed temperature control of -0.01°C,

og en pumpe med kapasitet 10 liter pr. minutt og med innebyg-get trykkdyserører for å sikre meget jevn temperatur i badet. En kontakttermoregulator ble anvendt som temperaturtøleele-ment. and a pump with a capacity of 10 liters per minute and with built-in pressure nozzles to ensure a very even temperature in the bathroom. A contact thermoregulator was used as a temperature-sensing element.

Oppløsningens pH ble regulert med en "Krugere and Eckels Model 440 pH Controller". Denne enhet var i stand til The pH of the solution was regulated with a "Krugere and Eckels Model 440 pH Controller". This unit was capable of

å slå strømmen til en Dias-minipumpe på og av når pH-verdien for det korroderende væskemedium falt under settpunktet. Den peristaltiske Dias-pumpe, med en pumpekapasitet på 20 ml pr. time, opprettholdt oppløsningens pH ved tilsetning av svovel-syre. Standard glass-og mettet-kalomelelektroder ble anvendt som de registrerende elementer. Badet ble luftet kontinuerlig med en hastighet på 60 cm 3 pr. minutt gjennom et middels po-røst gassfordelingsrør av plast for å sikre luftmetning. to turn the power to a Dias mini pump on and off when the pH of the corrosive liquid medium dropped below the set point. The Dias peristaltic pump, with a pump capacity of 20 ml per hour, maintained the pH of the solution by adding sulfuric acid. Standard glass and saturated calomel electrodes were used as the recording elements. The bath was ventilated continuously at a rate of 60 cm 3 per minute through a medium porous plastic gas distribution tube to ensure air saturation.

To SAE 1010 stålkuponger, hver med et overflateareal på 27,1 cm <2>, ble opphengt med en glasskrok. Forholdet mellom oppløsningens volum og forsøksmetallets overflateareal ved forsøket var ca. 1000:1. Two SAE 1010 steel coupons, each with a surface area of 27.1 cm <2>, were suspended with a glass hook. The ratio between the volume of the solution and the surface area of the test metal in the experiment was approx. 1000:1.

Sammensetningen av det syntetiske vann som ble benyttet ved forsøket var som følger, idet inneholdet er angitt pr. liter destillert vann: The composition of the synthetic water used in the experiment was as follows, with the content indicated per liter of distilled water:

Ion: Ca<++> Mg<++> HCO~ Cl" SO^- Ion: Ca<++> Mg<++> HCO~ Cl" SO^-

<ppm>: 88 24 40 70 328 <ppm>: 88 24 40 70 328

Den totale hårdhet målt som CaCO^ var 318 ppm, og pH-verdien var 7,5. Temperaturen var 50 C. The total hardness measured as CaCO 3 was 318 ppm, and the pH value was 7.5. The temperature was 50 C.

Forsøket ble utført på basis av en 2-3 dagers syklus og systemet ble behandlet med korrosjonsinhibitormaterialene angitt i tabell I. Etter hver annen eller tredje dag ble for-søksoppløsningen vraket, og en frisk oppløsning ble fremstilt. Ved slutten av en 14 dagers syklus ble kupongene fjernet og analysert og forsøket avsluttet. Graden av korrosjon av kupongene ble målt som deres vekttap i løpet av en 14 dagers syklus, og resultatet ble omregnet til mm pr. år. Forsøks-resultatene er angitt i tabell VIII. The test was conducted on a 2-3 day cycle basis and the system was treated with the corrosion inhibitor materials listed in Table I. After every two or three days the test solution was scrapped and a fresh solution was prepared. At the end of a 14 day cycle, the coupons were removed and analyzed and the experiment terminated. The degree of corrosion of the coupons was measured as their weight loss during a 14 day cycle, and the result was converted to mm per year. The test results are given in Table VIII.

Claims (3)

1. Polyamfolyttpolymerer med egenviskositet på 0,05-4,5 dl/gi 1,0 M NaCl, karakterisert ved at de er fremstilt ved polymerisering av: (i) 5 - 90 vekt% av minst én carboxylisk funksjonell monomer med formelen: hvor R er hydrogen, fenyl, alkyl med 1-3 carbonatomer eller en gruppe -COOX,. R<1> er en forgrenet eller rettkjedet carbonkjede med fra 0 til 12 carbonatomer, og X er hydrogen eller et alkalimetall eller jordalkalimetall, (ii) 0,5 - 85 vekt% av minst én kationholdig monomer valgt blant forbindelsene med de generelle formler: hvor: R 3 er hydrogen, en fenylgruppe eller en alkylgruppe med 1-3 carbonatomer, fortrinnsvis hydrogen eller methylen, R 4 er en rettkjedet eller forgrenet alkylgruppe med 1-12 carbonatomer, fortrinnsvis 1-3 carbonatomer og X er et anion, fortrinnsvis et halogen eller alkylsul-fat, og (iii) 0-85 vekt% av minst én ikke-ionisk monomer med formelen: hvor R er hydrogen, fenyl eller alkyl med 1-3 carbonatomer, og R 2, som kan være like eller forskjellige, er hydrogen eller alkyl med 1-3 carbonatomer.1. Polyampholyte polymers with intrinsic viscosity of 0.05-4.5 dl/gi 1.0 M NaCl, characterized in that they are produced by polymerization of: (i) 5 - 90% by weight of at least one carboxylic functional monomer with the formula: where R is hydrogen, phenyl, alkyl with 1-3 carbon atoms or a group -COOX,. R<1> is a branched or straight-chain carbon chain with from 0 to 12 carbon atoms, and X is hydrogen or an alkali metal or alkaline earth metal, (ii) 0.5 - 85% by weight of at least one cationic monomer selected from among the compounds with the general formulas: where: R 3 is hydrogen, a phenyl group or an alkyl group with 1-3 carbon atoms, preferably hydrogen or methylene, R 4 is a straight-chain or branched alkyl group with 1-12 carbon atoms, preferably 1-3 carbon atoms and X is an anion, preferably a halogen or alkyl sulfate, and (iii) 0-85% by weight of at least one non-ionic monomer with the formula: where R is hydrogen, phenyl or alkyl with 1-3 carbon atoms, and R 2 , which may be the same or different, is hydrogen or alkyl of 1-3 carbon atoms. 2. Anvendelse av en polyamfolyttpolymer ifølge krav 1 eller et salt av denne for å inhibere korrosjon og steinavsetninger i et vandig system.2. Use of a polyampholyte polymer according to claim 1 or a salt thereof to inhibit corrosion and stone deposits in an aqueous system. 3. Anvendelse ifølge krav 2 av en polyamfolyttpolymer fremstilt fra 22,5-70 vekt% av den eller de carboxylisk funksjonelle monomerer (i), 2,5-25 vekt% av den eller de kationholdige monomerer (ii) og 5-67 vekt% av den eller de ikke-ioniske monomerer (iii).3. Use according to claim 2 of a polyampholyte polymer prepared from 22.5-70% by weight of the carboxylic functional monomer(s) (i), 2.5-25% by weight of the cationic monomer(s) (ii) and 5-67% by weight % of the non-ionic monomer(s) (iii).
NO82824198A 1981-12-15 1982-12-14 POLYAMPHOLYTE POLYMERS AND THEIR USE FOR AA PREVENTION CORROSION AND STONE PROVISIONS IN Aqueous Systems. NO158951C (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US33110281A 1981-12-15 1981-12-15
US06/331,101 US4455240A (en) 1981-12-15 1981-12-15 Ampholytic polymers for use as filtration control aids in drilling muds
US06/378,921 US4533708A (en) 1981-12-15 1982-05-17 Polyampholyte polymer
US41118282A 1982-08-25 1982-08-25
US41117382A 1982-08-25 1982-08-25
US06/411,174 US4460477A (en) 1982-08-25 1982-08-25 Use of a carboxylic functional polyampholyte to inhibit the precipitation and deposit of scale in aqueous systems
US06/411,167 US4484631A (en) 1982-08-25 1982-08-25 Use of polyampholytes to enhance oil and/or gas recovery

Publications (3)

Publication Number Publication Date
NO824198L NO824198L (en) 1983-06-16
NO158951B true NO158951B (en) 1988-08-08
NO158951C NO158951C (en) 1988-11-16

Family

ID=27569682

Family Applications (1)

Application Number Title Priority Date Filing Date
NO82824198A NO158951C (en) 1981-12-15 1982-12-14 POLYAMPHOLYTE POLYMERS AND THEIR USE FOR AA PREVENTION CORROSION AND STONE PROVISIONS IN Aqueous Systems.

Country Status (7)

Country Link
EP (3) EP0156030B1 (en)
JP (2) JPH0642960B2 (en)
AU (1) AU560184B2 (en)
CA (1) CA1209009A (en)
DE (1) DE3270681D1 (en)
HK (1) HK43187A (en)
NO (1) NO158951C (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536292A (en) * 1984-03-26 1985-08-20 Calgon Corporation Carboxylic/sulfonic/quaternary ammonium polymers for use as scale and corrosion inhibitors
US4566973A (en) * 1984-08-06 1986-01-28 The B. F. Goodrich Company Scale inhibition in water systems
GB2168359B (en) * 1984-11-08 1988-05-05 Grace W R & Co A method of inhibiting corrosion in aqueous systems
US4652623A (en) * 1984-11-23 1987-03-24 Calgon Corporation Polymers for use as filtration control aids in drilling muds
ATE41469T1 (en) * 1985-08-15 1989-04-15 Halliburton Co METHOD OF STABILIZING FINE PARTICLES.
US4657679A (en) * 1986-03-13 1987-04-14 Nalco Chemical Company AMPIQ copolymers as scale inhibitors
DE3708451A1 (en) * 1987-03-16 1988-10-06 Henkel Kgaa ZWITTERIONIC POLYMERS AND THEIR USE IN HAIR TREATMENT AGENTS
NZ230686A (en) * 1988-09-26 1991-11-26 Calgon Corp Inhibiting sulphide attack on carbon steels with a water-soluble polymer
US5038861A (en) * 1990-05-23 1991-08-13 Chevron Research And Technology Company Method for prolonging the useful life of scale inhibitors injected within a formation
US5181567A (en) * 1990-05-23 1993-01-26 Chevron Research And Technology Company Method for prolonging the useful life of polymeric or blended scale inhibitors injected within a formation
US5179136A (en) * 1990-09-10 1993-01-12 Phillips Petroleum Company Gelatin of acrylamide-containing polymers with aminobenzoic acid compounds and water dispersible aldehydes
DE59308707D1 (en) * 1992-04-10 1998-07-30 Clariant Gmbh Process for reducing or completely stopping the flow of water from oil and / or hydrocarbon gas wells
WO1995014066A1 (en) * 1993-11-19 1995-05-26 Clearwater, Inc. Method of treating shale and clay in hydrocarbon formation drilling
CN1050404C (en) * 1995-04-13 2000-03-15 辽河石油勘探局兴隆台采油厂 High temp.-resistant sand-solidifying agent and preparing method
CN1074019C (en) * 1995-12-20 2001-10-31 四川联合大学 Method for preparation of polymer oil-displacing agent
EP1555385A1 (en) * 2004-01-16 2005-07-20 Services Petroliers Schlumberger SA Method of consolidating an underground formation
GB0516068D0 (en) 2005-08-04 2005-09-14 Champion Technologies Ltd Well treatment
GB0600692D0 (en) 2006-01-13 2006-02-22 Champion Technologies Ltd Well treatment
GB0616469D0 (en) 2006-08-17 2006-09-27 Champion Technologies Ltd Well treatment
US8598094B2 (en) 2007-11-30 2013-12-03 Halliburton Energy Services, Inc. Methods and compostions for preventing scale and diageneous reactions in subterranean formations
FR2932183B1 (en) * 2008-06-10 2013-03-29 Seppic Sa NOVEL POLYAMPHOLYTE AND USE THEREOF IN THE TREATMENT OF ROCKY FORMATIONS
US8881811B2 (en) 2008-10-10 2014-11-11 Halliburton Energy Services, Inc. Additives to suppress silica scale build-up and methods of use thereof
US8307897B2 (en) 2008-10-10 2012-11-13 Halliburton Energy Services, Inc. Geochemical control of fracturing fluids
JP5434256B2 (en) * 2009-05-19 2014-03-05 東亞合成株式会社 Drilling mud additive, method for producing the same, and drilling mud using the same
DE102009039552B4 (en) 2009-09-01 2011-05-26 Thyssenkrupp Vdm Gmbh Process for producing an iron-chromium alloy
JP6146957B2 (en) * 2012-03-15 2017-06-14 株式会社日本触媒 Amino group-containing copolymer
US10450500B2 (en) 2015-01-12 2019-10-22 Ecolab Usa Inc. Thermally stable polymers for enhanced oil recovery
CN105085798B (en) * 2015-08-07 2017-08-25 四川大学 A kind of partial cross-linked partially branched polymer oil displacement agent of dual-network and preparation method thereof
CN107686534B (en) * 2016-08-04 2020-04-07 中国石油化工股份有限公司 Polymer with selective water plugging function and preparation method and application thereof
CN109053973A (en) * 2018-07-11 2018-12-21 长沙加美乐素化工有限公司 A kind of dropwise addition synthesis technology of polycarboxylate water-reducer
CN113563536B (en) * 2021-09-26 2021-12-17 山东诺尔生物科技有限公司 Double-electric-layer polyacrylamide microsphere and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3679000A (en) * 1970-12-04 1972-07-25 Lubrizol Corp Secondary oil recovery method using n-sulfohydrocarbon-substituted acrylamide polymers as viscosity increasing agents
US3709815A (en) * 1971-07-01 1973-01-09 Calgon Corp Boiler water treatment
US3744566A (en) * 1972-03-16 1973-07-10 Calgon Corp Secondary oil recovery process
JPS496078A (en) * 1972-05-02 1974-01-19
JPS5127479B2 (en) * 1972-10-19 1976-08-12
US4024040A (en) * 1974-02-26 1977-05-17 Hercules Incorporated Polymerization of unsaturated monomers with radiation in the presence of salts
US4077930A (en) * 1974-07-16 1978-03-07 Calgon Corporation Self-inverting emulsions of dialkyldiallyl ammonium chloride polymers and copolymers
US4085060A (en) * 1975-09-23 1978-04-18 Vassileff Neiko I Sequestering compositions
JPS53149292A (en) * 1977-05-31 1978-12-26 Sumitomo Chem Co Ltd High-polymer ampholyte, its production and paper-strengthening agent and high-polymer coagulant containing the same as major ingredient
US4131583A (en) * 1977-12-01 1978-12-26 Northern Instruments Corporation Corrosion inhibiting compositions
JPS5494482A (en) * 1978-01-09 1979-07-26 Otsuka Chem Co Ltd Scale inhibitor
DE3003747A1 (en) * 1979-03-09 1980-09-11 Milchem Inc METHOD FOR DRILLING HOLES
US4293427A (en) * 1979-03-09 1981-10-06 Milchem Incorporated Drilling fluid containing a copolymer filtration control agent

Also Published As

Publication number Publication date
AU560184B2 (en) 1987-04-02
JPH0643463B2 (en) 1994-06-08
NO158951C (en) 1988-11-16
NO824198L (en) 1983-06-16
EP0156030B1 (en) 1987-06-10
EP0156030A1 (en) 1985-10-02
EP0082657B1 (en) 1986-04-16
EP0082657B2 (en) 1989-07-12
EP0156031B1 (en) 1987-10-28
AU9143882A (en) 1983-06-23
EP0082657A2 (en) 1983-06-29
HK43187A (en) 1987-06-12
EP0156031A1 (en) 1985-10-02
EP0082657A3 (en) 1983-09-14
JPH03193198A (en) 1991-08-22
JPH0642960B2 (en) 1994-06-08
JPH03174402A (en) 1991-07-29
DE3270681D1 (en) 1986-05-22
CA1209009A (en) 1986-08-05

Similar Documents

Publication Publication Date Title
NO158951B (en) POLYAMPHOLYTE POLYMERS AND THEIR APPLICATION FOR AA PREVENTION CORROSION AND STONE PROVISIONS IN Aqueous Systems.
US4536292A (en) Carboxylic/sulfonic/quaternary ammonium polymers for use as scale and corrosion inhibitors
US4351796A (en) Method for scale control
US4510059A (en) Carboxylic functional polyampholytes as silica polymerization retardants and dispersants
US4460477A (en) Use of a carboxylic functional polyampholyte to inhibit the precipitation and deposit of scale in aqueous systems
US4560481A (en) Method of controlling iron induced fouling in water systems
US4209398A (en) Water treating process
US5575920A (en) Method of inhibiting scale and controlling corrosion in cooling water systems
JPS58109196A (en) High molecular amphoteric electrolyte and its use
US4048066A (en) Method of inhibiting scale
US4446028A (en) Isopropenyl phosphonic acid copolymers used to inhibit scale formation
CA1152848A (en) Method and composition for treating aqueous mediums
JPS5825343A (en) Aqueous medium treatment and composition
EP0142929A2 (en) Water soluble polymers and methods of use thereof
US4895663A (en) Water treatment polymers and methods of use thereof
KR102477324B1 (en) Polyacrylate polymers for corrosion inhibition of low carbon steels
US4530955A (en) Water treatment composition comprising a hydrolyzed maleic anhydride copolymer and a zinc compound
SE452452B (en) PROCEDURE FOR TREATING THE HEART WATER TO DISPERSE PARTICULAR MATERIAL THEREOF
CA1233938A (en) Copolymers of carboxylic monomer and betaine- containing monomer
US4717543A (en) Method of inhibiting the corrosion of copper and copper alloys
EP0274733B1 (en) Water treatment polymer
JPS6041595A (en) Scale inhibitor
RU2486138C2 (en) Method of preventing scaling and corrosion in water supply systems
US3620667A (en) Method of removing tubercles from a ferrous surface and inhibiting further tubercle formation thereon
Asrar et al. Corrosion prevention with sodium silicate