NO153806B - PROCEDURE FOR THE PREPARATION OF 6-DEOXYTE TRACYCLINE. - Google Patents

PROCEDURE FOR THE PREPARATION OF 6-DEOXYTE TRACYCLINE. Download PDF

Info

Publication number
NO153806B
NO153806B NO843825A NO843825A NO153806B NO 153806 B NO153806 B NO 153806B NO 843825 A NO843825 A NO 843825A NO 843825 A NO843825 A NO 843825A NO 153806 B NO153806 B NO 153806B
Authority
NO
Norway
Prior art keywords
reaction
catalyst
substrate
solvent
approx
Prior art date
Application number
NO843825A
Other languages
Norwegian (no)
Other versions
NO843825L (en
NO153806C (en
Inventor
Thomas Mott Brennan
Hermann Faubl
Original Assignee
Pfizer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27406609&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NO153806(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Publication of NO843825L publication Critical patent/NO843825L/en
Application filed by Pfizer filed Critical Pfizer
Publication of NO153806B publication Critical patent/NO153806B/en
Publication of NO153806C publication Critical patent/NO153806C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium

Description

Oppfinnelsen gjelder en fremgangsmåte for hydrogenering The invention relates to a method for hydrogenation

av den eksocykliske metylengruppen i et 6-metylentetracyklin. Mere spesielt gjelder den hydrogenering av et 6-metylentetracyklin eller et syreaddisjonssalt av nevnte forbindelse, ved å kontakte forbind-elsen og hydrogen med et kompleks av rhodium og tertiære fosfiner, of the exocyclic methylene group in a 6-methylenetetracycline. More particularly, it applies to the hydrogenation of a 6-methylenetetracycline or an acid addition salt of said compound, by contacting the compound and hydrogen with a complex of rhodium and tertiary phosphines,

1 et løsningsmiddel hvori komplekset er løselig. 1 a solvent in which the complex is soluble.

Reaksjonen mellom 6-demetyl-6-deoksy-6-metylentetracykliner, syreaddisjonssalter derav og flerverdige metallsaltkom-plekser derav og hydrogen i nærvær av en heterogen edemetallkata-lysator for å fremstille de tilsvarende epimere a- og /3-6-deoksy-tetracykliner er beskrevet i U.S. patent 3 200 149. Anvendelsen av en forgiftet edelmetallkatalysator for å oppnå den samme omdann-elsen men med en økning i forholdet mellom a- og 0-6-deoksytetracyklin er omtalt i U.S. patent 3 444 198. U.S. patent 2 984 686 beskriver anvendelse av katalytisk reduksjon ved å anvende hydrogen og en edelmetallkatalysator for å oppnå bare en lla-dehalogengener-ing av lla-halogen-6-demetyl-6-deoksy-6-metylentetracyklin. I tillegg er reduksjon av lla-halogen-6-demetyl-6-deoksy-6-metylentetracykliner, salter og komplekser derav i nærvær av en edelmetallkatalysator ved å anvende hydrazin som hydrogenkilde omtalt i tysk patent 2 131 944. Britisk patent 1 296 340 beskriver anvendelse av Raney-nikkel og Raney-kobolt som katalysatorer for slike reduksjoner. Rhodiumhalogenidkomplekser inneholdende tertiære fosfin- eller arsinligander, fremstilling av dem og anvendelse som homogene hydrogeneringskatalysatorer er beskrevet i U.S. patent 3 639 439, utstedt 1. februar 1972. Løselige komplekser av platinametallgruppen, spesielt av rhodium, som inneholder et halogenid og et tertiært fosfin, arsin, stibin eller amin, deres fremstilling og anvendelsen som hydrogeneringskatalysatorer er også omtalt i britiske patenter 1 138 601 (publisert 1. januar 1969), 1 219 763 (publisert 20. The reaction between 6-demethyl-6-deoxy-6-methylenetetracyclines, acid addition salts thereof and polyvalent metal salt complexes thereof and hydrogen in the presence of a heterogeneous ede metal catalyst to produce the corresponding epimeric α- and /3-6-deoxytetracyclines is described in the U.S. patent 3,200,149. The use of a poisoned noble metal catalyst to achieve the same conversion but with an increase in the ratio between α- and 0-6-deoxytetracycline is discussed in U.S. Pat. U.S. Patent 3,444,198 patent 2,984,686 describes the use of catalytic reduction using hydrogen and a noble metal catalyst to achieve only an 11a-dehalogenation of 11a-halo-6-demethyl-6-deoxy-6-methylenetetracycline. In addition, reduction of lla-halo-6-demethyl-6-deoxy-6-methylenetetracyclines, salts and complexes thereof in the presence of a noble metal catalyst by using hydrazine as a hydrogen source is discussed in German patent 2 131 944. British patent 1 296 340 describes use of Raney nickel and Raney cobalt as catalysts for such reductions. Rhodium halide complexes containing tertiary phosphine or arsine ligands, their preparation and use as homogeneous hydrogenation catalysts are described in U.S. Pat. patent 3,639,439, issued February 1, 1972. Soluble complexes of the platinum metal group, especially of rhodium, containing a halide and a tertiary phosphine, arsine, stibine or amine, their preparation and their use as hydrogenation catalysts are also disclosed in British Patents 1,138,601 (published 1 January 1969), 1,219,763 (published 20

januar 1971) 1 121 642 (publisert 31. juli 1968) og 1 121 643 (publisert 31. juli 1968) og i U.S. patenter 3 489 786 (13. januar 1970) og 3 459 780 (5. august 1969). Slike katalysatorer er angitt å skaffe en forbedret fremgangsmåte for hydrogenering av umettede organiske forbindelser, spesielt av olefiner, sammenlignet med an- . vendelsen av heterogene katalysatorer. January 1971) 1,121,642 (issued July 31, 1968) and 1,121,643 (issued July 31, 1968) and in U.S. Pat. patents 3,489,786 (January 13, 1970) and 3,459,780 (August 5, 1969). Such catalysts are indicated to provide an improved process for the hydrogenation of unsaturated organic compounds, especially of olefins, compared to an- . the reversal of heterogeneous catalysts.

Norsk patent 138 565 (27. august 1973) beskriver fremstilling av a-6-deoksytetracykliner ved homogen katalytisk hydrogenering ved bruk av tris(trifenylfosfin)klor-rhodium som katalysator. Katalysatoren kan ifølge beskrivelsen dannes på forhånd eller kan fremstilles direkte i reaksjonsmediet ved å oppløse rhodiumtriklorid i mediet i nærvær av mellom en og tre molekviva-lenter trifenylfosfin. Norwegian patent 138 565 (27 August 1973) describes the preparation of α-6-deoxytetracyclines by homogeneous catalytic hydrogenation using tris(triphenylphosphine)chlororhodium as catalyst. According to the description, the catalyst can be formed in advance or can be prepared directly in the reaction medium by dissolving rhodium trichloride in the medium in the presence of between one and three molar equivalents of triphenylphosphine.

U.S. patent 3 692 864, utgitt 19. september 1972 lærer hydrogenering av umettede organiske molekyler ved anvendelse av homogene metallkomplekser av jerntriadetypen (nikkel, kobolt, jern) med tertiære fosfiner. Typisk for de beskrevne komplekser er klor-tris(trifenylfosfin)kobolt(I). U.S. patent 3,692,864, issued September 19, 1972 teaches the hydrogenation of unsaturated organic molecules using homogeneous metal complexes of the iron triad type (nickel, cobalt, iron) with tertiary phosphines. Typical of the described complexes is chloro-tris(triphenylphosphine)cobalt(I).

Mange publikasjoner angir at homogen katalyse er en lov-ende måte å gjennomføre hydrogeneringsreaksjoner på, innbefattet regiospesifikke, selektive og asymmetriske reduksjoner. Knowles et al., Chem. Commun., p 1445 (1968), Horner et al., Angew. Chem., Int. Ed., 1_, 942 (1968) og belgisk patent 766.960, publisert 10. november, 1971 omtaler anvendelse av komplekser av enverdig rhodium med optisk aktive tertiære fosfinligander som homogene katalysatorer for å oppnå asymmetrisk katalytisk hydrogenering. Nyere publikasjoner gir en meget omfattende oversikt over det kjente: Harmon et al., Chem. Rev. 7_3, 21-52 (1973), Knowles et al., Chem. Commun., p 10 (1972), Grubbs et al., J. Am. Chem. Soc, 92, 3062 (1971), Kagan et al., J. Am. Chem. Soc, 94, 6429 (1972) og "Homogeneous Catalysis, Industrial Applications and Implications", Vol. 70, Advances in Chemistry Series, publisert av the American Chemical Society, Washington, D. C. (1968), "Aspects of Homogeneous Cata-lysis" Vol. I, pp. 5-75 (1970), redigert av R. Ugo og publisert av Carlo Manfredi, Milano, Italia og vol'Pin et al., Russian Chemical Reviews, 38, 273-289 (1969). Many publications state that homogeneous catalysis is a law-ending way to carry out hydrogenation reactions, including regiospecific, selective and asymmetric reductions. Knowles et al., Chem. Commun., p 1445 (1968), Horner et al., Angew. Chem., Int. Ed., 1_, 942 (1968) and Belgian Patent 766,960, published November 10, 1971 disclose the use of complexes of monovalent rhodium with optically active tertiary phosphine ligands as homogeneous catalysts to achieve asymmetric catalytic hydrogenation. Recent publications provide a very comprehensive overview of what is known: Harmon et al., Chem. Fox. 7_3, 21-52 (1973), Knowles et al., Chem. Commun., p 10 (1972), Grubbs et al., J. Am. Chem. Soc, 92, 3062 (1971), Kagan et al., J. Am. Chem. Soc, 94, 6429 (1972) and "Homogeneous Catalysis, Industrial Applications and Implications", Vol. 70, Advances in Chemistry Series, published by the American Chemical Society, Washington, D.C. (1968), "Aspects of Homogeneous Catalysis" Vol. I, pp. 5-75 (1970), edited by R. Ugo and published by Carlo Manfredi, Milan, Italy and vol'Pin et al., Russian Chemical Reviews, 38, 273-289 (1969).

Homogen katalytisk hydrogenering av eksocykliske metylen-grupper i metylencykloheksaner (Augustine et al., Ann. N. Y. Sei. 158, 482-91, (1969), i coronopilin (Ruesch et al., Tetrahedron, 25., 807-11, 1969) og i et mellomprodukt i den stereoselektive total-syntese av seychellen (Piers et al., Chem. Communs. 1069-70, 1969) ved bruk av tris(trifenylfosfin)klor-rhodium som katalysator er omtalt. Homogeneous catalytic hydrogenation of exocyclic methylene groups in methylenecyclohexanes (Augustine et al., Ann. N. Y. Sei. 158, 482-91, (1969), in coronopilin (Ruesch et al., Tetrahedron, 25., 807-11, 1969) and in an intermediate in the stereoselective total synthesis of seychelle (Piers et al., Chem. Communs. 1069-70, 1969) using tris(triphenylphosphine)chlororhodium as a catalyst is discussed.

Osborn et al, J. Chem. Soc. (A), 1711-1732 (1966) beskriver fremstilling av bromid- og jodidanalogene av Wilkinson-katalysatoren ved omsetning av nevnte katalysator med overskudd av litiumbromid eller litiumjodid (s. 1712). Side 1715 i artikkelen angir at bromid- og jodidanalogene reagerer med molekylært hydrogen på reversibel måte i likhet med kloridet [Wilkinson katalysator, RhCl(PPh3)3]. Anvendelse av RhX(PPh3)3 hvor X=C1, Br, I, som katalysator for reduksjon av cykloheksan er beskrevet på side 1722 i artikkelen. Økningen i katalysatorens aktivitet er Cl< Osborn et al., J. Chem. Soc. (A), 1711-1732 (1966) describes the preparation of the bromide and iodide analogues of the Wilkinson catalyst by reacting said catalyst with an excess of lithium bromide or lithium iodide (p. 1712). Page 1715 of the article states that the bromide and iodide analogues react with molecular hydrogen in a reversible manner as does the chloride [Wilkinson catalyst, RhCl(PPh3)3]. The use of RhX(PPh3)3 where X=C1, Br, I, as a catalyst for the reduction of cyclohexane is described on page 1722 of the article. The increase in the catalyst's activity is Cl<

Br<I. Br<I.

Reaksjonen mellom 6-metylentetracykliner eller syreaddisjonssalter derav og hydrogen i nærvær av løselige koordinerings-komplekser av rhodium med donor-akseptor-ligander som katalysator- The reaction between 6-methylenetetracyclines or their acid addition salts and hydrogen in the presence of soluble coordination complexes of rhodium with donor-acceptor ligands as catalysts

er har nå blitt funnet å forløpe glatt med hydrogenering av den eksocykliske metylengruppen. Foreliggende fremgangsmåte karakteriser-es ved at den finner sted i nærvær av kaliumbromid eller kaliumjodid. Alternativt anvendes et syreaddisjonssalt av 6-metylentetracyklin-et istedenfor 6-metylentetracyklinbasen og tilsatt syre. Fremgangsmåten ifølge oppfinnelsen har mange fordeler fremfor de kjente reduksjonsmetodene. Det dannes for eksempel lite eller intet av det uønskede anhydrotetracyklin, totalomdannelsen av et 6-metylentetracyklin til et 6-deoksytetracyklin forbedres, det oppnås nesten kvantitativ reduksjon av 6-metylentetracyklinsubstrat, og kataly-satorene gir stereoselektivitet ved reduksjonen, dvs. forholdet mellom den ønskede 6a-epimer og 60-epimer økes (mindre enn 1% 0-epimer dannes). is now found to proceed smoothly with hydrogenation of the exocyclic methylene group. The present method is characterized by the fact that it takes place in the presence of potassium bromide or potassium iodide. Alternatively, an acid addition salt of 6-methylenetetracycline is used instead of the 6-methylenetetracycline base and added acid. The method according to the invention has many advantages over the known reduction methods. For example, little or nothing of the undesired anhydrotetracycline is formed, the overall conversion of a 6-methylenetetracycline to a 6-deoxytetracycline is improved, an almost quantitative reduction of the 6-methylenetetracycline substrate is achieved, and the catalysts provide stereoselectivity in the reduction, i.e. the ratio between the desired 6a-epimer and 60-epimer are increased (less than 1% 0-epimer is formed).

Fremgangsmåten er nyttig for hydrogenering av 6-metylentetracykliner med følgende formel: The process is useful for the hydrogenation of 6-methylenetetracyclines of the following formula:

og syreaddisjonssalter derav. and acid addition salts thereof.

Strukturen for de komplekser som anvendes i hydrogener-ingsfremgangsmåten er ikke med sikkerhet kjent. Efter all sann-synlighet er i virkeligheten en rekke komplekser involvert i fremgangsmåten som katalysatorer eller katalysatorforløpere. Det blir derfor hensiktsmessig å definere kompleksene som halogenholdige rhodiumkomplekser som har blitt erholdt fra et halogenid av metall-et og en tertiær fosfinligand med formelen PR^R£R3 hvor hver av og R2 er fenyl eller 4-klorfenyl, og R^ er R^ eller metyl. The structure of the complexes used in the hydrogenation process is not known with certainty. In all likelihood, in reality a number of complexes are involved in the process as catalysts or catalyst precursors. It therefore becomes appropriate to define the complexes as halogen-containing rhodium complexes which have been obtained from a halide of the metal and a tertiary phosphine ligand of the formula PR^R£R3 where each of and R2 is phenyl or 4-chlorophenyl, and R^ is R^ or methyl.

Overensstemmende med fremgangsmåten ifølge oppfinnelsen oppløses et 6-metylentetracyklin med ovenstående formel i et passende løsningsmiddel og bringes i kontakt med hydrogen i nærvær av en homogen katalysator, det vil si en katalysator som er løselig i løsningsmidlet, ved passende trykk og temperatur og i nærvær av minst ca. en molekvivalent syre pr. mol 6-metylentetracyklin, inntil den ønskede reaksjon inntrer, dvs. hydrogenering av metylengruppen. In accordance with the method according to the invention, a 6-methylenetetracycline of the above formula is dissolved in a suitable solvent and brought into contact with hydrogen in the presence of a homogeneous catalyst, i.e. a catalyst which is soluble in the solvent, at suitable pressure and temperature and in the presence of at least approx. one molar equivalent of acid per mol of 6-methylenetetracycline, until the desired reaction occurs, i.e. hydrogenation of the methylene group.

Alternativt anvendes et syreaddisjonssalt av 6-metylen-tetracyklinforbindelsen som reaktant. Alternatively, an acid addition salt of the 6-methylene-tetracycline compound is used as reactant.

Mange forskjellige løsningsmidler kan anvendes i foreliggende fremgangsmåte. Løsningsmidlene eller løsningsmiddeIbland-ingene som velges, kan være slik at de tillater solubilisering av 6-metylentetracyklinsubstratet og katalysatoren ved den temperatur ved hvilken reaksjonen utføres for å oppnå et homogent system. Representative egnede løsningsmidler er følgende og blandinger av dem: etylenglykolmonometyleter, etylenglykolmonoetyleter, N,N-dimetylformamid, N,N-dimetylacetamid og alkoholer som f.eks. metanol, etanol, propanol, isopropanol og butanol. Many different solvents can be used in the present method. The solvents or solvent mixtures chosen may be such as to allow solubilization of the 6-methylenetetracycline substrate and the catalyst at the temperature at which the reaction is carried out to obtain a homogeneous system. Representative suitable solvents are the following and mixtures thereof: ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, N,N-dimethylformamide, N,N-dimethylacetamide and alcohols such as e.g. methanol, ethanol, propanol, isopropanol and butanol.

I tillegg til disse løsningsmiddelsystemer er også blandinger av vann og de vannblandbare løsningsmidler som er omtalt her egnede. Etanol-vann (90-10) er et foretrukket løsningsmiddel når 6-demetyl-6-deoksy-6-metylen-5-hydroksytetracyklin-hydroklorid an-vendes som substrat, siden det gir adekvat løselighet for substrat og katalysator, og tilfredsstillende hastighet og utbytte ved reaksjonen. Ennvidere kan også om ønsket blandinger av de ovennevnte løsningsmidler med løsningsmidler hvori substratet og katalysatoren er lite løselige anvendes. For eksempel kan det anvendes blandinger av benzen og dimetylformamid. Det eneste kriterium er at katalysatoren og substratet er tilstrekkelig løselig i systemet til at reaksjonen vil foregå. In addition to these solvent systems, mixtures of water and the water-miscible solvents mentioned here are also suitable. Ethanol-water (90-10) is a preferred solvent when 6-demethyl-6-deoxy-6-methylene-5-hydroxytetracycline hydrochloride is used as substrate, since it provides adequate solubility for substrate and catalyst, and satisfactory speed and yield of the reaction. Furthermore, if desired, mixtures of the above-mentioned solvents with solvents in which the substrate and the catalyst are poorly soluble can also be used. For example, mixtures of benzene and dimethylformamide can be used. The only criterion is that the catalyst and substrate are sufficiently soluble in the system for the reaction to take place.

Valget av løsningsmiddel avhenger av flere faktorer i tillegg til løseligheten for substratet og katalysatoren. Faktorer som f.eks. løsningsmidlets stabilitet under reaksjonsbetingelsene, spesielt ved høyere temperaturer, og reaksjonshastigheten er viktige ved valg av løsningsmiddel som vil gi maksimal omdannelse av substratet til det ønskede produkt. Dimetylformamid synes å undergå nedbrytning til karbonmonoksyd og dimetylamin som inaktiverer katalysatoren. Spaltningshastigheten for slike løsningsmidler aksele-rerer med økning av reaksjonstemperaturen. For å oppnå fullstendig omdannelse av substratet til det ønskede produkt må således temperaturer under 100°C og/eller økede mengder katalysator anvendes. Dimetylacetamid er meget stabilere under de reaksjonsbetingelser som anvendes og er et foretrukket løsningsmiddel. The choice of solvent depends on several factors in addition to the solubility of the substrate and the catalyst. Factors such as the stability of the solvent under the reaction conditions, especially at higher temperatures, and the reaction rate are important when choosing a solvent that will give maximum conversion of the substrate to the desired product. Dimethylformamide appears to undergo decomposition to carbon monoxide and dimethylamine which inactivates the catalyst. The decomposition rate for such solvents accelerates with increasing reaction temperature. In order to achieve complete conversion of the substrate to the desired product, temperatures below 100°C and/or increased amounts of catalyst must therefore be used. Dimethylacetamide is much more stable under the reaction conditions used and is a preferred solvent.

Dimetylsulfoksyd, aceton, acetonitril og heksametylfosfo-triamid kan også anvendes som løsningsmidler. Anvendelse av dem er imidlertid ikke foretrukket siden de er årsak til lavere reaksjonshastigheter enn de ovennevnte løsningsmidler. Dimethyl sulfoxide, acetone, acetonitrile and hexamethylphosphotriamide can also be used as solvents. However, their use is not preferred since they cause lower reaction rates than the above-mentioned solvents.

Alkoholiske løsningsmidler er generelt de foretrukne løs-ningsmidler siden de gir tilfredsstillende løselighet for substrat og katalysator, tilfredsstillende reaksjonshastigheter og utbytter av ønskede produkter. Alcoholic solvents are generally the preferred solvents since they provide satisfactory solubility for substrate and catalyst, satisfactory reaction rates and yields of desired products.

Stereoselektiviteten for reaksjonen synes i noen grad å avhenge av løsningsmidlet. Dimetylformamid har blitt observert å gi et noe høyere forhold av a- til /3-epimer enn alkoholiske løs-ningsmidler under bestemte betingelser. The stereoselectivity of the reaction seems to depend to some extent on the solvent. Dimethylformamide has been observed to give a somewhat higher ratio of α- to β-epimer than alcoholic solvents under certain conditions.

Hvorvidt et gitt løsningsmiddel eller løsningsmiddel-blanding er egnet for fremgangsmåten ifølge oppfinnelsen bestemmes som en første approksimasjon ved å undersøke løseligheten for substratet og katalysatoren deri ved den temperatur reaksjonen skal gjennomføres. Straks det er observert adekvat løselighet vurderes hvorvidt det spesielle løsningsmiddelsystem er egnet ved aktuelt forsøk, fortrinnsvis i liten skala, med stadig undersøkelse av reaksjonsblandingen for å bestemme omdannelsesgraden for substratet, naturen av produktene og reaksjonshastigheten. En egnet fremgangsmåte er tynnskiktskromatografi på silikagelplater bufret til pH 6 ved å anvende løsningsmiddelsystemet tetrahydrofuran-vann (95-5). Platene utvikles med ammoniakk og gjøres synlig under ultrafiolett lys ved 366 mu. Whether a given solvent or solvent mixture is suitable for the method according to the invention is determined as a first approximation by examining the solubility of the substrate and the catalyst therein at the temperature at which the reaction is to be carried out. As soon as adequate solubility has been observed, it is assessed whether the particular solvent system is suitable for the experiment in question, preferably on a small scale, with constant examination of the reaction mixture to determine the degree of conversion of the substrate, the nature of the products and the reaction rate. A suitable method is thin-layer chromatography on silica gel plates buffered to pH 6 by using the solvent system tetrahydrofuran-water (95-5). The plates are developed with ammonia and made visible under ultraviolet light at 366 mu.

Det er naturligvis ikke nødvendig at 6-metylentetracyklinsubstratet oppløses helt i løsningsmidlet. Det er bare avgjørende at det er tilstrekkelig løselig i løsningsmidlet til at reaksjonen kan foregå, og at det uoppløste substratet tjener som reservoar eller kilde til nytt substrat for å bibeholde en substratkonsentra-sjon i løsningsmidlet. Det foretrekkes imidlertid å anvende et løsningsmiddel hvori substratet og katalysatoren er helt, eller nesten oppløst. It is of course not necessary for the 6-methylenetetracycline substrate to dissolve completely in the solvent. It is only decisive that it is sufficiently soluble in the solvent for the reaction to take place, and that the undissolved substrate serves as a reservoir or source of new substrate to maintain a substrate concentration in the solvent. However, it is preferred to use a solvent in which the substrate and catalyst are completely, or almost, dissolved.

Hydrogentrykket som skal anvendes ved fremgangsmåten er The hydrogen pressure to be used in the method is

ikke kritisk men kan variere fra underatmosfærisk trykk til 280 kp/cm 2. Vanligvis favoriseres trykk fra ca. en atmosfære til ca. not critical but can vary from sub-atmospheric pressure to 280 kp/cm 2. Usually pressures from approx. an atmosphere to approx.

14o kp/cm 2. Trykk fra en atmosfære til ca. 50 atmosfærer er foretrukket. Underatmosfæriske hydrogentrykk oppnås hensiktsmessig ved å innføre en inert gass, f.eks. nitrogen, i reaksjonskaret i tillegg til hydrogenet. Et hydrogenpartialtrykk på mindre enn en atmosfære erholdes da lett. 14o kp/cm 2. Pressure from one atmosphere to approx. 50 atmospheres is preferred. Subatmospheric hydrogen pressures are conveniently achieved by introducing an inert gas, e.g. nitrogen, in the reaction vessel in addition to the hydrogen. A hydrogen partial pressure of less than one atmosphere is then easily obtained.

Temperaturen ved fremgangsmåten er ikke kritisk men kan variere innenfor et område fra ca. 20 til ca. 100°C. Det gunstige temperaturområde er fra ca. 40 til ca. 85°C og det foretrukne om- The temperature during the process is not critical but can vary within a range from approx. 20 to approx. 100°C. The favorable temperature range is from approx. 40 to approx. 85°C and the preferred re-

råde fra ca. 60 til ca. 85°C. Ved lave temperaturer, dvs. under ca. 20°C, er reaksjonshastigheten lav sammenlignet med hastigheten ved det gunstige temperaturområde. Lave temperaturer er derfor ikke ønskelige for arbeid i stor skala etter denne fremgangsmåte. Ved temperaturer over 100°C opptrer inaktivering av katalysatoren, vanligvis med en slik hastighet at det resulterer i ufullstendig hydrogenering av substratet unntatt ved anvendelse av store mengder katalysator. Temperaturområdet for reaksjonen bestemmes derfor ikke bare av økning i reaksjonshastigheten som normalt ventes ved en temperaturøkning, men også av stabiliteten for løsningsmidlet og katalysatoren, og som en direkte følge derav reaksjonens fullsten-dige gjennomføring. advise from approx. 60 to approx. 85°C. At low temperatures, i.e. below approx. 20°C, the reaction rate is low compared to the rate at the favorable temperature range. Low temperatures are therefore not desirable for large-scale work using this method. At temperatures above 100°C, inactivation of the catalyst occurs, usually at such a rate that it results in incomplete hydrogenation of the substrate, except when large amounts of catalyst are used. The temperature range for the reaction is therefore determined not only by an increase in the reaction rate which is normally expected with a temperature increase, but also by the stability of the solvent and the catalyst, and as a direct consequence of this the complete completion of the reaction.

Konsentrasjonen av substratet synes å ha liten virkning på reaksjonen unntatt når det gjelder reaksjonshastigheten selv i løs-ningsmidler hvori 6-metylentetracyklinsubstratet bare er delvis løselig. Det synes ikke å være noen merkbar konsentrasjonsbetinget virkning på stereoselektiviteten for reaksjonen, dvs. på forholdet mellom a- og /3-epimerer som dannes. The concentration of the substrate appears to have little effect on the reaction except in terms of the reaction rate even in solvents in which the 6-methylenetetracycline substrate is only partially soluble. There appears to be no noticeable concentration-dependent effect on the stereoselectivity of the reaction, i.e. on the ratio of α- and β-epimers that are formed.

Katalysatorkonsentrasjonen er likeledes ikke noen kritisk faktor, men av økonomiske grunner holdes den vanligvis på et nivå The catalyst concentration is likewise not a critical factor, but for economic reasons it is usually kept at a level

av fra ca. 0,01 molprosent til ca. 10 molprosent etter vekt basert på 6-metylentetracyklinkonsentrasjonen. Bruk av større mengder (f.eks. opp til 100 molprosent) kan godt anvendes i nærværende fremgangsmåte, men er økonomisk ufordelaktig. Små mengder katalysator anvendes vanligvis ikke siden inaktivering av katalysatoren og ufullstendig reaksjon da antagelig blir et alvorlig problem. Mens kata-lysatormengder like med eller større enn mengden substrat ikke vanligvis ansees "katalytisk" i den vanlige bruk av uttrykket, ansees de som slike her siden det i fravær av slikt materiale vil opptre from approx. 0.01 mole percent to approx. 10 mole percent by weight based on the 6-methylenetetracycline concentration. Use of larger amounts (eg up to 100 mole percent) can be used in the present method, but is economically disadvantageous. Small amounts of catalyst are usually not used since inactivation of the catalyst and incomplete reaction are likely to be a serious problem. While amounts of catalyst equal to or greater than the amount of substrate are not usually considered "catalytic" in the common usage of the term, they are considered so here since in the absence of such material it will

ingen eller bare liten reaksjon. Det er bare ved hjelp av en "katalysator" at reaksjonen foregår. no or only little reaction. It is only with the help of a "catalyst" that the reaction takes place.

Reaksjonsblandingens pH (tilsynelatende pH) er en betyd-ningsfull faktor når det gjelder reaksjonshastigheten og stereoselektiviteten for hydrogeneringen. Det har blitt observert at 6-demetyl-6-deoksy-6-metylen-5-hydroksytetracyklin når det hydrogeneres i alkoholisk løsning ved å anvende tris(trifenylfosfin)klor-rhodium(I) som katalysator i en mengde av 1 vekt% basert på 10% kon-sentrasjon av substratet ved 75°C og en atmosfære hydrogen, ga fra 20-25% /3-epimer. 6-demetyl-6-deoksy-6-metylen-5-hydroksytetra-cyklin-hydroklorid ga under liknende betingelser mindre enn 2% P-epimer. Liknende resultater oppnås når hydrogenklorid, tørr eller vandig, (2-50 ekvivalenter) tilsettes til en reaksjonsblanding inneholdende 6-demetyl-6-deoksy-6-metylen-5-hydroksytetracyklin. Den frie base synes å hydrogeneres langsommere enn hydrokloridet. 6-metylentetracyklinsubstratet anvendes ønskelig som et syreaddisjonssalt, eller alternativt tilsettes en syre til en løsning av baseformen av substratet for å tillate at reaksjonen kan foregå i et surt medium. Para-toluensulfonsyre og mineralsyrer (salt-, hydrobrom-, svovel- og salpetersyre), spesielt saltsyre, represen-terer foretrukne eksempler på syrekomponenten i slike tilfeller. Molforhold mellom syre og 6-metylentetracyklin er fordelaktig fra ca. 1 til ca. 5. Det foretrukne forhold er fra ca. 2 til ca. 3 mol syre pr. mol 6-metylentetracyklin, siden optimal reaksjonshastighet og stereoselektivitet med et minimum av bireaksjoner opptrer ved slike forhold. Mange andre syrer, f.eks. citron-, vin-, malein-, fumar-, benzosyre og syrer som er beskrevet i U.S. patent 3.200.149 og 2.984.686 og er i stand til saltdannelse med 6-metylentetracykliner, kan også anvendes. The pH (apparent pH) of the reaction mixture is a significant factor in terms of the reaction rate and the stereoselectivity of the hydrogenation. It has been observed that 6-demethyl-6-deoxy-6-methylene-5-hydroxytetracycline when hydrogenated in alcoholic solution using tris(triphenylphosphine)chlororhodium(I) as catalyst in an amount of 1% by weight based on 10% concentration of the substrate at 75°C and one atmosphere of hydrogen gave from 20-25% /3-epimer. 6-Demethyl-6-deoxy-6-methylene-5-hydroxytetracycline hydrochloride gave less than 2% P-epimer under similar conditions. Similar results are obtained when hydrogen chloride, dry or aqueous, (2-50 equivalents) is added to a reaction mixture containing 6-demethyl-6-deoxy-6-methylene-5-hydroxytetracycline. The free base appears to hydrogenate more slowly than the hydrochloride. The 6-methylenetetracycline substrate is preferably used as an acid addition salt, or alternatively an acid is added to a solution of the base form of the substrate to allow the reaction to take place in an acidic medium. Para-toluenesulfonic acid and mineral acids (hydrochloric, hydrobromic, sulfuric and nitric acid), especially hydrochloric acid, represent preferred examples of the acid component in such cases. Molar ratio between acid and 6-methylenetetracycline is advantageous from approx. 1 to approx. 5. The preferred ratio is from approx. 2 to approx. 3 moles of acid per mol 6-methylenetetracycline, since optimal reaction rate and stereoselectivity with a minimum of side reactions occur at such conditions. Many other acids, e.g. citric, tartaric, maleic, fumaric, benzoic and acids described in U.S. Pat. patent 3,200,149 and 2,984,686 and is capable of salt formation with 6-methylenetetracyclines, can also be used.

Eksempel 1. Example 1.

6a- deoksy- 5- hydroksytetracyklinhvdroklorid. 6a- deoxy- 5- hydroxytetracycline hydrochloride.

Følgende reaktanter plasseres i en hydrogeneringskolbe under en nitrogenatmosfære: 6-demetyl-6-deoksy-6-metylen-5-hydroksy-tetracyklinhydroklorid (5,00 g, 10,4 mmol), klortris(trifenylfosfin)-rhodium(I) (25 mg, 0,027 mmol), kaliumbromid (12,5 mg) og 50 ml av-gasset etanolvann (9:1). Kolben frigjøres for nitrogen og fylles med hydrogen ved 4,5 kp/cm 2 ved romtemperatur. Reaksjonsblandingen oppvarmes til 70°C i 15,5 timer og avkjøles så til romtemperatur. Høytrykks væskekromatografi (HPLC) på den ovenfor beskrevne måte indikerte at ca. 2,5% /3-epimer og 97,5% a-epimer var til stede. The following reactants are placed in a hydrogenation flask under a nitrogen atmosphere: 6-demethyl-6-deoxy-6-methylene-5-hydroxy-tetracycline hydrochloride (5.00 g, 10.4 mmol), chlorotris(triphenylphosphine)rhodium(I) (25 mg, 0.027 mmol), potassium bromide (12.5 mg) and 50 ml degassed ethanol water (9:1). The flask is freed of nitrogen and filled with hydrogen at 4.5 kp/cm 2 at room temperature. The reaction mixture is heated to 70°C for 15.5 hours and then cooled to room temperature. High pressure liquid chromatography (HPLC) in the manner described above indicated that approx. 2.5% β-epimer and 97.5% α-epimer were present.

Vannfritt hydrogenklorid bobles inn i reaksjonsblandingen, og løsningen omrøres inntil det dannes et bunnfall. Etter henstand i tre timer frafiltreres det faste produkt og tørkes (3,65 g, 75%). Anhydrous hydrogen chloride is bubbled into the reaction mixture, and the solution is stirred until a precipitate forms. After standing for three hours, the solid product is filtered off and dried (3.65 g, 75%).

HPLC viste at det inneholdt 81,74% a- og 0,81% /3-epimer HPLC showed that it contained 81.74% α- and 0.81% β-epimer

og 5,77% utgangsmateriale. and 5.77% starting material.

Ved henstand ble det erholdt en andre høst av produkt In case of delay, a second harvest of product was obtained

(551 mg) fra filtratet. HPLC viste at det besto av 56,57% a- og 0,52% /3-epimer og 1,73% utgangsmateriale. (551 mg) from the filtrate. HPLC showed that it consisted of 56.57% α- and 0.52% β-epimer and 1.73% starting material.

Gjentagelse av denne fremgangsmåte men ved bruk av kaliumjodid istedenfor kaliumbromid gir i det vesentlige samme resultat. Repeating this procedure but using potassium iodide instead of potassium bromide gives essentially the same result.

Eksempel 2. Example 2.

Fremgangsmåten fra eksempel 1 gjentas men ved anvendelse av høytrykksapparatur, slik at det kan anvendes hydrogenerings-trykk på 126,5, 175,8 og 280 kp/cm<2> med i det vesentlige samme resultater. The procedure from example 1 is repeated, but using high-pressure equipment, so that hydrogenation pressures of 126.5, 175.8 and 280 kp/cm<2> can be used with essentially the same results.

Claims (1)

Fremgangsmåte for fremstilling av 6-deoksyoksytetracyklinProcess for the production of 6-deoxyoxytetracycline med formelenwith the formula og salter derav, ved omsetning av 6-deoksy-6-demetyl-6-metylen-oksytetracyklin med formelenand salts thereof, by reaction of 6-deoxy-6-demethyl-6-methylene-oxytetracycline with the formula eller et salt derav,or a salt thereof, med hydrogen i et inert oppløsningsmiddel ved 20-100°C under et hydrogentrykk på minst en atmosfære i nærvær av et kompleks mellom rhodium og et tertiært fosfin med formelen P^I^F^) , hvor R.j og R2 betyr fenyl eller 4-klorfenyl, og R^ betyr det samme som R^ eller R2 eller en metylgruppe, karakterisert ved at omsetningen utføres i nærvær av kaliumbromid eller kaliumjodid.with hydrogen in an inert solvent at 20-100°C under a hydrogen pressure of at least one atmosphere in the presence of a complex between rhodium and a tertiary phosphine of the formula P^I^F^), where R.j and R.sub.2 mean phenyl or 4-chlorophenyl , and R^ means the same as R^ or R 2 or a methyl group, characterized in that the reaction is carried out in the presence of potassium bromide or potassium iodide.
NO843825A 1973-02-01 1984-09-24 PROCEDURE FOR THE PREPARATION OF 6-DEOXYTE TRACYCLINE. NO153806C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US32851473A 1973-02-01 1973-02-01
US36806073A 1973-06-08 1973-06-08
US42827873A 1973-12-26 1973-12-26

Publications (3)

Publication Number Publication Date
NO843825L NO843825L (en) 1974-08-02
NO153806B true NO153806B (en) 1986-02-17
NO153806C NO153806C (en) 1986-05-28

Family

ID=27406609

Family Applications (2)

Application Number Title Priority Date Filing Date
NO740320A NO151585C (en) 1973-02-01 1974-01-31 PROCEDURE FOR PREPARING 6-DEOXYOXYTE TRACYCLINE
NO843825A NO153806C (en) 1973-02-01 1984-09-24 PROCEDURE FOR THE PREPARATION OF 6-DEOXYTE TRACYCLINE.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
NO740320A NO151585C (en) 1973-02-01 1974-01-31 PROCEDURE FOR PREPARING 6-DEOXYOXYTE TRACYCLINE

Country Status (18)

Country Link
JP (1) JPS5912111B2 (en)
AR (1) AR210453A1 (en)
CA (1) CA1027117A (en)
CH (1) CH589605A5 (en)
DD (1) DD110855A5 (en)
DE (1) DE2403714A1 (en)
ES (1) ES422758A1 (en)
FI (1) FI58492C (en)
FR (1) FR2216268A1 (en)
IE (1) IE38797B1 (en)
IL (1) IL44084A (en)
IN (1) IN138662B (en)
LU (1) LU69288A1 (en)
NL (1) NL166921B (en)
NO (2) NO151585C (en)
PH (1) PH14446A (en)
SE (1) SE435619C (en)
YU (1) YU39915B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR208347A1 (en) * 1974-12-19 1976-12-20 Pfizer IMPROVEMENT IN THE PRODUCTION OF ALPHA-6-DEOXYTETRACYCLINES
YU41093B (en) * 1978-04-12 1986-12-31 Pliva Pharm & Chem Works Process for preparing 6-deoxy-5hydroxy-tetracycline
US4550096A (en) * 1982-01-19 1985-10-29 Plurichemie Anstalt Homogeneous catalytic system comprising rhodium, hydrazine and phosphine and a process for the preparation of same
USRE32535E (en) * 1982-01-19 1987-10-27 Plurichemie Anstalt Process for the preparation of α-6-deoxytetracyclines
PT76061A (en) * 1982-12-30 1983-01-01 Stable homogeneous hydrogenation rhodium catalyst - useful in high yield prodn. of doxycycline by stereospecific hydrogenation
DK386784A (en) * 1983-08-17 1985-02-18 Hovione Int Ltd PROCEDURE FOR PREPARING ALFA-6-DESOXY-TETRACYCLINES
US4973719A (en) * 1988-10-28 1990-11-27 Ranbaxy Laboratories Limited Process for the production of alpha-6-deoxytetracyclines
US4987242A (en) * 1988-10-28 1991-01-22 Jagmohan Khanna Hydrogenation catalyst useful in the production of alpha-6-deoxytetracyclines
US5049683A (en) * 1989-01-04 1991-09-17 Houba, Inc. Process for the production of alpha-6-deoxytetracyclines
ATE68476T1 (en) * 1989-04-03 1991-11-15 Ranbaxy Lab Ltd PROCESS FOR THE PRODUCTION OF ALPHA-6DEOXYTETRACYCLINES.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639439A (en) * 1964-12-10 1972-02-01 Shell Oil Co Rhodium (i) halide complexes
US3489786A (en) * 1964-12-10 1970-01-13 Shell Oil Co Hydrogenation process
GB1121643A (en) * 1966-02-07 1968-07-31 Ici Ltd Hydrogenation process
CH579531A5 (en) * 1972-02-24 1976-09-15 Ankerfarm Spa
AR208347A1 (en) * 1974-12-19 1976-12-20 Pfizer IMPROVEMENT IN THE PRODUCTION OF ALPHA-6-DEOXYTETRACYCLINES

Also Published As

Publication number Publication date
FI58492C (en) 1986-09-05
DD110855A5 (en) 1975-01-12
IN138662B (en) 1976-03-06
CA1027117A (en) 1978-02-28
NO740320L (en) 1974-08-02
FR2216268B1 (en) 1978-01-06
YU25374A (en) 1982-02-28
AR210453A1 (en) 1977-08-15
SE435619C (en) 1985-10-31
YU39915B (en) 1985-06-30
JPS5912111B2 (en) 1984-03-21
IL44084A0 (en) 1974-05-16
ES422758A1 (en) 1976-08-01
NO843825L (en) 1974-08-02
IE38797L (en) 1974-08-01
SE7400879L (en) 1974-09-12
IL44084A (en) 1977-10-31
IE38797B1 (en) 1978-06-07
NO151585C (en) 1985-05-08
FI58492B (en) 1980-10-31
DE2403714C2 (en) 1987-04-09
DE2403714A1 (en) 1974-08-22
LU69288A1 (en) 1974-09-25
NO151585B (en) 1985-01-21
CH589605A5 (en) 1977-07-15
JPS49102662A (en) 1974-09-27
SE435619B (en) 1984-10-08
NO153806C (en) 1986-05-28
NL166921B (en) 1981-05-15
AU6490674A (en) 1975-07-31
PH14446A (en) 1981-07-22
FR2216268A1 (en) 1974-08-30
NL7401340A (en) 1974-08-05

Similar Documents

Publication Publication Date Title
NO153806B (en) PROCEDURE FOR THE PREPARATION OF 6-DEOXYTE TRACYCLINE.
KR20000017716A (en) The method for preparing 4-nitrodiphenylamine and 4-nitrosodiphenylamine from carbanilide
JP4426012B2 (en) Process for the enantioselective hydrogenation of homogeneous ester and acid compounds and use of hydrogenation products
DK155662B (en) METHOD FOR PREPARING ALFA-6-DESOXY-5-HYDROXYTETRACYCLINE BY HYDROGENERATION OF THE SIMILAR 6-METHYLENE COMPOUND IN THE PRESENT OF RHODIUM METAL
JPS60115556A (en) Production of 4-alkoxyaniline
US20170204022A1 (en) Method for the Preparation of Iodoalkanes
JP2001122832A (en) Improved method for catalytic production
AU2018260727B2 (en) Process for the preparation of deuterated ethanol from D2O
KR100497955B1 (en) Novel Method for Preparation of Trisodium Pentacyano Amino Ferrate(Ⅱ)
EP0369864A2 (en) Process for producing aromatic amines
JPH04149160A (en) Production of 1-amino-4-alkoxybenzene compounds
AU763072B2 (en) Phosphoric acid salt of an aromatic diamine
KR20010112339A (en) Phosphabenzene Compounds and Their Use as Ligands for Hydroformylation Catalysts
KR100362706B1 (en) A method for reducing nitro group to amine group using indium
CN114874127B (en) Preparation method of difluoro carbonyl indolone compound
RU2420515C2 (en) Method of producing 3,4,5-trifluoroaniline
KR100469110B1 (en) Process for preparing substituted aromatic amines
US6229035B1 (en) Preparation of substituted aromatic amines
JPH05331076A (en) Production of cyclododecene
Nawaz et al. Benzimidazol-2-ylidene ruthenium complexes for CN bond formation through alcohol dehydrogenation
IE60598B1 (en) Process of preparation of a new catalyst containing rhodium and its application
JPH06509815A (en) Method for producing 5-alkoxy-2,4-dinitro-alkylbenzene
CN116136032A (en) Method for removing benzyl from DNA coding compound
CS200465B2 (en) Process for preparing 6-deoxotetracycline
JP2020500880A (en) Amine derivatives of β-farnesene