CA1099656A - Manufacture of gasoline - Google Patents

Manufacture of gasoline

Info

Publication number
CA1099656A
CA1099656A CA254,838A CA254838A CA1099656A CA 1099656 A CA1099656 A CA 1099656A CA 254838 A CA254838 A CA 254838A CA 1099656 A CA1099656 A CA 1099656A
Authority
CA
Canada
Prior art keywords
product
improved process
feed
hydrocarbons
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA254,838A
Other languages
French (fr)
Inventor
Clarence D. Chang
William H. Lang
Anthony J. Silvestri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
ExxonMobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US592,434 priority Critical
Priority to US05/592,434 priority patent/US3998898A/en
Application filed by ExxonMobil Oil Corp filed Critical ExxonMobil Oil Corp
Application granted granted Critical
Publication of CA1099656A publication Critical patent/CA1099656A/en
Application status is Expired legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Bio-feedstock

Abstract

ABSTRACT OF THE DISCLOSURE
Reacting mixtures of difficultly convertible aliphatic organic oxygenate compounds, such as short chain aldehydes, carboxylic acids or carbohydrates with easily con-vertible aliphatic alcohols, ethers, acetals and analogs thereof over a crystalline aluminosilicate zeolite having a silica to alumina ratio of at least about 12 and a constraint index of about 1 to 12, at elevated temperatures, 0.5 to 50 LHSV and 1 to 200 atmospheres to produce a product comprising water, full range highly aromatic hydrocarbon gasoline and light aliphatic hydrocarbon gases having an improved production of C6 to C10 monocyclic aromatic hydrocarbons.

Description

1~99~56 This invention relates to the synthetic production of gasoline. It more particularly refers to an improved method of converting simple organic chemicals, particularly certain mixtures thereof to hydrocarbons boiling in the gasoline boiling range.
Gasoline, as such term is used in the instant specification, and as such term is commonly used in the petroleum industry, is a motor fuel for internal combustion engines. It is hydrocarbon in nature being composed ôf various aliphatic and aromatic hydrocarbons having a full boiling range of about C5 to about 280 to 430F. depending upon the exact blend used and the time of the year. Although gasoline is predominantly hydrocarbon in nature, various additives which are not necessarily exclusively hydrocarbon are often included. Additives of this type are usually present in very small proportions, e.g. less than 1% by volume of the total gasoline. It is also not uncommon for various gasolines to be formulated with non-hydrocarbon components, particularly alcohols and/or ethers, as significant although not major, constituents thereof. Such alcohols, ~ 20~ ~ ethers and the like have burning qualities in internal com-- busion engines which are similar to those of hydrocarbons ; in the gasoline boiling range. For purposes of this applica~
tion, the term "gasoline" is used to mean a mixture of hydrocarbons boiling in the aforementioned gasoline boiling range and is not intended to mean the above-referred to additives and/or non-hydrocarbon constituents.
It is generally known that various specific hydro-carbon compounds or isomeric mixtures of h~drocarbon compounds .. ~, .. .. . ~, . ,., .... . .. .... ~ . ....... ... , ..... _ . ..... ......... . .... .... .. .. .. .. .. .. . . . . . .

1~99656 8715 boiling in the gasoline boiling range can be made by converting various appropriate organic chemicals using specific processes particularly adapted to the particularly desired conversion. Thus7 for example, acetone can be con-verted to mesitylene over many different acid catalysts, including acid zeolites. Propylene can be converted to

2-ethyl hexane by a combination of hydroformylation, hydrogena-tion and Aldol condensation, using ametal catalyst in a basic system, through an aldehyde and/or alcohol intermediate (butyr-aldehyde and 2-ethyl hexanol). Sirnilarly, acetaldehyde can be converted to iso-octane by Aldoling and hydrogenolysis.
Methanol can be converted to toluene by alkylation of benzene using an acid zeolite catalyst.
It 1~ clear, however, that all of the known processes of this type do not produce a wide range of hydro-carbon products, and do not even produce significant quan-tities of full range gasoline. U.S. Patent 2,950,332, Mattox, discloses the use of crystalline alumin~ilicate zeolites as catalysts to convert ketones to aromatics, particu-~20 larly acetone to mesitylene. In particular, rather low silica to alumina ratio zeolites, such as Y, were employed by this patentee. His reaction temperatures were about 300 to 900~.
and he produced as much as about 43% Cg~ aromatics from acetone at 500~.
U.S. Patent 3,728,408, Tobias, carried this conversion over into the use of high silica to alurnina ratio zeolites, such as dealuminized Y and ZSM-5. Tobias insisted upon a minimum silica to alumina ratio of 10 and showed a 25~ conversion of acetone to mesitylene and mesityl oxide using a 17 to 1 silica to alumina ratio ZSM-5 at 200C.

-3-~ )99656 (392F.). The ratio of mesifyl oxide to mesitylene in -Tobias' product was reported to be 9 to 1. This calculates out to a yield of 2.07% (by wt) mesitylene based upon ace~one ~eed. As noted in the prosecution of the above-re~erred to parent application. consideration of the gas chromatograph of Tobias' product fails to show the production of any aromatic hydrocarbon, or in fact any hydrocarbon, other than mesitylene.
U.S. Patent 2,456,584 is also worthy of note, for reasons which will become apparent below, becuase it dis-closes the conversion of dimethylether to hydrocarbongasoline using a silica alumina catalyst. This reference indicates that while dimethyl ether by itself is poorly converted to gasoline, in admixture with isobutane, the mix-ture converts very nicely to aromatic gasoline.
With all~this prior art at his disposal, the routineer in the chemical arts still does not know how to convert relatively simple hetero-atom containing organic chemicals directly to hydrocarbon gasoline, particularly full ~ .
range gasoline, of commercial quality and in commercial quantity.
~ t is, therefore, an ob~ect of this invention to provide an improved means of convertlng relatively simple organic campounds to gasoline.
Thus the present invention relates to a process of converting lower aliphatic oxygen containing organic compounds of the empirical formula CnHm_2p pH20 where _ is the number of carbon atoms up to about 8, p is the number of oxygen atoms and _ is the number of hydrogen atoms in the feed, to a product comprising water and hydrocarbons, said hydrocarbons containing a preponderance of the carbon of

- 4 ,.~

lU99~i56 said organic compounds, by contacting such feed with a crystalline aluminosilicate ziolite catalyst having a silica to alumina ratio of at least about 12 and a constraint index of about 1 to 12 at an elevated temperature of at least about 500F, and a space velocity of about 0.5 to 50 LHSV. The novel feature relates to an improvement whereby the aromaticity of the hydrocarbon product is increased by a method which comprises providing as said feed a mixture of a difficulty convertible said organic compound having a value of R=m-2p of up to 1 and an easily convertible said organic compound having no carboxylic acid groups and having a value of R of greater than 1, said mixture having a cumulative value of R of greater than l and a stoichiometric deficiency of carboxylic acid groups.
It will be appreciated that within the ranges of operatlng parameters recited will exist certain combinations of conditions which will direct the conversion toward specific types of products.
Therefore, it is appropriate to indicate that ln addition to the temperature specified above as a critical variable, there is also a critical variable in the severity of operation as well as a preferred critical variable in the mode of operation. Within the operating parameters specified above, there are a number of combinations of temperature and residence time, sometimes reported as space velocity in a continuous system, which in combination define the severity required to achieve a given desired result. Since there is no generally accepted unit or numerical designation for severity, it is believed appropriate in this situation to define severity ~3 1~9965~
, .

in terms of product composition; that is that combination of temperature, pressure and contact time which will yield a product in which the major proportion, based on the carbon contained in the feed, of the carbon is in the form of hydrocarbons, the preponderant components of which are C6 to C10 monocyclic aromatic hydrocarbons.
Consideration of the data presented in this specifi-cation indicates that a wide variety of hydrocarbon compounds ~ are produced by the process hereof and that some if not most~
of them are not predictable from the specified reactant by any classical chemical conversion theory or mechanism.
It is remarkable that when carrying out the process of this invention under any given set of reaction conditions, it does not seem to partlcularly matter what reactant or reactant mixture is chosen, the product slate seems to be just about the same, e.g. ethyl acetate gives just about the same products as does acetone. This appears to be a qualitative fact, that is that the product slate produced is substantially equivalent. There are differences in proportion of individual constituents of the product slate as a function of the parti-cular reactant conditions chosen, but the product slate appears to remain substantially unaltered. In fact, it would appear that the product slate is not a function of any specific reactant. Under equivalent operating conditions, substantially the same product results regardless of which specific reactants are used.

099~;56 ,~ . . . ' .. . . . .
.... . . . .
.. , :. . ' .. ,' . . - . ' :. -. . . ..,. , . .. . , :
- -. ~, , .
.The speciaI zeol-ite cakalysts referred ko herein . utilize members of a special class of zeolites exhibiting some unusual properties.' These zeolites inauce profound trans-formations of aliphakic'hydrocarbons to aromakic hydrocarbons in commercially desirable yields and are generally highly - . , - . . . . .
~ ~ ef~ective ln alkylation, isomerization, disproporkionakion ~ - I
' ' and other reactions involving aro~atic hydrocarbons. Alt~ou~h .
' they have unusually low alumina contents, i.e. high silica to ' ' alumina ratios, they are very active even with silica to 10; alumina rakios exceeding 30. This activity is surprising since ' catalytic activity of zeolites is generally attributed to ''" ~xamework aluminum akoms and cations associaked wikh these , ., .,. . - . i - ' aluminum atoms. These zeolites retain their crys~allinity or''lo~g periods in spike of khe presence of s~eam e~en a~
.. , ~, ~ . , , ~15 ~ high temperakures which induce irreversible collapse of the crystal ~ramework of okhèr zeolites, e.g. of the X and'A kype.
Furthermore, carbonaceous deposits, when formed, may be ' removed by burning ak higher than usual temperatures to restore - ,~:: - ; , act~ity~ In many environmenks, khe zeolites of this class ' exhibit Yery low coke forming capabiliky, conducive ko very long times on stream between burning regenerations.
An important characteristic of the crystal structure of th~s class of zeolites ~s that it pro~des cons~rained ' access to~ and egress from, the intra-crystalline free , ..
.
-7- ~-t . r~

.. .. .. ..

1G~99656 space by virtue of having a pore dimension greater than about

5 Angstroms and pore windo~s of about a size as would be provided by lO-membered rings of oxygen atoms. It is to be understood~ of course, that these rings are those formed by the regular disposition of the tetrahedra making up the anionic framework of the crystalline aluminosilicate, the oxygen atoms themselves being bonded to the silicon or aluminum atoms at the centers of the tetrahedra. Briefly, the preferred zeolites useful as catalysts in this invention possess, in combination: a silica to alumina ratio of at least about 12; and a structure providing constrained access to the crystalline free space.
The silica to alumina ratio referred to may be determined by conventional analysis. This ratio is meant to represent, as closely as possible, the ratio in the rigid anionic framework of the zeolite crystal and to exclude aluminum in the binder or in cationic or other form within the channels. Although zeolites with a silica to alumina ratio of at least 12 are useful, it is preferred to use zeolites having higher ratios of at least about 30. Such zeolites, after activation, acquire an intracrystalline sorption capacity for noraml hexane which is greater than .~
that for water, i.e. they exhibit "hydrophobic" properties.
It is believed that this hydrophobic character is advantageous i the present invention.
The zeolites useful as catalysts in this invention ~reely sorb normal hexane and have a pore dimension greater than about 5 Angstroms. In addition, their structure must provide constrained access to some larger molec~les. It is sometimes possible to judge from a known crystal structure 99~iS6 whether such constrained access exists. For example,.if the only pore windows in a crystal are formed by 8-membered rings of oxygen atoms, then access by molecules of larger cross-section than normal hexane is substantially excluded and the zeolite is not of the desired type. Zeolites with windows of 10-membered rings are preferred, although excessive puckering or pore blockage may render these zeolites substantially ineffective. Zeolites with windows of twelve-membered rings do not generally appear to offer sufficient constraint to produce the advantageous conversions desired in the instant invention, although structures can be conceived, due to pore blockage or other cause, that may be operative.
Rather than attempt to judge from crystal structure whether or not a zeolite possesses the necessary constrained access, a simple determination of the "constraint index" may be made by continuously passing a mixture of equal weight of normal hexane and 3-methylpentane over a small sample, approx-imately 1 gram or less, of zeolite at atmospheric pressure ; according to the following procedure. A sample of the zeolite, in the form of pellets or extrudate, is crushed to a particle size about that of coarse sand and mounted in a glass tube. Prior to testing, the zeolite is treated with a stream of air at 1000F for at least 15 minutes. The zeolite is then flushed with helium and the temperature adjusted between 550F and 950F to give an overall conversion between 10% and 60%. The mixture of hydrocarbons is passed at 1 liquid hourly space velocity (i.e., 1 volume of liquid hydro-carbon per volume of catalyst per hour) over the zeolite with a helium dilution to give a helium to total hydrocarbon mole _ g _ X

1(t996S~

ratio of 1~:1. After 20 minutes on stream~ a sample of the e~fluent is taken and analyzed, most conveniently by gas chromatography~ to determine the fraction remainlng unchanged for each of the two hydrocarbons.
The "constraint index" is calculated as follows:
Constraint Index = log (fraction of n-hexane remaining) loglO ~fraction of 3-methylpentane remaining) The constraint index approximates the ratio of the cracking rate constants for the two hydrocarbons. Catalysts suitable for the present invention are those which employ a zeolite having a constraint index from 1.0 to 12Ø Constraint Index (CI) values for some typical zeolites including some not within the scope of this invention are:

i 15 CAS C.I.
ZS~-5 8.3 ZSM-ll 8 7 TMA Offretite 3.7 Beta o.6 Acid Mordenite 0.5 ~25~ REY 0.4 Amorphous Silica-alumina o.6 Erionite 38 The above-described Constraint Index is an important and even critical, definition of those zeolites which are useful to catalyze the instant process. The very nature of this parameter and the recited technique by which it is deter-mined~ however, admit of the possibility that a given zeolite can be tested under somewhat different conditions and thereby have different constraint indexes. Constraint Index seems to .

g~6S6 vary somewhat with severity of operation (conversion). There-fore, it will be appreciated that it may be possible to so select test conditions to establish multiple constraint indexes for a particular given zeolite which may be both inside and outside the above defined range of 1 to 12.
Thus, it should be understood that the "Constraint Index" value as used herein is an inclusive rather than an exclusive value. That is, a zeolite when tested by any combination of conditions within the testing definition set -~
forth herein above to have a constraint index of 1 to 12 is intended to be included in the instant catalyst definition regardless that the the same identical zeolite tested under other defined conditions may give a constraint index value outside of 1 to 12.
The class of zeolites defined herein is exemplified by ZSM-5, ZSM-ll, ZSM-12, ZSM-21, ZSM-35, ZSM-38, and other similar material. U.S. Patent 3,702,886 issued November 14, 1972 describes and claims ZSM-5.
ZSM-ll is more particularly describad in U.S. Patent 3,709,979, issued January 9, 1973.
ZSM-12 is more particularly described in U.S. Patent 3,832,449, issued August 27, 1974.
U.S. Patent 4,016,245 issued April 5, 1977, describes a zeolite composition including a method of making it. This composition is designated ZSM-35 and is useful in this invention.
U.S. Patent 4,046,859 issued September 6, 1977, describes a zeolite composition including a method of making it. This composition is designated ZSN-38 and is useful in this invention.

The specific zeolites described, when prepared in the presence of organic cations, are substantially catalytically inactive, possibly because the intracrystalline free space is occupied by organic cations from the forming solution. They may be activated by heating in an inert atmosPhere at 100F
for one hour, for example, followed by base exchange with ammonium salts followed by calcination at 1000F in air. The presence of organic cations in the forming solution may not be absolutely essential to the formation of this special type zeolite; however, the presence of these aations does appear to favour the formation of this special type of zeolite.
More generally, it is desirable to activate this type zeolite by base exchange with ammonium salts followed by calcination in air at about 100 for from about 15 minutes to about 24 hours.
Natural zeoli-es may sometimes be converted to this ` - 12 -- 1~99656 type zeolite by various activation procedures and other treatments such as base exchange, stearning, alumina extrac-tion and calcination, alone or in combinations. Natural minerals which may be so treated include ferrierite, brewsterite, stilbite, dachiardite, epistilbite, heulandite and clinoptiolo-lite. The preferred crystalline aluminosilicates are ZSM-5, ZSM-ll, ZSM-12, ZSM-21, ZSM-35 and ZSM-38, with ZSM-5 particularl~
preferred.
The zeolites used as catalysts in this invention may be in the hydrogen form or they may be base exchanged or impregnated to contain ammonium or a metal cation complement.
It is desirable to calcine the zeolite after base exchange.
The metal cations that may be present include any of the cations of the metals of Groups I through ~III of the periodic table. However, in the case of Group IA metals, the cation content should in no case be so large as to substantially eliminate the activity of the zeolite for the catalysis being employed in the instant invention. For example, a completely sodium exchanged H-ZSM-5 appears to be largely inactive for shape selective conversions required in the present invention.
In a preferred aspect of this lnvention, the zeolites useful as catalysts herein are selected as those having a crystal framework density, in the dry hydrogen form, of not substantially below about 1.6 grams per cubic centi-meter. It has been found that zeolites which satisfy all three of these criteria are most desired. Therefore, the preferred catalysts of this invention are those comprising zeolites having a constraint index as defined abo~e of about 1 to 12, a silica to alumina ratio of at least about 12 and a ' '' ' 1 ' .....

~99656 dried crystal density of not substantially less than about 1.6 grams per cubic centimeter. The dry density for known structures may be calculated from the number of silicon plus aluminum atoms per 1000 cubic Angstroms, as given,e.g. on page 19 of the article on Zeolite Structure by W.M. Neier.
This paper is included in "Proceedings of the Conference on Molecular Sieves, London, April 1967", published by the Society of Chemical Industry, London, 1968. When the crystal structure is unknown, the crystal framework density may be determined by classical pyknometer techniques. For example, it may be determined by immersing the dry hydrogen form of the zeolite in an organic solvent which is not sorbed by the crystal. It is possible that the unuuual sustained activity and stability of this class of zeolites in associated with its high crystal anionic framework density of not less than about 1.6 grams per cubic centimeter. This high density -of course must be associated with a relatively small amount of free space within the crystal, which might be expected to result in more stable structures. This free space, however, seems to be important as the locus of catalytic activity.
Crystal framework densitites of some typical zeolites including some which are not within the purview this invention are:

11~9965~i Void Fr~mework Zeolite Volume Density ~'errierite 0.28 cc/cc 1.76 g/cc Mordenite .28 1.7 ZSM-5, -11 .29 1.79 Dachiardite .32 1.72 L .,32 1.61 Clinoptilolite .3/-~ 1.71 Laumontite .34 1 77 ZSM-4 (Omega? .38 1 65 Heulandite .39 1.69 P .41 1-57 Offretite .4O 1.55 Levynite .4O 1.54 Erionite .35 1.51 Gmelinite .44 1.46 Chabazite .47 1.45 : A .5 1.3 ; Y .48 1.27 I-t has been noted in the abo.ve-referred to parent application that carbonyl containing lower organic compounds in general convert according to the process of this invention to products comprising aromatic gasoline. It has now been discovered that short chain aldehydes (one or two carbon atoms), carboxylic acids and anhydrides, glycols, glycerin, and carbohydrates, although they do convert to : highly aromatic gasoline, convert in a less satisfactory manner with poorer catalyst cycle life. It has been found, and it is a most important aspect of this invention, that ~30 these difficulty convertible feeds can be converted to : desired product mixtures, particularly highly aromatic full range gasoline, in a synergistically better manner if the conversion is carried out as aforesaid but with a mixture of these difficulty convertible oxygenates and an easily `~ converted oxygenate such as alcohols, ethers, esbers, long chain aldehydes, ketones and their analogues.
The difficulty convertible oxygenate feeds seem to fall into certain categories of organic compounds. This -I

categorization is empirlcal rather than theoretical. As noted, carboxylic acids and anhydrides, carbohydrates such as starch and sugars, lower glycols, glycerin, and other polyols and short chain aldehydes seem to be difficult to convert to a desirable product with an acceptable catalyst life. Organic carboxylic acids of any chain length are difficultly convertible.
Organic oxygenates use~ul in this invention have an empirical formula which can be written:
C Hm_2p P 2 where n is the number of carbon atoms in the moleule, _ is the number of oxygen atoms in the molecule and m is the number of hydrogen atoms in the molecule. Difficultly convertible ~ 15 oxygenates, as the term is used herein, are those in which ! the relation:
R = m-2p is equal to or less than 1. Easily convertible oxygenates, as the term is used herein, are those in which this relation R
is greater than 1.
These criteria are separate and distinct, not ~cumulative. That is if an aliphatic organic oxygenate is either an acid or has value of R up to 1, it is considered to be difficultly convertible. Easily convertible aliphatic organic oxygenates are non-carboxylic acids having a value of R greater than 1. These criteria are ~cumulative in that the compound must satlsfy both criteria. The preferred embodiment of this invention requires the conversion o~ a mixture of .. ..

9~6S~

aliphatic organic oxygenates having a -total cumulatlve value of R o~ greater than a stoichiometric deficiency of carboxylic acids. In a preferred embodiment of this invention, monocarboxylic acids are -the difficultly convert-ible oxygenates and monohydric alcohols are the easily con-verted oxygenates. With a mixture o~ methanol and acetic acid, the feed should have a mole ratio of the former to the latter greater than 1, most preferably greater than 2.
Carrying out this conversion using a mixed feed as aforesaid not only improves the catalyst cycle life and yields of gasoline boiling range, particularly aromatic products obtainable from the difficultly convertible reactant, but it actually increases the yield of gasoline boiling range, partlcularly aromatic products at the expense of the C4 portion of the product usually obtained from the conversion o~ the desirable, e.g. alcoholj reactant. Put more succinctly in perspective, the conversion o~ acetic acid at 500 to 1000F
over a ZSM-5 zeolite will give a product which comprises in the organic portion C4 aliphatics and C5 aromatics and aliphatics. It also cokes and chars the catalyst in a shorter than expected time. The conversion of methanol or dimethyl ether under the same conditions gives excellent yields of hydrocarbon products and exhibits long catalyst life with little coke slowly building up on the catalyst. The hydro-~5 carbon products are predominantly in the gasoline boiling range with some C~ aliphatics.
It would, of course, be desirable to car~y out this conversion in such a manner as to increase the yield of gasoline bolling range hydrocarbons at the expense of the lighter, C~ products. It is truly an unexpected ad-~antage , .,,,,. - - ~' ~:

lU9965~

o~ co-converting lower alcohols and/or ethers e-tc. with acids, lower aldehydes and/or carbohydrates that no-t only is the con- t, ~ersion of these latter compounds improved, but the proportion of the hydrocarbon product which is gasoline as compared to lighter hydrocarbons is significantly increased even with respect to the already high yields of gasoline obtained from alcohol and ether conversion.
It is an important ~eature of this aspect of this invention therefore to co-convert easily converted and dif~icultly converted lower aliphatic organic compounds con- ¦
taining hetero atoms in order to improve the overall yield o~ desired full range gasoline with respect to that which is obtainable from either reactant type alone. In this re~ard, it is an important feature to use mixtures o~ single compounds, e.g. dimethyl ether and acetic acid, as the feed to this process. It is also an important ~eature o~ this invention to use multi-component mixtures~ which contain more t~han one easily converted and/or more than one difficultly converted reactant. In fact, it may be most preferred to 1 20 use a ~ully mixed feed such as that obtained by the controlledpartial oxidation of propane, butane or naphtha in the vapor or liquid phases. Other sources o~ such mixtures o~ various .
light oxygenates include the Fischer-Tropsch process wheren ~nthesis gas, carbon mono~ide and hydrogen, are catalytically converted to a mixture of lower aliphatic organic oxygenated compounds including alcohols, ethers, aldehydes, ketones, etc.
These aspects of this invention will be illustrated by the ~ollowing Examples in which parts and percenta~es are by weight unless expressly stated to be on some other bas-is.
The followlng Table sets ~orth the results obtained in four ~39~56 (4) comparative tests run slde by side under substantially identical conditions. The temperature was 700F; the pressure was 1 Atmosphere, the space velocity was 1 LHSV;
and the catalyst was H-ZSM-5 with 35~ A1203 binder.

:., . :
.
. `

. .
. .

. ... ,.. ~ ... . . , . , .~ . ... . .. ... . .. . ... . . . .

S~; fl 8715 E,xample No 1 2 3 4 ~'eed (Mol %) CH30EI(100) CH30H(80) CH O~I(67) CH oH(80) S-Tri- Acetalde- Ac~tic oxane ~0) hyde (33) Acid (20) Product Dlstribution Hydrocarbons (wt %) 45.66 38.02 46.29 38.72 Oxygenates 0.03 0.11 0.13 0.02 Water 57.76 50.62 50.40 55.72 Carbon oxides 0.25 11.20 2.36 4.44 Hydrogen 0.03 0.05 0.02 0.01 Product Distribution Hydrocarbon portion Methane 0.42 1.99 1.03 1.15 Ethane 0.47 o.84 0.77 o.48 Ethylene 0.45 0.56 o.66 1 18 Propane 15.50 16.46 9.73 5 64 Propylene 1.27 1.16 o.89 0.80 i-Butane 19.16 12.05 7.00 3.40 n-Butane 5-29 3.93 2.96 1.32 Butenes 1.21 0.77 o.87 o.63 i-Pentane 9.40 3.82 3.00 2.30 n-Pentane 1.34 o.66 0.75 0.42 Pentenes 0.19 0.13 0.29 0.33 C6 PON 6.02 2.19 2.7Q 2.47 C7+PON 1.78 o.63 o.98 0.86 Benzene 0~90 1.66 2.23 1.91 Toluene 7.34 10.32 12.92 11.05 Ethylbenzene 0.93 o.80 1.88 2.26 Xylenes 15.57 22.13 26.05 25.64 Ag 9.72 14.45 18.69 26.01 : Alo 2.95 4.93 6.58 10.29 All+ 0.09 0.54 - 1.86 Carbon Selectivity* 99.8 89.2 98.1 96.3 *Carbon in hydrocarbon product x 100 Carbon in feed 1(~99~5~ 1 8715In the following Exa~nple 5, a mixture comprising 57 Cl-C6 alkanols, 3~ C2 Cl~ alkanals, 11% C3-C6 alkanones and 29 C2-C5 alkanoic acids was converted to a mixed hydrocarbon product, as indicated, using an HZSM-5 catalys-t. Conditions 5were 1 Atm. pressure, 1 LHSV, 700F and 3 hours total time on stream.
TOTAL PRODUCT, Wt%
Eydrocarbons 58.14 Oxygenates 0.03 - 10 H 0 39.55 - C2~2 2.93 CO 1.53 2 0.03 102.21 HYDROCARBONS, Wt%
Methane 0.11 Ethane o.68 Ethylene 0.89 Propane 8.74 Prop~lene 1.35 i-Butane 7-5 n-Butane 3.41 Butenes 1.13 i-Pentane 2.76 n-Pentane 1.12 Pe~tenes 0.31 C~ PON 4.25 Benzene 3.30 Toluene 16.48 Ethylbenzene 2.53 Xylene 21.49 Ag 15.3 A 7.59 A + 1.00 ; TOTAL C5+ 76.19 TOTAL AROMATICS 67.75 -20a-

Claims (8)

The embodiments of the invention in which an exclusive property or privilege is claimed is defined as follows:
1. In a process of converting lower aliphatic oxygen containing organic compounds of the empirical formula CnHm-2p?pH2O where n is the number of carbon atoms up to about 8, p is the number of oxygen atoms and m is the number of hydrogen atoms in the feed, to a product comprising water and hydrocarbons, said hydrocarbons containing a preponderance of the carbon of said organic compounds, by contacting such feed with a crystalline aluminosilicate zeolite catalyst having a silica to alumina ratio of at least about 12 and a constraint index of about 1 to 12 at an elevated temperature of at least about 500°F, and a space velocity of about 0.5 to 50 LHSV; the improvement, which comprises providing as said feed a mixture of a difficultly convertible said organic compound having a value of of up to 1 and an easily convertible said organic compound having no carboxylic acid groups and having a value of R greater than 1, said mixture having a cumulative value of R of greater than 1 and a stoichiometric deficiency of carboxylic acid groups, whereby a hydrocarbon product of increased aromaticity is obtained.
2. The improved process claimed in claim 1 wherein said feed mixture comprises at least a carboxylic acid and a monohydric alcohol.
3. The improved process claimed in claim 1 wherein said product hydrocarbons consist essentially of C? light aliphatics and C? full boiling range, highly aromatic gasoline.
4. The improved process claimed in claim 1 wherein said feed comprises as said difficultly convertible compounds at least one member selected from the group consisting of C1 or C2 aldehydes, polyhydric alcohols, carboxylic acids, car-bohydrates and carboxylic acid anhydrides, and as said easily convertible compounds at least one member of the group consisting of alcohols, ethers, ketones, esters of carboxylic acids and C? aldehydes.
5. The improved process claimed in claim 1 carried out at about 600 to 900°F.
6. The improved process claimed in claim 1 using a ZSM-5 zeolite as the catalyst.
7. The improved process claimed in claim 2 wherein said difficultly convertible material is selected from the group consisting of acetic acid, acetaldehyde and a formaldehyde moiety.
8. The improved process claimed in claim 1 including converting a mixture of acetic acid and methanol to a product comprising toluene.
CA254,838A 1973-08-09 1976-06-15 Manufacture of gasoline Expired CA1099656A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US592,434 1975-07-02
US05/592,434 US3998898A (en) 1973-08-09 1975-07-02 Manufacture of gasoline

Publications (1)

Publication Number Publication Date
CA1099656A true CA1099656A (en) 1981-04-21

Family

ID=24370634

Family Applications (1)

Application Number Title Priority Date Filing Date
CA254,838A Expired CA1099656A (en) 1973-08-09 1976-06-15 Manufacture of gasoline

Country Status (2)

Country Link
CA (1) CA1099656A (en)
ZA (1) ZA7603551B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
US7847139B2 (en) 2003-07-15 2010-12-07 Grt, Inc. Hydrocarbon synthesis
US7880041B2 (en) 2004-04-16 2011-02-01 Marathon Gtf Technology, Ltd. Process for converting gaseous alkanes to liquid hydrocarbons
US7883568B2 (en) 2006-02-03 2011-02-08 Grt, Inc. Separation of light gases from halogens
US7998438B2 (en) 2007-05-24 2011-08-16 Grt, Inc. Zone reactor incorporating reversible hydrogen halide capture and release
US8053616B2 (en) 2006-02-03 2011-11-08 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8273929B2 (en) 2008-07-18 2012-09-25 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems
US9206093B2 (en) 2004-04-16 2015-12-08 Gtc Technology Us, Llc Process for converting gaseous alkanes to liquid hydrocarbons

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415512B2 (en) 2001-06-20 2013-04-09 Grt, Inc. Hydrocarbon conversion process improvements
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
US7847139B2 (en) 2003-07-15 2010-12-07 Grt, Inc. Hydrocarbon synthesis
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US7880041B2 (en) 2004-04-16 2011-02-01 Marathon Gtf Technology, Ltd. Process for converting gaseous alkanes to liquid hydrocarbons
US9206093B2 (en) 2004-04-16 2015-12-08 Gtc Technology Us, Llc Process for converting gaseous alkanes to liquid hydrocarbons
US8053616B2 (en) 2006-02-03 2011-11-08 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US7883568B2 (en) 2006-02-03 2011-02-08 Grt, Inc. Separation of light gases from halogens
US8921625B2 (en) 2007-02-05 2014-12-30 Reaction35, LLC Continuous process for converting natural gas to liquid hydrocarbons
US7998438B2 (en) 2007-05-24 2011-08-16 Grt, Inc. Zone reactor incorporating reversible hydrogen halide capture and release
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
US8273929B2 (en) 2008-07-18 2012-09-25 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems

Also Published As

Publication number Publication date
ZA7603551B (en) 1978-01-25
CA1099656A1 (en)

Similar Documents

Publication Publication Date Title
Chang Hydrocarbons from methanol
EP0035807B1 (en) Process for carrying out catalytic conversions
AU625062B2 (en) Olefins interconversion and etherification process
EP0034444B1 (en) Enhancement of zeolite catalytic activity
CA2319791C (en) Zeolite catalyst activity enhancement by aluminum phosphate and phosphorus
EP1656333B1 (en) Production of olefins
US4374296A (en) Isomerization of paraffin hydrocarbons using zeolites with high steam-enhanced acidity
US4347394A (en) Benzene synthesis
CA1140156A (en) Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
US3894106A (en) Conversion of ethers
US4417088A (en) Oligomerization of liquid olefins
EP0259954B1 (en) Process for converting c2 to c12 aliphatics to aromatics over a zinc activated zeolite
CA1088499A (en) Silica modified zeolite catalyst and conversion therewith
CN1066426C (en) Oligomerization and catalyst therefor
Buchanan et al. Mechanistic considerations in acid-catalyzed cracking of olefins
CN100567227C (en) Olefin oligomerization
US7067448B1 (en) Method for production of n-alkanes from mineral oil fractions and catalyst for carrying out said method
US4025571A (en) Manufacture of hydrocarbons
JP4767393B2 (en) Production of olefins
CA1086707A (en) Catalyst and process for selective production of para dialkyl substituted benzenes
US5300695A (en) Process for preparing alcohols
CA1042925A (en) Conversion of synthesis gas to gasoline
US4080395A (en) Selective production of para-xylene by conversion of C3 -C10 paraffin hydrocarbon
Chang et al. Process studies on the conversion of methanol to gasoline
US4899002A (en) Integrated staged conversion of methanol to gasoline and distillate

Legal Events

Date Code Title Description
MKEX Expiry