NO150956B - PROCEDURE FOR REFORMING A MATERIAL CONTAINING ALIFATIC OXYGEN COMPOUNDS - Google Patents

PROCEDURE FOR REFORMING A MATERIAL CONTAINING ALIFATIC OXYGEN COMPOUNDS Download PDF

Info

Publication number
NO150956B
NO150956B NO762289A NO762289A NO150956B NO 150956 B NO150956 B NO 150956B NO 762289 A NO762289 A NO 762289A NO 762289 A NO762289 A NO 762289A NO 150956 B NO150956 B NO 150956B
Authority
NO
Norway
Prior art keywords
zeolite
methanol
ratio
zeolites
oxygen
Prior art date
Application number
NO762289A
Other languages
Norwegian (no)
Other versions
NO150956C (en
NO762289L (en
Inventor
Clarence Dayton Chang
Antnony John Silverstri
William Harry Lang
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/592,434 external-priority patent/US3998898A/en
Priority claimed from US05/592,565 external-priority patent/US4039600A/en
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Publication of NO762289L publication Critical patent/NO762289L/no
Publication of NO150956B publication Critical patent/NO150956B/en
Publication of NO150956C publication Critical patent/NO150956C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4081Recycling aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

Oppfinnelsen vedrører en fremgangsmåte for omforming av et materiale som inneholder alifatiske oksygenforbindelser til et produkt som inneholder aromatiske hydrokarboner, dvs. bensin, altså hydrokarbonbrennstoff for motorer med indre forbrenning. The invention relates to a method for transforming a material containing aliphatic oxygen compounds into a product containing aromatic hydrocarbons, i.e. petrol, i.e. hydrocarbon fuel for internal combustion engines.

Bensin har et fullstendig kokeområde for C,- på ca. 138 til 221 oC i avhengighet av den spesielle blanding som blir brukt. Ved salg inneholder "bensin" selvsagt additiver hvorav mange ikke er hydrokarboner, men foreliggende oppfinnelse er ikke rettet mot slike additiver. Gasoline has a complete boiling range for C of approx. 138 to 221 oC depending on the particular mixture used. When sold, "gasoline" naturally contains additives, many of which are not hydrocarbons, but the present invention is not directed at such additives.

Vi har tidligere omtalt, f.eks. i BRD-off.skrift nr. 2.4 38.252, at aromatiske hydrokarboner kan fås fra oksygenholdige alifatiske forbindelser ved hjelp av en spesiell gruppe katalysatorer. Nærværende oppfinnelse er basert på vår oppdagelse som går ut på at mengden av aromatiske forbindelser som derved fås, kan økes betydelig ved anvendelse av en spesiell sammensetning av den alifatiske tilmåting. Vi har således funnet at utbyttet av aromatiske forbindelser blir forbedret dersom tilmatningen er en blanding av vanskelig omformbare og lett omformbare oksygenholdige alifatiske forbindelser. Forbedringen måles ved den mengde av tilmåtet karbon som omdannes til Cg- til C^-aromatiske forbindelser, og den vil variere med forholdene hvorunder omdannelsen blir utført. We have previously discussed, e.g. in BRD-off.skrift no. 2.4 38.252, that aromatic hydrocarbons can be obtained from oxygen-containing aliphatic compounds by means of a special group of catalysts. The present invention is based on our discovery that the amount of aromatic compounds thereby obtained can be significantly increased by using a special composition of the aliphatic compound. We have thus found that the yield of aromatic compounds is improved if the feed is a mixture of difficult-to-reform and easily-reformable oxygen-containing aliphatic compounds. The improvement is measured by the amount of moderate carbon that is converted to Cg to C^ aromatic compounds, and it will vary with the conditions under which the conversion is carried out.

Fremgangsmåten i henhold til oppfinnelsen vedrører omforming av et materiale som inneholder alifatiske oksygenforbindelser med formelen C H „ .pH_0 hvor n er antall karbonatomer The method according to the invention relates to the transformation of a material containing aliphatic oxygen compounds with the formula C H „ .pH_0 where n is the number of carbon atoms

n m-2p r 2 n m-2p r 2

i molekylet og har en verdi på 1-6, m er antall hydrogenatomer i molekylet og p er antall oksygenatomer i molekylet, til et produkt som inneholder aromatiske hydrokarboner ved temperaturer på 260-649°C under trykk ved en væske-romhastighet pr. time på 0,5-50, i nærvær av en krystallinsk aluminosilikat-zeolitt som har et forhold mellom silisiumdioksyd og aluminiumoksyd på in the molecule and has a value of 1-6, m is the number of hydrogen atoms in the molecule and p is the number of oxygen atoms in the molecule, to a product containing aromatic hydrocarbons at temperatures of 260-649°C under pressure at a liquid-space velocity per hour of 0.5-50, in the presence of a crystalline aluminosilicate zeolite having a silica to alumina ratio of

12-3000 og en tvangsstyringsindeks på 1-12, som katalysator, og fremgangsmåten er karakterisert ved at det anvendes et materiale som omfatter et molart overskudd av slike alifatiske oksygenholdige forbindelser hvor forholdet (<m>~<2P>^ overskrider 1, og et restmateriale av slike alifatiske oksygenholdige forbindelser hvor forholdet (<m>~<2p>) er 1 eller mindre. 12-3000 and a forced control index of 1-12, as a catalyst, and the method is characterized by the fact that a material is used which comprises a molar excess of such aliphatic oxygen-containing compounds where the ratio (<m>~<2P>^ exceeds 1, and a residual material of such aliphatic oxygen-containing compounds where the ratio (<m>~<2p>) is 1 or less.

n n

Ved en foretrukket utførelse omfatter det molare overskudd en enverdig alkohol mens likevekten omfatter en karboksylsyre, men det kan oppnås utmerkede resultater når det molare overskudd omfatter en alkohol (spesielt metanol), en eter, et keton, en karboksylsyreester og/eller et aldehyd som inneholder minst 3 karbonatomer, og likevekten omfatter en karboksylsyre, In a preferred embodiment, the molar excess comprises a monohydric alcohol while the equilibrium comprises a carboxylic acid, but excellent results can be obtained when the molar excess comprises an alcohol (especially methanol), an ether, a ketone, a carboxylic acid ester and/or an aldehyde containing at least 3 carbon atoms, and the balance comprises a carboxylic acid,

en flerverdig alkohol, et karbohydrat, et karboksylsyreanhydrid og/eller et aldehyd som inneholder mindre enn 3 karbonatomer, f.eks. eddiksyre, acetaldehyd og/eller formaldehyd. Fremgangsmåten blir fortrinnsvis utført ved en temperatur i området 315 a polyhydric alcohol, a carbohydrate, a carboxylic anhydride and/or an aldehyde containing less than 3 carbon atoms, e.g. acetic acid, acetaldehyde and/or formaldehyde. The method is preferably carried out at a temperature in the range of 315

til 482°C, og som zeolitt foretrekkes Zeolitt ZSM-5. to 482°C, and Zeolite ZSM-5 is preferred as zeolite.

Tilmatningsmaterialene kan man selvsagt ta fra hvilken som helst konvensjonell kilde. Men ved en ytterligere utførelse av oppfinnelsen er fremstillingen av en egnet tilmatning integrert i fremgangsmåten, og det oppnås da en blanding av metanol og eddiksyre ved omsetning av metanol med karbonoksyd ved en temperatur på 14 9 til 4 27°C i nærvær av en karbonylerings-katalysator og blandingen blir så brakt sammen med zeolittkata-lysatoren, og karbonyleringen blir fortrinnsvis foretatt inntil det punkt hvor mol-forholdet mellom metanol og eddiksyre i blandingstilmatningen er minst 12. En foretrukket karbonylerings-katalysator omfatter rhodium, og det er ønskelig at den befordres med jod. The feed materials can of course be taken from any conventional source. However, in a further embodiment of the invention, the preparation of a suitable feed is integrated into the method, and a mixture of methanol and acetic acid is then obtained by reacting methanol with carbon monoxide at a temperature of 14 9 to 4 27°C in the presence of a carbonylation catalyst and the mixture is then brought together with the zeolite catalyst, and the carbonylation is preferably carried out up to the point where the mole ratio between methanol and acetic acid in the mixture feed is at least 12. A preferred carbonylation catalyst comprises rhodium, and it is desirable that it be promoted with iodine.

Ved utførelse av oppfinnelsen kan det integreres enda et trinn, idet metanolen og karbonmonoksydet som blir utsatt > for nevnte karbonyleringsreaksjon, blir utviklet ved omsetning av karbonmonoksyd og hydrogen ved en temperatur på 23 2 til 3 99°C over en metanolsyntesekatalysator, så som en som omfatter sink og/eller kobber. Karbonmonoksydet og hydrogenet kan være syntesegass som er oppnådd ved omdannelse av ikke-petroleumholdig fossilt brennstoff ved hilken som helst av de teknikker som lenge har vært kjent i industrien. When carrying out the invention, a further step can be integrated, in that the methanol and carbon monoxide which are exposed > to said carbonylation reaction are developed by reaction of carbon monoxide and hydrogen at a temperature of 23 2 to 3 99°C over a methanol synthesis catalyst, such as one which includes zinc and/or copper. The carbon monoxide and hydrogen can be synthesis gas obtained by converting non-petroleum-containing fossil fuel by any of the techniques that have long been known in the industry.

Når oppfinnelsen i fullt integrert form blir anvendt i praksis, dvs. ved å gå fra fossilt brennstoff til syntesegass til metanol til metanol/eddiksyre til bensin, er det skapt mulig-heter for resirkulering. Således kan deler av karbonmonoksydet som blir omsatt over metanolsyntese-katalysatoren, resirkuleres fra utstrømningen fra omsetningen over zeolitten. Dessuten kan det fossile brennstoff utsettes for omdannelse sammen med C^-hydrokarbongass som er resirkulert fra utstrømningen fra omsetningen over zeolitten. When the invention is used in practice in a fully integrated form, i.e. by going from fossil fuel to synthesis gas to methanol to methanol/acetic acid to petrol, possibilities are created for recycling. Thus, parts of the carbon monoxide which is reacted over the methanol synthesis catalyst can be recycled from the outflow from the reaction over the zeolite. In addition, the fossil fuel can be subjected to conversion together with C2 hydrocarbon gas which is recycled from the outflow from the reaction over the zeolite.

Det er overraskende at fremgangsmåten i henhold til denne oppfinnelse under sammenlignbare reaksjonsforhold gir en fordeling av produkt-komponenter som nesten ikke varierer ved variasjoner av tilmatningsmaterialene, hvilket avhenger av til-feldig forskjell i forholdet mellom de enkelte bestanddeler i produktet. It is surprising that the method according to this invention under comparable reaction conditions gives a distribution of product components that hardly varies with variations of the feed materials, which depends on random differences in the ratio between the individual components in the product.

De spesielle zeolitt-katalysatorer som det refereres til her, er tatt fra en spesiell gruppe med zeolitter som fremviser noen uvanlige egenskaper. Disse zeolitter forårsaker dyptgående omforminger av alifatiske hydrokarboner til aromatiske hdyrokarboner med kommersielt ønskelige utbytter og de er vanligvis meget effektive ved alkylering, isomerisering, disproporsjon-ering og andre omsetninger som omfatter aromatiske hydrokarboner. Selv om de har et uvanlig lavt aluminiumoksyd-innhold, dvs. høyt forhold mellom silisiumdioksyd og aluminiumoksyd, er de svært aktive endog ved forhold mellom silisiumdioksyd og aluminiumoksyd som overskrider 30. Denne aktivitet er overraskende siden katalytisk aktivitet til zeolitter vanligvis tilskrives skjelett-aluminiumatomer og kationer som er forbundet med disse aluminium-atomer. Disse zeolitter beholder deres krystallinitet i lange tidsperioder på tross av at nærværet av damp endog ved høye temperaturer, hvilket foranlediger irreversibelt sammenbrudd av krystall-skjelettet til andre zeolitter, f.eks. av typen X og A. Videre kan karbonholdige avsetninger, når slike dannes, fjernes The special zeolite catalysts referred to here are taken from a special group of zeolites which exhibit some unusual properties. These zeolites cause profound conversions of aliphatic hydrocarbons to aromatic hydrocarbons in commercially desirable yields and they are usually very effective in alkylation, isomerization, disproportionation and other reactions involving aromatic hydrocarbons. Although they have an unusually low alumina content, i.e. high silica to alumina ratio, they are very active even at silica to alumina ratios exceeding 30. This activity is surprising since catalytic activity of zeolites is usually attributed to skeletal aluminum atoms and cations associated with these aluminum atoms. These zeolites retain their crystallinity for long periods of time despite the fact that the presence of steam even at high temperatures, which causes irreversible breakdown of the crystal skeleton of other zeolites, e.g. of type X and A. Furthermore, carbonaceous deposits, when such are formed, can be removed

ved brenning ved høyere temperaturer enn det som er vanlig for å fornye aktiviteten. I mange miljøer fremviser zeolitter av denne gruppe svært lav koksdannende evne, og dette fører til svært lange strømningstider mellom brenne-regenereringer. by burning at higher temperatures than usual to renew the activity. In many environments, zeolites of this group exhibit very low coke-forming ability, and this leads to very long flow times between combustion regenerations.

En viktig egenskap ved krystallstrukturen for denne gruppe zeolitter er at den tilveiebringer tvangsstyrt adgang til, An important feature of the crystal structure for this group of zeolites is that it provides forced access to,

og utgang fra, det indre-krystallinske frie rom på grunn av at den har en poredimensjon som er større enn ca. 5 Ångstrøm og porevinduer på ca. en størrelse så som ville tilveiebringes av 10-leddede ringer av oksygenatomer. Det skal selvsagt forstås at disse ringer er slike som er dannet ved regulær oppstilling av and output from, the inner-crystalline free space due to the fact that it has a pore dimension that is greater than approx. 5 Ångstrøm and pore windows of approx. a size such as would be provided by 10-membered rings of oxygen atoms. It should of course be understood that these rings are those formed by regular arrangement of

tetraedret som utgjør det anloniske skjelett i det krystallinske aluminiumsilikat, idet oksygenatomene selv er bundet til silisium-eller aluminium-atomer i sentrene av tetraedrene. Kort sagt har de foretrukne zeolitter som er nyttige som katalysatorer ved the tetrahedron which constitutes the anlonic skeleton in the crystalline aluminum silicate, the oxygen atoms themselves being bound to silicon or aluminum atoms in the centers of the tetrahedra. In short, they have preferred zeolites that are useful as catalysts

denne oppfinnelse, denne kombinasjon: et forhold mellom silisium-<1 >dioksyd og aluminiumoksyd på minst 12, og en struktur som tilveiebringer tvangsstyrt adgang til det krystallinske frie rom.; this invention, this combination: a silicon <1 >dioxide to alumina ratio of at least 12, and a structure that provides forced access to the crystalline free space.;

Det omtalte forhold mellom silisiumdioksyd og aluminiumoksyd kan bestemmes ved konvensjonell analyse. Dette forhold er ment å bety, så nær som mulig, forholdet i det faste anioniske skjelett i zeolitt-krystallen og utelukke aluminium i bindemidlet eller i anioniske former eller andre former inne i kanalene. Selv om zeolitter med forhold mellom silisiumdioksyd og aluminiumoksyd på minst 12 er nyttige, så foretrekkes det å anvende zeolitter som har høyere forhold på minst ca. 30. Slike zeolitter erverver seg etter aktivering en indrekrystallinsk sorpsjonskapasitet for normal heksan som er større enn for vann, ; dvs. de fremviser "hydrofobe" egenskaper. Det antas at denne hydrofobe egenskap er fordelaktig ved foreliggende oppfinnelse. The mentioned ratio between silicon dioxide and aluminum oxide can be determined by conventional analysis. This ratio is intended to mean, as closely as possible, the ratio in the solid anionic skeleton of the zeolite crystal and exclude aluminum in the binder or in anionic forms or other forms inside the channels. Although zeolites with silica to alumina ratios of at least 12 are useful, it is preferred to use zeolites having higher ratios of at least approx. 30. After activation, such zeolites acquire an intracrystalline sorption capacity for normal hexane that is greater than for water, ; i.e. they exhibit "hydrophobic" properties. It is believed that this hydrophobic property is advantageous in the present invention.

De zeolitter som er nyttige som katalysatorer ved denne oppfinnelse, sorberer lett normal heksan og har en poredimensjon som er større enn ca. 5 Ångstrøm. Dessuten må deres strukturer tilveiebringe tvangsstyrt adgang til noen større molekyler. Det er noen ganger mulig å bedømme fra en kjent krystall-struktur om det foreligger en slik tvangsstyrt adgang. Dersom for eksempel det eneste porevindu i en krystall er dannet av 8-leddede ringer av oksygenatomer, så er det i alt vesentlig ute-lukket med adgang for molekyler av større tverrsnitt enn normal heksan, og zeolitten er ikke av den ønskede type. Zeolitter med vinduer av 10-leddede ringer er foretrukket, selv om overdreven rynking og poreblokkering kan gjøre disse zeolitter ialt vesentlig ineffektive. Zeolitter med vinduer av 12-leddede ringer synes vanligvis ikke å gi tilstrekkelig tvangsstyring til å frembringe de fordelaktige omdannelser som er ønsket ved nærværende oppfinnelse, selv om det kan tenkes strukturer som på grunn av pore-i blokkering eller andre årsaker kan være brukbare. The zeolites useful as catalysts in this invention readily sorb normal hexane and have a pore size greater than about 5 Angstroms. Moreover, their structures must provide constrained access to some larger molecules. It is sometimes possible to judge from a known crystal structure whether such forced access exists. If, for example, the only pore window in a crystal is formed by 8-membered rings of oxygen atoms, then access for molecules with a larger cross-section than normal hexane is essentially excluded, and the zeolite is not of the desired type. Zeolites with windows of 10-membered rings are preferred, although excessive wrinkling and pore blocking can render these zeolites substantially ineffective overall. Zeolites with windows of 12-membered rings do not generally appear to provide sufficient coercivity to produce the beneficial transformations desired by the present invention, although structures are conceivable which, due to pore-i blocking or other reasons, may be useful.

Fremfor å forsøke å bedømme fra krystall-strukturen om en zeolitt har den nødvendige tvangsstyrte adgang eller ikke, kan det utføres en enkel bestemmelse av "tvangsstyringsindeksen" ved kontinuerlig å føre like vektmengder av normal heksan og 3-metylpentan over en liten prøve, tilnærmet 1 gram eller mindre, av zeolitten ved atmosfæretrykk i henhold til den følgende fremgangsmåte. En prøve av zeolitten, i form av pellets eller ekstrudat, blir knust til en partikkelstørrelse som ca. størrelsen på grov sand, og blir anbrakt i et glassrør. Før testingen blir zeolitten behandlet med en luftstrøm ved 538 oC i minst 15 minutter. Zeolitten blir så spylt med helium og temperaturen blir Rather than attempting to judge from the crystal structure whether or not a zeolite has the required coercivity, a simple determination of the "coercivity index" can be performed by continuously passing equal amounts of normal hexane and 3-methylpentane over a small sample, approximately 1 grams or less, of the zeolite at atmospheric pressure according to the following procedure. A sample of the zeolite, in the form of pellets or extrudate, is crushed to a particle size of approx. the size of coarse sand, and is placed in a glass tube. Before testing, the zeolite is treated with an air stream at 538 oC for at least 15 minutes. The zeolite is then flushed with helium and the temperature becomes

O o 0 > justert mellom 288 og 510 C for a gi en total omdannelse pa mellom 10 og 60%. Blandingen av hydrokarboner blir ført over zeolitten med en væske-romhastighet pr. time på 1 (dvs. 1 volum flytende hydrokarbon pr. volum katalysator pr. time) sammen med en helium-fortynning for å oppnå et mol-forhold mellom helium og total hydrokarbonmengde på 4:1. Etter strømning i 20 minutter blir det tatt en prøve av utstrømningen og den blir analysert, mest passende ved gass-kromatografi, for å bestemme den gjen-værende uforandrede del for hver av de to hydrokarboner. O o 0 > adjusted between 288 and 510 C to give a total conversion of between 10 and 60%. The mixture of hydrocarbons is passed over the zeolite at a liquid-space velocity per hour of 1 (ie 1 volume of liquid hydrocarbon per volume of catalyst per hour) together with a helium dilution to achieve a mole ratio of helium to total hydrocarbon amount of 4:1. After flowing for 20 minutes, a sample of the effluent is taken and analyzed, most conveniently by gas chromatography, to determine the remaining unchanged fraction for each of the two hydrocarbons.

"Tvangsstyringsindeksen" blir beregnet på følgende måte: The "forced management index" is calculated as follows:

Tvangsstyringsindeksen er tilnærmet lik forholdet mellom konstantene for cracke-graden for de to hydrokarboner. Katalysatorer som er egnet for foreliggende oppfinnelse, er slike som gjør bruk av en zeolitt som har en tvangsstyringsindeks på fra 1,0 til 12,0. Verdier for tvangsstyringsindeksen (CI) for noen typiske zeolitter, innbefattet noen som ikke er innen om-fanget av foreliggende oppfinnelse, er: The forced control index is approximately equal to the ratio between the constants for the degree of crack for the two hydrocarbons. Catalysts which are suitable for the present invention are those which make use of a zeolite having a coercivity index of from 1.0 to 12.0. Values for the forced control index (CI) for some typical zeolites, including some not within the scope of the present invention, are:

Den ovenfor beskrevne tvangsstyringsindeks er en viktig og endog kritisk definisjon på slike zeolitter som er nyttige til å katalysere nærværende fremgangsmåte. Den virkelige : natur til denne parameter og den omtalte teknikk hvorved den The forced control index described above is an important and even critical definition of such zeolites which are useful for catalyzing the present method. The real : nature of this parameter and the discussed technique by which it

blir bestemt gir imidlertid mulighet for at en gitt zeolitt kan bli testet under noe forskjellige forhold og derved få forskjellige tvangsstyringsindekser. Tvangsstyringsindeksen synes å variere noe med strengheten ved utførelsen (omdannelsen).' Det vil derfor forstås at det kan være mulig å velge slike testfor-hold at det fås flere tvangsstyringsindekser for en spesiell gitt zeolitt, hvilke kan ligge både utenfor og innenfor det ovenfor definerte område på 1 til 12. is determined, however, makes it possible for a given zeolite to be tested under slightly different conditions and thereby obtain different coercive control indices. The coercive management index seems to vary somewhat with the severity of the execution (transformation).' It will therefore be understood that it may be possible to choose such test conditions that several forced control indices are obtained for a particular given zeolite, which may lie both outside and within the above-defined range of 1 to 12.

Det skal derfor forståes at når verdien for "tvangsstyringsindeksen" blir brukt her, er det snarere en inklusiv enn en eksklusiv verdi. Det vil si at en zeolitt som blir testet ved hvilken som helst kombinasjon av forhold som ligger innenfor test-definisjonen som er anført ovenfor og har en tvangsstyringsindeks på 1 til 12, betraktes for å være inkludert i definisjonen for nærværende katalysator uten hensyn til om den samme identiske zeolitt når den blir testet under andre definerte forhold, kan gi en verdi for tvangsstyringsindeksen som ligger utenfor 1 til 12. It should therefore be understood that when the value for the "coercive management index" is used here, it is an inclusive rather than an exclusive value. That is, a zeolite that is tested at any combination of conditions that falls within the test definition listed above and has a forced control index of 1 to 12 is considered to be included in the definition for the present catalyst regardless of whether it the same identical zeolite when tested under other defined conditions may give a value for the coercive control index that is outside of 1 to 12.

Den her definerte gruppe med zeolitter er for eksempel ZSM-5, ZSM-11, ZSM-12, ZSM-21, ZSM-35 og ZSM-38. U.S. patentskrift nr. 3.702.886 beskriver ZSM-5. ZSM-11 er beskrevet i U.S. patentskrift nr. 3.709.979. ZSM-12 er beskrevet i U.S. patentskrift nr. 3.832.449. Fransk patent nr. 74-12078 beskriver metoder for fremstilling av blandinger betegnet som ZSM-21. The group of zeolites defined here is, for example, ZSM-5, ZSM-11, ZSM-12, ZSM-21, ZSM-35 and ZSM-38. U.S. Patent Document No. 3,702,886 describes ZSM-5. ZSM-11 is described in U.S. Pat. Patent Document No. 3,709,979. ZSM-12 is described in U.S. Pat. Patent Document No. 3,832,449. French Patent No. 74-12078 describes methods for the preparation of mixtures designated as ZSM-21.

US-patenter nr. 4.016.245 og 4.046.859 be- US Patents Nos. 4,016,245 and 4,046,859 be-

skriver henholdsvis ZSM-35 og ZSM-38. type ZSM-35 and ZSM-38 respectively.

De nevnte spesifikke zeolitter er, når de fremstilles The specific zeolites mentioned are, when they are prepared

i nærvær av organiske kationer, ialt vesentlig katalytisk in-aktive, muligens på grunn av at det indrekrystallinske frie rom er opptatt av organiske kationer fra forme-løsningen. De kan aktiveres ved oppvarming i en inert atmosfære ved 538°C i en time, for eksempel, fulgt av baseutbytte med ammoniumsalter fulgt av kalsinering ved 538 oC i luft. Nærværet av organiske kationer i forme-løsningen er kanskje ikke absolutt vesentlig for dannelse av denne spesielle zeolitt-type, men nærværet av disse kationer synes å begunstige dannelsen av denne spesielle in the presence of organic cations, generally substantially catalytically inactive, possibly because the inner crystalline free space is occupied by organic cations from the forming solution. They can be activated by heating in an inert atmosphere at 538°C for one hour, for example, followed by base yield with ammonium salts followed by calcination at 538°C in air. The presence of organic cations in the forming solution may not be absolutely essential for the formation of this particular type of zeolite, but the presence of these cations seems to favor the formation of this particular

zeolitt-type. Mer generelt er det ønskelig å aktivere denne zeolitt-type ved baseutbytte med ammoniumsalter fulgt av kalsinering i luft ved ca. 538°c i fra 15 minutter til ca. 24 timer. zeolite type. More generally, it is desirable to activate this zeolite type by base extraction with ammonium salts followed by calcination in air at approx. 538°c for from 15 minutes to approx. 24 hours.

Naturlige zeolitter kan noen ganger omdannes til denne zeolitt-type ved forskjellige aktiveringsprosesser og andre behandlinger, så som baseutbytte, damping, aluminiumoksyd-ekstrahering og kalsinering, enten enkeltvis eller ved kombina-sjoner. Naturlige mineraler som kan behandles således, innbefatter ferrieritt, brewsteritt, stilbitt, dachiarditt, epistil-bitt, heulanditt og clinoptiololitt. De foretrukne krystallinske aluminiumsilikater er ZSM-5, ZSM-11, ZSM-12, ZSM-21, ZSM-35 og ZSM-38, og ZSM-5 er spesielt foretrukket. Natural zeolites can sometimes be converted to this zeolite type by various activation processes and other treatments, such as base yield, steaming, alumina extraction and calcination, either individually or in combinations. Natural minerals that can be treated in this way include ferrierite, brewsterite, stilbite, dachiardite, epistilbite, heulandite and clinoptiolite. The preferred crystalline aluminosilicates are ZSM-5, ZSM-11, ZSM-12, ZSM-21, ZSM-35 and ZSM-38, and ZSM-5 is particularly preferred.

De zeolitter som blir anvendt som katalysatorer ved denne oppfinnelse kan være i hydrogen-formen eller de kan være baseutbyttet eller impregnert slik at de inneholder et tillegg av ammonium eller en meta11-kation. Det er ønskelig å kalsinere zeolitten etter baseutbytte. De metall-kationer som kan være tilstede, innbefatter hvilke som helst av kationene av metallene fra gruppe i til gruppe VIII i den periodiske tabell. Når det imidlertid dreier seg om metaller fra gruppe IA, bør kation-innholdet ikke i noe tilfelle være så stort at det ialt vesentlig eliminerer aktiviteten av zeolitten ved den katalyse som blir anvendt ved foreliggende oppfinnelse. For eksempel synes en fullstendig natrium-utbyttet H-ZSM-5 å være meget inaktiv ved form-selektive omdannelser som er nødvendige ved foreliggende oppfinnelse. The zeolites which are used as catalysts in this invention can be in the hydrogen form or they can be base yielded or impregnated so that they contain an addition of ammonium or a meta11 cation. It is desirable to calcine the zeolite after base yield. The metal cations that may be present include any of the cations of the metals from Group I to Group VIII of the Periodic Table. However, when it concerns metals from group IA, the cation content should in no case be so great that it essentially eliminates the activity of the zeolite in the catalysis used in the present invention. For example, a fully sodium-yielded H-ZSM-5 appears to be very inactive in the form-selective transformations required by the present invention.

Ved en foretrukket side av denne oppfinnelse blir det som de zeolitter som er nyttige som katalysatorer her, valgt slike som har en krystallskjelettdensitet i den tørre hydrogen-form på o ikke vesentlig under ca. 1,6 g/cm 3. Man har funnet at de zeolitter er mest ønsket som tilfredsstiller alle disse tre kriterier. De foretrukne katalysatorer for bruk ved denne oppfinnelse er derfor slike som omfatter zeolitter som har en tvangsstyringsindeks som definert ovenfor på 1 til 12, et forhold mellom silisiumdioksyd og aluminiumoksyd på minst 12 og en tørket krystalldensitet pa ikke vesentlig mindre enn ca. l,6g// cm 3. Den tørre densitet for kjente strukturer kan beregnes fra antall silisium- pluss aluminium-atomer pr. 1000 kubikk-Ångstrøm, så som angitt f.eks. på side 19 i artikkelen om zeolittstrukturer av W.M. Meier. Denne artikkel, hvis hele innhold det her vises til, er inntatt i "Proceedings of the Conferance on Molecular Sieves, London, april 1967", publisert av the Society of Chemical Industry, London, 1968. Når krystallstrukturen er ukjent,.kan krystallskjelettdensiteten bestemmes ved klassisk pyknometer-teknikk. Den kan for eksempel bestemmes ved å senke den tørre hydrogen-form av zeolitten ned i et organisk løsningsmiddel som ikke sorberes av krystallen. Det er mulig at den uvanlig ved-varende aktivitet og stabilitet til denne gruppe zeolitter har forbindelse med deres høye krystallinske anioniske skjelett-densitet på o ikke mindre enn ca. 1,6 g/cm 3. Denne høye densitet må selvsagt være forbundet med relativt lite omfang av fritt rom inne i krystallen, og dette kan forventes å resultere i mer sta-bile strukturer. Dette frie rom synes imidlertid å være viktig som geometrisk sted for katalytisk aktivitet. In a preferred aspect of this invention, as the zeolites which are useful as catalysts here, those which have a crystal skeleton density in the dry hydrogen form of o not substantially below approx. 1.6 g/cm 3. It has been found that the zeolites that satisfy all these three criteria are most desired. The preferred catalysts for use in this invention are therefore those which comprise zeolites which have a coercivity index as defined above of 1 to 12, a ratio between silicon dioxide and aluminum oxide of at least 12 and a dried crystal density of not significantly less than approx. l.6g// cm 3. The dry density for known structures can be calculated from the number of silicon plus aluminum atoms per 1000 cubic Angstroms, as indicated e.g. on page 19 of the article on zeolite structures by W.M. Meier. This paper, the entire content of which is hereby incorporated by reference, is included in the "Proceedings of the Conference on Molecular Sieves, London, April 1967", published by the Society of Chemical Industry, London, 1968. When the crystal structure is unknown, the crystal skeletal density can be determined by classic pycnometer technique. It can, for example, be determined by immersing the dry hydrogen form of the zeolite in an organic solvent that is not sorbed by the crystal. It is possible that the unusually persistent activity and stability of this group of zeolites is connected with their high crystalline anionic skeleton density of no less than approx. 1.6 g/cm 3. This high density must of course be associated with a relatively small amount of free space inside the crystal, and this can be expected to result in more stable structures. However, this free space seems to be important as a geometric site for catalytic activity.

I det følgende er angitt krystallskjelettdensiteter for noen typiske zeolitter, innbefattet noen som ikke ligger innenfor området for denne oppfinnelse: In the following are indicated crystal skeleton densities for some typical zeolites, including some that are not within the scope of this invention:

Organiske oksygenater som er nyttige ved denne oppfinnelse, er slike hvis formel kan skrives: Organic oxygenates useful in this invention are those whose formula can be written:

hvor n er antall karbonatomer i molekylet, p er antall oksygenatomer i molekylet og m er antall hydrogenatomer i molekylet. Vanskelig omformbare oksygenater, så som uttrykket benyttes her, er slike hvor størrelsen: er lik eller mindre enn 1. Lett omformbare oksygenater, så som uttrykket benyttes her, er slike hvor denne størrelse er større enn 1 og de kan ikke være karboksylsyrer. where n is the number of carbon atoms in the molecule, p is the number of oxygen atoms in the molecule and m is the number of hydrogen atoms in the molecule. Hardly reformable oxygenates, as the term is used here, are those where the size: is equal to or less than 1. Easily reformable oxygenates, as the term is used here, are those where this size is greater than 1 and they cannot be carboxylic acids.

Således virker kortkjedete aldehyder (ett eller to karbonatomer) , alle karboksylsyrer og anhydrider", glykoler, glyserol, karbohydrater og polyoler, selv om de omdannes til i høy grad aromatisk bensin som beskrevet i forannevnte BRD-off.-skrift 2.4 38.252, på en mindre tilfredsstillende måte med dårligere katalysator-prosesslevetid enn andre forbindelser gjør. Imidlertid kan disse vanskelig omformbare tilmatninger omformes til ønskede produktblandinger, spesielt i høy grad aromatiske forbindelser i hele bensin-området, på en synergistisk bedre måte dersom omdannelsen blir utført som foran nevnt men med til-blanding av lett omdannede oksygenater, så som alkoholer, etere, estere, langkjedede aldehyder, ketoner og deres analoger. Thus, short-chain aldehydes (one or two carbon atoms), all carboxylic acids and anhydrides, glycols, glycerol, carbohydrates and polyols, even if they are converted to highly aromatic gasoline as described in the aforementioned BRD-off.-script 2.4 38.252, act on a less satisfactorily with poorer catalyst process life than other compounds do However, these difficult-to-reform feedstocks can be converted to desired product mixtures, especially highly aromatic compounds throughout the gasoline range, in a synergistically better manner if the conversion is carried out as mentioned above but with admixture of easily converted oxygenates, such as alcohols, ethers, esters, long-chain aldehydes, ketones and their analogues.

Ved en foretrukket utførelse av denne oppfinnelse består de vanskelig omformbare oksygenater av monokarboksylsyrer og de lett omformede oksygenater av enverdige alkoholer. Med en blanding av metanol og eddiksyre bør tilmatningen ha et mol-forhold mellom førstnevnte og sistnevnte som er større enn 1, og mest foretrukket større enn 2. In a preferred embodiment of this invention, the difficult-to-reform oxygenates consist of monocarboxylic acids and the easily-reformed oxygenates of monohydric alcohols. With a mixture of methanol and acetic acid, the feed should have a mole ratio between the former and the latter that is greater than 1, and most preferably greater than 2.

Utførelse av denne omdannelse ved anvendelse av en blandet tilmatning som foran nevnt, forbedrer ikke bare kataly-satorens prosesslevetid og utbyttet av produkter, spesielt aromatiske forbindelser, i bensin-kokeområdet som kan oppnåes fra den vanskelig omformbare reaktant, men forøker også i virkeligheten utbyttet av produkter, spesielt aromatiske forbindelser, Carrying out this conversion using a mixed feed as mentioned above not only improves the process life of the catalyst and the yield of products, especially aromatic compounds, in the gasoline boiling range that can be obtained from the difficult to convert reactant, but also actually increases the yield of products, especially aromatic compounds,

i bensinkokeområdet på bekostning av andelen av produktet som vanligvis erholdes fra omdannelsen av den ønskelige reaktant, f.eks. alkohol. Således vil omdannelse av eddiksyre ved 260in the gasoline boiling range at the expense of the proportion of product normally obtained from the conversion of the desired reactant, e.g. alcohol. Thus, conversion of acetic acid at 260

til 538°c over en ZSM-5 zeolitt gi et produkt som i den organ- to 538°c over a ZSM-5 zeolite give a product which in the organ-

iske andel omfatter C^-alifatiske forbindelser og aromatiske og alifatiske forbindelser. Katalysatoren blir også forkokset og forkullet på kortere tid enn ventet. Omdannelse av metanol eller dimetyleter gir under samme forhold utmerkede utbytter av hydrokarbonprodukter og fremviser lang katalysatorlevetid og en sakte oppbygning av lite koks på katalysatoren. Hydrokarbonpro- ical share comprises C1-aliphatic compounds and aromatic and aliphatic compounds. The catalyst is also coked and charred in a shorter time than expected. Conversion of methanol or dimethyl ether under the same conditions gives excellent yields of hydrocarbon products and exhibits long catalyst life and a slow build-up of little coke on the catalyst. Hydrocarbon pro-

duktene er hovedsakelig i bensin-kokeområdet og med noen c4_ alifatiske forbindelser. the ducts are mainly in the gasoline boiling range and with some c4_ aliphatic compounds.

Det ville selvsagt være ønskelig å utføre denne omdannelse på en slik måte at man øker utbyttet av hydrokarboner It would of course be desirable to carry out this conversion in such a way as to increase the yield of hydrocarbons

i bensin-kokeområdet på bekostning av de lettere C^-produkter. Det er i virkeligheten en uventet fordel ved sam-omdannelse av lavere alkoholer og/eller etere etc. med syrer, lavere aldehyder og/eller karbohydrater at ikke bare omdannelsen av disse siste forbindelser blir forbedret, men at forholdet mellom det hydrokarbon-produkt som er bensin og de lettere hydrokarboner er betydelig øket, endog med hensyn til de allerede høye utbytter av bensin som er erholdt fra alkohol- og eter-omdannelse. in the gasoline-boiling range at the expense of the lighter C^ products. It is in fact an unexpected advantage of the co-conversion of lower alcohols and/or ethers etc. with acids, lower aldehydes and/or carbohydrates that not only the conversion of these latter compounds is improved, but that the ratio between the hydrocarbon product which is petrol and the lighter hydrocarbons has been significantly increased, even with regard to the already high yields of petrol obtained from alcohol and ether conversion.

Det er også et viktig trekk ved denne oppfinnelse å anvende fler-komponentblandinger som inneholder mer enn én lett omdannet og/eller mer enn én vanskelig omdannet reaktant. I virkeligheten kan det være mest foretrukket å anvende en fullstendig blandet tilmatning, så som en som erholdes ved regulert j delvis oksydasjon av propan, butan eller nafta i damp- eller væskefase. Andre kilder for slike blandinger med forskjellige lette oksygenater, innbefatter Fischer-Tropsch-prosessen hvor syntesegass, karbonmonoksyd og hydrogen blir katalytisk omdannet til en blanding av lavere alifatiske organiske oksygenerte forbindelser innbefattet alkoholer, etere, aldehyder, ketoner, etc. It is also an important feature of this invention to use multi-component mixtures containing more than one readily converted and/or more than one difficult converted reactant. In reality, it may be most preferable to use a fully mixed feed, such as that obtained by controlled partial oxidation of propane, butane or naphtha in the vapor or liquid phase. Other sources for such mixtures of various light oxygenates include the Fischer-Tropsch process where synthesis gas, carbon monoxide and hydrogen are catalytically converted to a mixture of lower aliphatic organic oxygenated compounds including alcohols, ethers, aldehydes, ketones, etc.

Vi går nå tilbake til det vi har kalt "integrerte" utførelser av oppfinnelsen, og man kan si at det har vært vanlig industriell praksis å utføre kommersielle metanol-syntese-omsetninger inntil en omdannelse på ca. 15 til 20 prosent, fraskille uomsatt karbonmonoksyd og hydrogen fra den dannede metanol og resirkulere de uomsatte reaktanter for å fremstille ytterligere mengder med metanol. I vår tidligere omtalte prosess for fremstilling av bensin, blir denne metanol så separat omdannet til bensin. We now return to what we have called "integrated" embodiments of the invention, and it can be said that it has been common industrial practice to carry out commercial methanol synthesis conversions up to a conversion of approx. 15 to 20 percent, separate unreacted carbon monoxide and hydrogen from the methanol formed and recycle the unreacted reactants to produce additional amounts of methanol. In our previously discussed process for making petrol, this methanol is then separately converted into petrol.

I henhold til nærværende utførelser blir metanol-synteseproduktet, omfattende metanol og uomsatt karbonmonoksyd, ikke oppløst for å utvinne metanolen, men blir brakt i kontakt med en karbonylerings-reaksjonskatalysator ved karbonylerings-temperaturer for å omsette noen av metanolen med det uomsatte karbonmonoksyd for å danne en blanding som omfatter metanol og eddiksyre (og muligens andre komponenter så som metylacetat). Denne blanding blir så omdannet til en kompleks blanding av hydrokarboner innbefattet C&- til C^-monocykliske aromatiske hydrokarboner ved kontakt med zeolitten. According to the present embodiments, the methanol synthesis product, comprising methanol and unreacted carbon monoxide, is not dissolved to recover the methanol, but is contacted with a carbonylation reaction catalyst at carbonylation temperatures to react some of the methanol with the unreacted carbon monoxide to form a mixture comprising methanol and acetic acid (and possibly other components such as methyl acetate). This mixture is then converted into a complex mixture of hydrocarbons including C₁- to C₁-monocyclic aromatic hydrocarbons by contact with the zeolite.

Omdannelse av karbon i karbonmonoksyd-reaktanten Conversion of carbon in the carbon monoxide reactant

til karbon i de C - til C. -monocykliske aromatiske hydrokarbon- to carbon in the C - to C. -monocyclic aromatic hydrocarbon-

6 10 6 10

produkter blir øket ved å gå frem i samsvar med denne oppfinnelse (med et mellomliggende karbonyleringstrinn) sammenlignet med å resirkulere karbonmonoksydet for å tilintetgjøres ved metanolsyntese og aromatisere metanolen alene. Alle komponentene i utstrømningen fra karbonyleringsreaksjonen er enkeltvis omformbare over zeolitt-katalysatorene til hydrokarbon-bensin av høy kvalitet, dog er blandingen omformbar til et produkt som har en uventet høyere andel av aromatiske hydrokarboner enn man kunne forutsi av en betraktning av de omdannelsesutbytter som er opp-nåelige fra de enkelte reaktanter. Kull-forgassing til syntesegass blir vanligvis utført med oksygen og/eller damp ved ca. 538 til 1093°C, mens omdannelsen av naturgass blir utført ved ca. 538 til 831°C. Omdannelsen av syntesegass til et produkt som omfatter metanol er også vel kjent kommersiell teknologi. Denne omsetning, kalt metariol-syntese, blir utført ved ca. 232 til 399°C og ved 42 til 422 kg/cm^ overtrykk ved anvendelse av en katalysator som omfatter sink og/eller kobber. Omsetningen av metanol med karbonmonoksyd for å fremstille eddiksyre er i og for seg kjent. Den blir utført ved ca. 149 til 42 7°C og ved ca. 1,05 til 70,0 kg/cm 2overtrykk. Sure katalysatorer, så som fosforsyre eller bortrifluorid, er blitt anvendt, og det er også rhodiumsalter i heterogen eller homogen form sammen med en jod-befordrer. products are increased by proceeding in accordance with this invention (with an intermediate carbonylation step) compared to recycling the carbon monoxide to be destroyed by methanol synthesis and aromatizing the methanol alone. All the components in the effluent from the carbonylation reaction are individually reformable over the zeolite catalysts into high-quality hydrocarbon gasoline, however, the mixture is reformable into a product that has an unexpectedly higher proportion of aromatic hydrocarbons than could be predicted from a consideration of the conversion yields that are -available from the individual reactants. Coal gasification to synthesis gas is usually carried out with oxygen and/or steam at approx. 538 to 1093°C, while the conversion of natural gas is carried out at approx. 538 to 831°C. The conversion of synthesis gas into a product comprising methanol is also well known commercial technology. This turnover, called metariol synthesis, is carried out at approx. 232 to 399°C and at 42 to 422 kg/cm 2 overpressure using a catalyst comprising zinc and/or copper. The reaction of methanol with carbon monoxide to produce acetic acid is known per se. It is carried out at approx. 149 to 42 7°C and at approx. 1.05 to 70.0 kg/cm 2 overpressure. Acid catalysts, such as phosphoric acid or boron trifluoride, have been used, and there are also rhodium salts in heterogeneous or homogeneous form together with an iodine carrier.

Omdannelsen av metanol, eddiksyre, metylacetat, metylformiat eller dimetyleter er det i og for seg kjent å ut-føre ved ca. 260 til 649°C ved anvendelse av den spesielle zeolitt-katalysator som er beskrevet ovenfor. The conversion of methanol, acetic acid, methyl acetate, methyl formate or dimethyl ether is in itself known to be carried out at approx. 260 to 649°C using the special zeolite catalyst described above.

I motsetning til ønskemålet i den etablerte karbony-leringsindustri, er det ved karbonyleringstrinnet ikke viktig hvor meget eddiksyre som blir dannet eller hvor ren den er, men heller hvor mye totalt karbon fra den tilmatede syntesegass som har blitt bundet til organiske produkter. Det er foretrukket at mol-forholdet mellom metanol og eddiksyre blir holdt på minst 12 i karbonyleringsproduktet. videre viser beskrivelsen av en kommersiell utførelse ved benyttelse av en rhodium-katalysert karbonylering av metanol for å danne eddiksyre, hvilken beskriv-else finnes i utgaven fra oktober 1971 av Chemical Technology, i anvendelse av hydro-jodsyre som en befordrer for å omdanne metanol-reaktanten til metyljodid, og hvor sistnevnte er foreslått å være den virkelige reaktant. I det tilfellet at en halogen-andel blir anvendt som en befordrer, som foreslått, bør metyl-halogenidmellomproduktet forståes å være lett omformbar over den spesielle zeolittkatalysator herav til aromatiske hydrokarboner. Således vil utbyttet av ønskelige C~ til c^Q-monocykliske aromatiske hydrokarboner bli ytterligere- forøket selv om noe av denne befordrer blir igjen sammen med det eddiksyreholdige kar-bonyleringsprodukt når sådant blir matet til spesiell zeolitt-omdannelse. In contrast to the desired goal in the established carbonylation industry, in the carbonylation step it is not important how much acetic acid is formed or how pure it is, but rather how much total carbon from the fed synthesis gas has been bound to organic products. It is preferred that the molar ratio between methanol and acetic acid is kept at at least 12 in the carbonylation product. further, the description of a commercial embodiment using a rhodium-catalyzed carbonylation of methanol to form acetic acid, which description is found in the October 1971 issue of Chemical Technology, shows the use of hydroiodic acid as a carrier to convert methanol- the reactant of methyl iodide, and where the latter is proposed to be the real reactant. In the event that a halogen moiety is used as a promoter, as suggested, the methyl halide intermediate should be understood to be easily reformable over the special zeolite catalyst thereof to aromatic hydrocarbons. Thus, the yield of desirable C~ to C~Q monocyclic aromatic hydrocarbons will be further increased even if some of this carrier remains with the acetic acid-containing carbonylation product when such is fed to special zeolite conversion.

Sammenligning av omdannelsen av karbonmonoksyd til r 6 - til C1, 0-monocykliske aromatiske hydrokarboner via metanol-syntese og den spesielle zeolitt-omdannelse basert på resirkulering av uomsatt karbonmonoksyd til metanol-syntese og basert på en karbonylerings-enhetsprosess som beskrevet her, viser en bemerkelsesverdig fordel for den sistnevnte prosess. Karbon-ytelsen for slike aromatiske forbindelser blir øket fra ca. 30 Comparison of the conversion of carbon monoxide to r 6 - to C1,0-monocyclic aromatic hydrocarbons via methanol synthesis and the special zeolite conversion based on recycling unreacted carbon monoxide to methanol synthesis and based on a carbonylation unit process as described here shows a remarkable advantage for the latter process. The carbon yield for such aromatic compounds is increased from approx. 30

til ca. 80% ved utførelsen av denne oppfinnelse. to approx. 80% in the execution of this invention.

Det kan tilskrives denne oppfinnelse at.det produkt It can be attributed to this invention that.that product

som til sist blir dannet ved omdannelse med den spesielle aro-matiserende zeolitt-katalysator beskrevet ovenfor, omfatter vann og C^~ til ca. C^-hydrokarboner i hele området. Det er vanlig for dette produktet at det har en støkiometrisk fordeling av oksygen og karbon i tilmatningen, det vil si at ialt vesentlig alt oksygenet i den organiske andel av tilmatningen er omdannet til vann og ialt vesentlig alt karbonet i den organiske andel er omdannet til hydrokarboner. Det kan dannes noen små mengder med karbonoksyder, men disse er i forurensnings-konsentrasjoner. which is finally formed by conversion with the special aromatizing zeolite catalyst described above, comprises water and C^~ to approx. C^-hydrocarbons throughout the range. It is common for this product to have a stoichiometric distribution of oxygen and carbon in the feed, that is to say that essentially all the oxygen in the organic part of the feed is converted to water and essentially all the carbon in the organic part is converted to hydrocarbons . Some small amounts of carbon oxides can be formed, but these are in pollution concentrations.

Dersom omdannelsen av den organiske tilmatning er mindre enn If the conversion of the organic feed is less than

100%, synes fordelingen av karbon og oksygen å være ialt vesentlig proporsjonal. Av hydrokarbonproduktet utgjøres hovedmengden av den vanligvis flytende fraksjon med C 5+og den mindre mengde ut-gjøres av den vanligvis gassformige fraksjon av C4~- Av C^+ frak-sjonen er hovedmengden monocykliske aromatiske hydrokarboner, C, til C.^- Det er mulig å øke olefinandelen av produktet på 6 10 100%, the distribution of carbon and oxygen seems to be generally substantially proportional. Of the hydrocarbon product, the main amount is made up of the usually liquid fraction with C 5+ and the smaller amount is made up of the usually gaseous fraction of C4~- Of the C^+ fraction, the main amount is monocyclic aromatic hydrocarbons, C, to C.^- It it is possible to increase the olefin proportion of the product to 6 10

bekostning av aromatiske forbindelser ved å øke romhastigheten eller ved andre midler som er omtalt annetsteds. I denne situasjon,1 expense of aromatic compounds by increasing space velocity or by other means discussed elsewhere. In this situation, 1

hvor det ønskes et sterkt olefinholdig produkt, foretrekkes det å operere med de høyere forhold mellom metanol og eddiksyre. Alternativt synes lavere forhold mellom metanol og eddiksyre å begunstige dannelse av aromatiske forbindelser. where a strong olefin-containing product is desired, it is preferred to operate with the higher ratios between methanol and acetic acid. Alternatively, lower ratios of methanol to acetic acid appear to favor the formation of aromatic compounds.

Disse sider av denne oppfinnelse vil bli belyst i de etterfølgende eksempler hvori deler er vektdeler og prosenter er prosendeler dersom ikke annet er uttrykkelig angitt. Den følgende tabell angir resultatene i fire sammenlignende tester som ble utført side ved side under ialt vesentlig identiske forhold. Temperaturen var 371°C, trykket var 1 atmosfære, romhastigheten var 1 LHSV og katalysatoren var H-ZSM-5 med 35% A^O^ som bindemiddel. These aspects of this invention will be illustrated in the following examples in which parts are parts by weight and percentages are parts by weight unless otherwise expressly stated. The following table sets out the results of four comparative tests which were carried out side by side under essentially identical conditions. The temperature was 371°C, the pressure was 1 atmosphere, the space velocity was 1 LHSV and the catalyst was H-ZSM-5 with 35% A^O^ as binder.

I det følgende eksempel 5 ble en blanding bestående av 57% C, -C-alkanoler, 3% C^-C.-alkana ler, 11% C_,-C -alkanoner In the following example 5, a mixture consisting of 57% C, -C alkanols, 3% C 1 -C 1 -alkanes, 11% C 1 -C -alkanones

lb 2. 4 od lb 2. 4 od

og 29% C2-C5_alkansyrer omdannet til et blandet hydrokarbonpro-dukt, som angitt, ved anvendelse av en HZSM-5-katalysator. Forholdene var 1 atmosfæres trykk, 1 LHSV, 371°c og 3 timers total strømningstid. and 29% C2-C5 alkanoic acids converted to a mixed hydrocarbon product, as indicated, using a HZSM-5 catalyst. The conditions were 1 atmosphere pressure, 1 LHSV, 371°c and 3 hours total flow time.

Claims (4)

1. Fremgangsmåte for omforming av et materiale som inneholder alifatiske oksygenforbindelser med formelen C H<_>~. pH-O J3 n m-2p r 2 hvor n er antall karbonatomer i molekylet og har en verdi på 1-6, m er antall hydrogenatomer i molekylet og p er antall oksygenatomer i molekylet, til et produkt som inneholder aromatiske hydrokarboner ved temperaturer på 260-649°C under trykk ved en væske-romhastighet pr. time på 0,5-50, i nærvær av en krystallinsk aluminosilikat-zeolitt som har et forhold mellom silisiumdioksyd og aluminiumoksyd på 12-3000 og en tvangsstyringsindeks på 1-12, som katalysator, karakterisert ved at det. anvendes et materiale som omfatter et molart overskudd av slike alifatiske oksygenholdige forbindelser hvor forholdet (m~2p) overskrider 1, og et restmateriale av slike alifatiske oksygenholdige forbindelser hvor forholdet (mn~2P> er 1 eller mindre,1. Process for transforming a material containing aliphatic oxygen compounds with the formula C H<_>~. pH-O J3 n m-2p r 2 where n is the number of carbon atoms in the molecule and has a value of 1-6, m is the number of hydrogen atoms in the molecule and p is the number of oxygen atoms in the molecule, to a product containing aromatic hydrocarbons at temperatures of 260-649 °C under pressure at a liquid-space velocity per hour of 0.5-50, in the presence of a crystalline aluminosilicate zeolite having a ratio between silicon dioxide and aluminum oxide of 12-3000 and a forced control index of 1-12, as a catalyst, characterized in that it. a material is used which comprises a molar excess of such aliphatic oxygen-containing compounds where the ratio (m~2p) exceeds 1, and a residual material of such aliphatic oxygen-containing compounds where the ratio (mn~2P> is 1 or less, 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at det anvendes et molart overskudd som omfatter en enverdig alkohol og at resten av materialet omfatter en karboksylsyre.2. Method as stated in claim 1, characterized in that a molar excess comprising a monohydric alcohol is used and that the rest of the material comprises a carboxylic acid. 3. Fremgangsmåte som angitt i krav 1, karakterisert ved at det anvendes et molart overskudd som omfatter en enverdig alkohol og at resten omfatter et aldehyd med mindre enn 3 karbonatomer.3. Method as stated in claim 1, characterized in that a molar excess is used which comprises a monohydric alcohol and that the remainder comprises an aldehyde with less than 3 carbon atoms. 4. Fremgangsmåte som angitt i krav 2 eller 3, karakterisert ved at det anvendes et overskudd som omfatter metanol og at resten omfatter eddiksyre og/eller acetaldehyd.4. Method as stated in claim 2 or 3, characterized in that an excess comprising methanol is used and the remainder comprises acetic acid and/or acetaldehyde.
NO762289A 1975-07-02 1976-07-01 PROCEDURE FOR REFORMING A MATERIAL CONTAINING ALIFATIC OXYGEN COMPOUNDS NO150956C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/592,434 US3998898A (en) 1973-08-09 1975-07-02 Manufacture of gasoline
US05/592,565 US4039600A (en) 1975-07-02 1975-07-02 Conversion of synthesis gas to aromatic hydrocarbons

Publications (3)

Publication Number Publication Date
NO762289L NO762289L (en) 1977-01-04
NO150956B true NO150956B (en) 1984-10-08
NO150956C NO150956C (en) 1985-01-16

Family

ID=27081450

Family Applications (1)

Application Number Title Priority Date Filing Date
NO762289A NO150956C (en) 1975-07-02 1976-07-01 PROCEDURE FOR REFORMING A MATERIAL CONTAINING ALIFATIC OXYGEN COMPOUNDS

Country Status (11)

Country Link
JP (1) JPS528005A (en)
AU (1) AU500460B2 (en)
CS (1) CS196313B2 (en)
DE (1) DE2628723A1 (en)
FR (1) FR2316318A1 (en)
GB (1) GB1526461A (en)
NL (1) NL7607297A (en)
NO (1) NO150956C (en)
NZ (1) NZ181181A (en)
PL (1) PL104616B1 (en)
SE (1) SE417504B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL181001C (en) 1978-05-30 1987-06-01 Shell Int Research PROCESS FOR PREPARING AROMATIC HYDROCARBONS FROM ALIPHATIC OXYGEN-CONTAINING COMPOUNDS.
JPS57190081A (en) * 1981-05-18 1982-11-22 Res Assoc Petroleum Alternat Dev<Rapad> Conversion of lower aliphatic oxygen compound into hydrocarbon
DE102006026356A1 (en) * 2006-05-30 2007-12-06 Süd-Chemie Zeolites GmbH Process for the catalytic conversion of bio-based organic oxygenated compounds
US8962902B2 (en) 2011-11-23 2015-02-24 Virent, Inc. Dehydrogenation of alkanols to increase yield of aromatics
US8969640B2 (en) * 2011-11-23 2015-03-03 Virent, Inc. Dehydrogenation of alkanols to increase yield of aromatics
WO2014190161A1 (en) 2013-05-22 2014-11-27 Virent, Inc. Process for converting biomass to aromatic hydrocarbons
US9873644B2 (en) 2013-05-22 2018-01-23 Virent, Inc. Hydrogenation of carboxylic acids to increase yield of aromatics
US9732013B2 (en) 2014-09-30 2017-08-15 Exxonmobil Chemical Patents Inc. Production of aromatics from methanol and co-feeds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS191916B2 (en) * 1973-08-09 1979-07-31 Mobil Oil Corp Method of producing aromatic hydrocarbons

Also Published As

Publication number Publication date
JPS613834B2 (en) 1986-02-04
SE7607423L (en) 1977-01-03
AU500460B2 (en) 1979-05-24
SE417504B (en) 1981-03-23
NZ181181A (en) 1978-06-20
NO150956C (en) 1985-01-16
PL104616B1 (en) 1979-08-31
AU1547176A (en) 1978-01-05
NL7607297A (en) 1977-01-04
NO762289L (en) 1977-01-04
DE2628723A1 (en) 1977-01-27
FR2316318A1 (en) 1977-01-28
CS196313B2 (en) 1980-03-31
FR2316318B1 (en) 1980-04-25
GB1526461A (en) 1978-09-27
JPS528005A (en) 1977-01-21

Similar Documents

Publication Publication Date Title
US3998898A (en) Manufacture of gasoline
US4039600A (en) Conversion of synthesis gas to aromatic hydrocarbons
US4025576A (en) Process for manufacturing olefins
US4048250A (en) Conversion of natural gas to gasoline and LPG
US4025575A (en) Process for manufacturing olefins
KR101503956B1 (en) Catalyst composition and process for converting aliphatic oxygenates to aromatics
US3894102A (en) Conversion of synthesis gas to gasoline
King et al. A technological perspective for catalytic processes based on synthesis gas
US4025571A (en) Manufacture of hydrocarbons
US4052472A (en) Mordenite conversion of alkanols to penta- and hexamethyl benzenes
US4180516A (en) Conversion of synthesis gas to aromatic hydrocarbons
US3972958A (en) Conversion of coal to high octane gasoline
NO145758B (en) PROCEDURE FOR THE PREPARATION OF HYDROCARBONES, INCLUDING AROMATIC HYDROCARBONES, BY CATALYTIC CONVERSION OF ALIFATIC OXYGEN-COMPOUND COMPOUNDS
US20150174563A1 (en) Bound catalyst for selective conversion of oxygenates to aromatics
US4547601A (en) Conversion of Fischer-Tropsch oxygenates to middle distillate
Dubois et al. Conversion of CO2 to Dimethylether and Methanol over Hybrid Catalysts.
KR20190094202A (en) Integrated Oxygen Conversion and Olefin Oligomerization
CA1099656A (en) Manufacture of gasoline
US4013732A (en) Conversion of methanol to gasoline with minimum durene production
US4260841A (en) Conversion of oxygenated products of Fischer-Tropsch synthesis
US4188336A (en) Conversion of synthesis gas to aromatic hydrocarbons
KR20190093620A (en) Combined olefin and oxygenate conversion for aromatic production
US4371628A (en) Process for the preparation of aromatic hydrocarbons using crystalline silicates as catalyst
US4424401A (en) Aromatization of acetylene
Sujeerakulkai et al. Bio-based hydrocarbons and oxygenates from catalytic bio-ethanol dehydration: comparison between gallium and germanium oxides as promoters on HBeta zeolites with various silica to alumina ratios