NO150376B - ELECTRICAL INSULATION MATERIAL BASED ON LD POLYETHYLENE AND ELECTRIC WIRE INSULATED WITH THE SAME - Google Patents
ELECTRICAL INSULATION MATERIAL BASED ON LD POLYETHYLENE AND ELECTRIC WIRE INSULATED WITH THE SAME Download PDFInfo
- Publication number
- NO150376B NO150376B NO772670A NO772670A NO150376B NO 150376 B NO150376 B NO 150376B NO 772670 A NO772670 A NO 772670A NO 772670 A NO772670 A NO 772670A NO 150376 B NO150376 B NO 150376B
- Authority
- NO
- Norway
- Prior art keywords
- polyethylene
- alcohol
- weight
- mixture
- insulation
- Prior art date
Links
- -1 POLYETHYLENE Polymers 0.000 title claims description 72
- 239000004698 Polyethylene Substances 0.000 title claims description 70
- 229920000573 polyethylene Polymers 0.000 title claims description 70
- 239000012772 electrical insulation material Substances 0.000 title claims description 4
- 239000000203 mixture Substances 0.000 claims description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 claims description 20
- 239000004020 conductor Substances 0.000 claims description 13
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 9
- 239000005977 Ethylene Substances 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 150000001336 alkenes Chemical group 0.000 claims description 6
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 claims description 4
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 claims 4
- 238000009413 insulation Methods 0.000 description 31
- 238000012360 testing method Methods 0.000 description 29
- 230000015556 catabolic process Effects 0.000 description 24
- 238000010998 test method Methods 0.000 description 21
- 239000002023 wood Substances 0.000 description 17
- 239000003966 growth inhibitor Substances 0.000 description 15
- 239000000654 additive Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 11
- 229920003020 cross-linked polyethylene Polymers 0.000 description 8
- 239000004703 cross-linked polyethylene Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 6
- 230000000977 initiatory effect Effects 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 150000002978 peroxides Chemical class 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- ACUZDYFTRHEKOS-SNVBAGLBSA-N 2-Decanol Natural products CCCCCCCC[C@@H](C)O ACUZDYFTRHEKOS-SNVBAGLBSA-N 0.000 description 2
- DTDMYWXTWWFLGJ-JTQLQIEISA-N 4-Decanol Natural products CCCCCC[C@@H](O)CCC DTDMYWXTWWFLGJ-JTQLQIEISA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- ACUZDYFTRHEKOS-UHFFFAOYSA-N decan-2-ol Chemical compound CCCCCCCCC(C)O ACUZDYFTRHEKOS-UHFFFAOYSA-N 0.000 description 2
- DTDMYWXTWWFLGJ-UHFFFAOYSA-N decan-4-ol Chemical compound CCCCCCC(O)CCC DTDMYWXTWWFLGJ-UHFFFAOYSA-N 0.000 description 2
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical group [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 150000003333 secondary alcohols Chemical class 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- XOUQAVYLRNOXDO-UHFFFAOYSA-N 6-tert-butyl-m-cresol Natural products CC1=CC=C(C(C)(C)C)C(O)=C1 XOUQAVYLRNOXDO-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- SMWDFEZZVXVKRB-UHFFFAOYSA-N anhydrous quinoline Natural products N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 1
- 150000008365 aromatic ketones Chemical class 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- HEWFKXVSWQSSAT-UHFFFAOYSA-M cyclopenta-1,3-diene;cyclopenta-2,4-dien-1-ylidenemethanolate;iron(2+) Chemical compound [Fe+2].C=1C=C[CH-]C=1.[O-]C=C1C=CC=C1 HEWFKXVSWQSSAT-UHFFFAOYSA-M 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920005638 polyethylene monopolymer Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/441—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Organic Insulating Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Insulated Conductors (AREA)
Description
Denne oppfinnelse angår en blanding på basis av ikke-tverrbundet eller tverrbundet LD-polyethylen, for anvendelse som elektrisk isolasjonsmateriale, særlig for høyspen-ningskabler. Dessuten angår oppfinnelsen en elektrisk leder som er isolert med en slik blanding. Oppfinnelsen tar spesielt sikte på å forbedre motstandsevnen overfor elektrisk sammenbrudd av isolasjonsmateriale bestående av eller fremstilt av blandingen. This invention relates to a mixture based on non-cross-linked or cross-linked LD-polyethylene, for use as electrical insulation material, particularly for high-voltage cables. Furthermore, the invention relates to an electrical conductor which is insulated with such a mixture. The invention is particularly aimed at improving the resistance to electrical breakdown of insulating material consisting of or produced from the mixture.
Elektrisk sammenbrudd av høyspentisolasjon startes ofte ved forurensende partikler. Det er meget vanskelig, om ikke umulig, å ekstrudere fast organisk isolasjon slik som polyethylen på en leder uten at det oppstår mangler. Selv om polyethylenfabrikanten er meget nøye med renhetskravene under fremstillingen, kan forurensninger senere innføres i etterføl-gende håndtering av harpiksen før den endelige forming. En annen årsak til elektrisk sammenbrudd i isolasjon er nærvær av hulrom. Electrical breakdown of high-voltage insulation is often initiated by polluting particles. It is very difficult, if not impossible, to extrude solid organic insulation such as polyethylene onto a conductor without defects occurring. Although the polyethylene manufacturer is very careful about the purity requirements during production, contaminants can later be introduced in the subsequent handling of the resin before the final molding. Another cause of electrical breakdown in insulation is the presence of voids.
Høyspentkabler isolert med isolerende polymerer er utsatt for dieléktrisk nedbrytning ved en mekanisme kjent i faget som elektrisk "trevekst". Trevekst er en relativt lang-somtøkende nedbrytning av en isolasjon bevirket av elektron- High voltage cables insulated with insulating polymers are subject to dielectric breakdown by a mechanism known in the art as electrical "wood growth". Wood growth is a relatively long-progressive breakdown of an insulation caused by electron-
og ionebombardement av isolasjonen, resulterende i dannelse av mikrokanaler med et trelignende utseende, derav navnet. Et tre initieres ved punkter av forurensning eller hulrom som er fremmede for den polymere isolasjon, ved ioniseringsvirkning (corona) under høyspenningsbølger. Såsnart et tre er dannet, vokser det vanligvis, i særdeleshet under ytterligere høyspen-ningsbølger, og etter en viss tid kan dieléktrisk sammenbrudd finne sted. and ion bombardment of the insulation, resulting in the formation of microchannels with a tree-like appearance, hence the name. A tree is initiated at points of contamination or voids that are foreign to the polymeric insulation, by ionization action (corona) under high voltage waves. Once a tree is formed, it usually grows, particularly under further high voltage waves, and after a certain time dielectric breakdown can occur.
For å overvinne dette problem har forskjellige additiver vært foreslått, særlig i polyethylen eller andre poly-olefiner, som krever enøkning i den påtrykte spenning for å bevirke initiering av et tre. Denne anvendelse av et additiv har til hensikt å forhindre sammenbrudd av isolasjonen ved å forhindre enhver dannelse av trær. To overcome this problem, various additives have been proposed, particularly in polyethylene or other polyolefins, which require an increase in the applied voltage to effect the initiation of a tree. This use of an additive is intended to prevent the breakdown of the insulation by preventing any formation of trees.
Maloney beskriver i US patentskrift 3 499 791 et belegg for en elektrisk høyspenningskabel omfattende en poly-ethylenharpiks som inneholder et uorganisk ionesalt av en sterk syre og en sterk Zwitter-ioneforbindelse. En isolert'kabel gir fasthet overfor elektrisk nedbrytning og spennings-nedbrytning under innflytelse av corona. Maloney in US Patent 3,499,791 describes a coating for a high voltage electric cable comprising a polyethylene resin containing an inorganic ion salt of a strong acid and a strong Zwitter ion compound. An insulated cable provides resistance to electrical breakdown and voltage breakdown under the influence of corona.
Kato et al. beskriver i US patentskrift 3 956 420 isolasjon med forbedret elektrisk nedbrytningsfasthet omfattende polyolefin, en ferrocenforbindelse og en substituert kinolinforbindelse. I patentskriftet er der også angitt ytterligere bruk av en liten mengde av en flerverdig alkohol, dis-pergeringsmiddel, overflateaktivt middel eller umettet polymer eller blandinger derav for å oppnå en annen forbedring i den elektriske nedbrytningsstyrke. Kato et al. describes in US Patent 3,956,420 insulation with improved electrical breakdown strength comprising polyolefin, a ferrocene compound and a substituted quinoline compound. In the patent there is also indicated the further use of a small amount of a polyhydric alcohol, dispersant, surfactant or unsaturated polymer or mixtures thereof to achieve another improvement in the electrical breakdown strength.
MacKenzie, Jr. beskriver i US patentskrift 3 795 646 et ethylenholdig polymermateriale som oppviser forbedret ioni-seringsfasthet under høyspentbelastning, ved anvendelse av en siliconvæske i et tverrbundet polyethylenmateriale. MacKenzie, Jr. describes in US patent document 3,795,646 an ethylene-containing polymer material which exhibits improved ionization resistance under high-voltage loading, by using a silicone liquid in a cross-linked polyethylene material.
Japansk patentskrift 14348/75 angår wirekabler med forbedret dieléktrisk nedbrytningsfasthet tilveiebragt av en isolasjon av polyethylen inneholdende 0,1 vekt% av et aromatisk keton. Japanese patent document 14348/75 relates to wire cables with improved dielectric breakdown strength provided by an insulation of polyethylene containing 0.1% by weight of an aromatic ketone.
Tysk patentskrift 2 147 684 angir en økning av den elektriske nedbrytningsfasthet til polymerer, spesielt polyethylen, ved modifisering av den frie vei for ladningsbærere (elektroner) ved innarbeidelse av ytterligere spredningssentre eller ved reduksjon av polymerens krystallinitet. German patent document 2 147 684 indicates an increase in the electrical breakdown resistance of polymers, especially polyethylene, by modifying the free path for charge carriers (electrons) by incorporating additional scattering centers or by reducing the polymer's crystallinity.
Japansk patentsøknad 7 201 988 beskriver isolerte kraftkabler med forbedret nedbrytningsfasthet ved at der tilveiebringes et isolert lag av polyethylen, polypropylen, poly-carbamat eller polyester inneholdende glimmerpartikler belagt med hydrofobt isolasjonsmateriale av siliconolje, stearinsyre, palmitinsyre eller oljesyre. Japanese patent application 7 201 988 describes insulated power cables with improved degradation resistance by providing an insulated layer of polyethylene, polypropylene, poly-carbamate or polyester containing mica particles coated with hydrophobic insulating material of silicone oil, stearic acid, palmitic acid or oleic acid.
Japansk patentskrift 49/119 937 beskriver elektriske isolasjonsharpiksmaterialer som gir enøkning i' den dielektriske nedbrytningsspenning ved at der i et harpiksmateriale slik som polyethylen, er iblandet en ferrocen-aldehyd(eller keton)polymer som har ferrocengrupper eller en blanding av den ferrocen-holdige polymer og en høyere alkohol. Japanese patent document 49/119 937 describes electrical insulation resin materials which give an increase in the dielectric breakdown voltage by mixing in a resin material such as polyethylene a ferrocene-aldehyde (or ketone) polymer which has ferrocene groups or a mixture of the ferrocene-containing polymer and a higher alcohol.
Det har nu vist seg at det ved innlemmelse av mindre mengder av visse alkoholer i LD-polyethylen fåes blandinger som, anvendt som isolasjonsmateriale, oppviser markert forbedret motstandsevne mot elektrisk sammenbrudd. It has now been shown that by incorporating smaller amounts of certain alcohols into LD-polyethylene, mixtures are obtained which, when used as insulating material, show markedly improved resistance to electrical breakdown.
I henhold til oppfinnelsen tilveiebringes det således en blanding basert på ikke-tverrbundet eller tverrbundet LD-polyethylen for anvendelse som elektrisk isolasjonsmateriale, særlig for høyspenningskabler, hvilket polyethylen inneholder minst 85% polymeriserte ethylen-enheter og minst 95 vekt% polymeriserte olefin-enheter. Blandingen utmerker According to the invention, a mixture based on non-crosslinked or crosslinked LD polyethylene is thus provided for use as electrical insulation material, particularly for high voltage cables, which polyethylene contains at least 85% polymerized ethylene units and at least 95% by weight polymerized olefin units. The mixture excels
seg ved at den består av LD-polyethylen og fra 0,5 til 10 vekt%, beregnet på polyethylenet, av minst én rettkjedet eller ikke rettkjedet énverdig alifatisk alkohol med 6-24 carbonatomer. characterized in that it consists of LD polyethylene and from 0.5 to 10% by weight, calculated on the polyethylene, of at least one straight-chain or non-straight-chain monovalent aliphatic alcohol with 6-24 carbon atoms.
Likeledes tilveiebringes det i henhold til oppfinnelsen en elektrisk leder som er isolert med en blanding som oven-for angitt. Likewise, according to the invention, an electrical conductor is provided which is insulated with a mixture as indicated above.
En akselerert testprosedyre som angis her som testmetode A, viser at tilstedeværelse av alkoholen inhiberer elektrisk trevekst (men ikke tredannelse) og resulterer i minst en tusenfold økning av polyethylenets elektriske motstandskraft. Testen er antatt å gi en direkte korrelasjon med langtids elektrisk motstandskraft for isolasjonen på en leder, dvs. en øket brukstid for isolasjonen -når denne anvendes for sitt beregnede formål. An accelerated test procedure designated here as Test Method A shows that the presence of the alcohol inhibits electrical wood growth (but not wood formation) and results in at least a thousandfold increase in the electrical resistance of the polyethylene. The test is believed to give a direct correlation with long-term electrical resistance for the insulation on a conductor, i.e. an increased service life for the insulation - when it is used for its intended purpose.
Som anvendt i foreliggende beskrivelse er uttrykket "polyethylen" begrenset til en homopolymer eller en copolymer inneholdende ikke mindre enn 85 vekt% ethylenpolymeriserte enheter, og ikke mindre enn 95 vekt% olefinpolymeriserte enheter. Disse polymerer vil stemme overens med definisjonen for "polyethylenplaster" som definert i 1976 Annual Book of ASTM Standards, del 36, side 70 som "plaster eller harpikser fremstilt ved polymerisasjon av ikke mindre enn 85% ethylen og ikke mindre enn 95 vekt% totale olefiner". Et foretrukket polyethylen inneholder ca. 100 vekt% ethylenpolymeriserte enheter. As used herein, the term "polyethylene" is limited to a homopolymer or a copolymer containing not less than 85% by weight ethylene polymerized units, and not less than 95% by weight olefin polymerized units. These polymers will conform to the definition for "polyethylene plastics" as defined in the 1976 Annual Book of ASTM Standards, Part 36, page 70 as "plastics or resins prepared by the polymerization of not less than 85% ethylene and not less than 95% by weight total olefins ". A preferred polyethylene contains approx. 100% by weight ethylene polymerized units.
Egnede olefiner som kan anvendes som comonomerer, innbefatter propylen, buten-1, hexen-, octen-1 og decen-1. Andre comonomerer innbefatter norbornen, butadien, styren, methacrylsyre, vinylacetat, ethylacrylat, isobutylacrylat, og methylvinylether. LD-polyethylen er egnet for anvendelse i blandingen ifølge foreliggende oppfinnelse. HD-polyethylen er ikke egnet, fordi det ved anvendelse av HD-polyethylen oppnås liten eller ingen forbedring, og slett ingen tusenfold forbedring, i den elektriske motstandskraft etter tilsetning av en alkohol som spesifisert her. "LD" (low density) angir et polyethylen som har en densitet på opptil 0,92 g/cm 3. Det henvises til ASTM Suitable olefins which can be used as comonomers include propylene, butene-1, hexene-, octene-1 and decene-1. Other comonomers include norbornene, butadiene, styrene, methacrylic acid, vinyl acetate, ethyl acrylate, isobutyl acrylate, and methyl vinyl ether. LD polyethylene is suitable for use in the mixture according to the present invention. HD polyethylene is not suitable, because when HD polyethylene is used, little or no improvement, and no thousand-fold improvement at all, is achieved in the electrical resistance after the addition of an alcohol as specified here. "LD" (low density) indicates a polyethylene that has a density of up to 0.92 g/cm 3. Reference is made to ASTM
D 1248-74 for uttrykket "LD". D 1248-74 for the expression "LD".
I tillegg er stivheten av en isolasjon en faktor som må taes i betraktning ved valg av polyethylen for enkelte anven-delser, f.eks. er fleksibilitet nødvendig i en kraftlednings-kabel. In addition, the stiffness of an insulation is a factor that must be taken into account when choosing polyethylene for certain applications, e.g. flexibility is required in a power line cable.
Det nødvendige additiv til LD-polyethylenet er en alifatisk, énverdig alkohol med 6-24 carbonatomer, og for-trinnsvis 8-12 carbonatomer. Alkoholene kan være rettkjedede eller forgrenede. Egnede eksempler er n-hexyl, n-heptyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, stearyl og eicosyl-alkoholer, 2-decanol, 4-decanol, cyclohexanol, 3-methylhepta-nol-3, 2-methyloctanol-2 og lignende. De alkoholer som er nyttige, er i denne beskrivelse også angitt som "trevekstinhibitorer". The necessary additive to the LD polyethylene is an aliphatic, monohydric alcohol with 6-24 carbon atoms, and preferably 8-12 carbon atoms. The alcohols can be straight chain or branched. Suitable examples are n-hexyl, n-heptyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, stearyl and eicosyl alcohols, 2-decanol, 4-decanol, cyclohexanol, 3-methylhepta-nol-3 , 2-methyloctanol-2 and the like. The alcohols which are useful are also referred to in this description as "wood growth inhibitors".
Alkoholen kan tilsettes på en hvilken som helst kon-' vensjonell måte, innbefattet blanding med det faste polyethylen før ekstrudering, innsprøytning i smeltet polyethylen, og dif-fusjon inn i fast polyethylen av alkohol påført ved sprøytning, neddykning eller dampkontakt. The alcohol may be added in any conventional manner, including mixing with the solid polyethylene prior to extrusion, injection into molten polyethylene, and diffusion into solid polyethylene of alcohol applied by spraying, immersion, or vapor contact.
En testmetode, testmetode A, for bestemmelse av hvorvidt et additiv er egnet til å øke den elektriske mot- - standskraft minst tusen ganger, gjør bruk av ikke-tverrbundetLD-polyethylen og utelukker anvendelse av et peroxydtverrbindingsmiddel. Da omdannelse av ikke-tverrbundet polyethylen til tverrbundet polyethylen ved bruk av et peroxydtverrbindingsmiddel kan resultere i en økning av den elektriske.motstandskraft, kan tilsetning av et peroxydtverrbindingsmiddel maskere til en viss grad forbedringen som bibringes av trevekstinhibitoren. En modifisering av testmetode A slik at den kan gjøre bruk av tverrbundet polyethylen, har imidlertid vist seg å være tilfredsstillende som en utvelgelsesteknikk for å vise h<y>orvidt noen forbedring av den elektriske motstandskraft oppnås ved tilsetning av et additiv. En slik modifisering av testmetode A er imidlertid ikke tilstrekkelig i alle tilfeller til å bestemme om minst en tusenfold forbedring av den elektriske motstandsevne finner sted. One test method, test method A, for determining whether an additive is suitable to increase the electrical resistivity at least a thousand times, makes use of non-crosslinked LD polyethylene and excludes the use of a peroxide crosslinking agent. Since conversion of non-crosslinked polyethylene to crosslinked polyethylene using a peroxide crosslinker can result in an increase in electrical resistivity, the addition of a peroxide crosslinker can mask to some extent the improvement provided by the wood growth inhibitor. However, a modification of Test Method A to make use of cross-linked polyethylene has been found to be satisfactory as a selection technique to show whether any improvement in electrical resistivity is achieved by the addition of an additive. However, such a modification of test method A is not sufficient in all cases to determine whether at least a thousandfold improvement in the electrical resistivity takes place.
I testmetode A er initiering av et tre nødvendig i In test method A, initialization of a tree is required i
en isolasjonsprøve. Tverrbundet polyethylen tillater visuell inspeksjon av et tre. I motsetning til dette er ikke-tverrbundet polyethylen opakt og tillater ikke visuell bestemmelse av et tre uten kutting i polyethylenet. I testmetode A, hvor der gjøres bruk av ikke-tverrbundet polyethylen, er det derfor vanligvis nødvendig å anvende flere prøver og ødelegge en av prøvene for å bestemme om et tre er blitt dannet under begyn-nelsesspenningbetingelsene. an insulation test. Cross-linked polyethylene allows visual inspection of a tree. In contrast, non-crosslinked polyethylene is opaque and does not allow visual determination of a tree without cutting into the polyethylene. Therefore, in test method A, where non-crosslinked polyethylene is used, it is usually necessary to use several samples and destroy one of the samples to determine whether a tree has formed under the initial stress conditions.
Den mest foretrukne blanding ifølge oppfinnelsen inneholder ikke-tverrbundet LD-polyethylen, et peroxyd-tverrbindingsmiddel og en trevekstinhibitor bestående av minst én énverdig, alifatisk alkohol med 8-12 carbonatomer. Denne mest foretrukne blanding er en forløper for et isolasjonsmateriale inneholdende tverrbundet polyethylen. The most preferred mixture according to the invention contains non-crosslinked LD-polyethylene, a peroxide crosslinking agent and a wood growth inhibitor consisting of at least one monovalent, aliphatic alcohol with 8-12 carbon atoms. This most preferred mixture is a precursor for an insulating material containing cross-linked polyethylene.
Konvensjonelle peroxyd-tverrbindingsmidler som er velkjente i faget for tverrbinding av polyethylen, kan anvendes her, og innbefatter di-a-cumylperoxyd, 2,5-bis-(t-butylperoxy)-2,5-dimethylhexan, 2,5-dimethyl-2,5-di-(t-butylperoxy)-hexyn-3, etc. Conventional peroxide crosslinking agents well known in the art for crosslinking polyethylene can be used herein and include di-α-cumyl peroxide, 2,5-bis-(t-butylperoxy)-2,5-dimethylhexane, 2,5-dimethyl- 2,5-di-(t-butylperoxy)-hexyne-3, etc.
Hvis et peroxyd-tverrbindingsmiddel er oppløselig i alkoholen, kan dette middel oppløses i alkoholen, og begge tilsettes til polyethylenet. Polyethylenet inneholdende disse additiver tverrbindes normalt ikke før etter påføring på en elektrisk leder. If a peroxide cross-linking agent is soluble in the alcohol, this agent can be dissolved in the alcohol and both added to the polyethylene. The polyethylene containing these additives is not normally cross-linked until after application to an electrical conductor.
For det formål å gi en forklaring, dog uten å være. bundet til noen teori vedrørende måten hvorpå alkoholen virker som trevekstinhibitor, er det å si at alkoholen har evne til å diffundere gjennom LD-polyethylen og inn i hulrom i isolasjonen. Trevekst i isolasjonen følger dannelsen av mikrokanaler og gir et trelignende utseende. Trevekst vil vanligvis fortsette inntil dieléktrisk sammenbrudd av isolasjonen finner sted. I foreliggende tilfelle er det imidlertid antatt at alkoholen diffunderer inn i hulrommene og hindrer elektron- og ionebombardement. Inhibering av trevekst etter initiering bevirker en økning av isolasjonens elektriske motstandskraft og holdbarhet. For the purpose of giving an explanation, though without being. tied to some theory regarding the way in which the alcohol acts as a wood growth inhibitor, it is to say that the alcohol has the ability to diffuse through the LD polyethylene and into cavities in the insulation. Wood growth in the insulation follows the formation of microchannels and gives a wood-like appearance. Wood growth will usually continue until dielectric breakdown of the insulation takes place. In the present case, however, it is assumed that the alcohol diffuses into the cavities and prevents electron and ion bombardment. Inhibition of wood growth after initiation causes an increase in the insulation's electrical resistance and durability.
Det underliggende formål ved testprosedyren er å etterligne en mekanisme som bevirker dieléktrisk sammenbrudd. The underlying purpose of the test procedure is to mimic a mechanism that causes dielectric breakdown.
I praksis initieres vanligvis tre i kraftkabler under høyspen-nihgsbølger, f.eks. på grunn av koblingstransienter, lynnedslag etc. Deretter kan sammenbrudd av isolasjonen oppstå ved normal driftsspenning, eller særlig under ytterligere høyspennings-bølger. I blandingen ifølge oppfinnelsen vil en alkohol som virker inhiberende for treveksten, forlenge isolasjonens brukstid ved at den inhiberer vekst av trær etter initiering av disse og forhindrer for tidlig sammenbrudd av isolasjonen. In practice, three are usually initiated in power cables under high-voltage waves, e.g. due to switching transients, lightning strikes, etc. Then breakdown of the insulation can occur at normal operating voltage, or especially during further high-voltage waves. In the mixture according to the invention, an alcohol which has an inhibitory effect on tree growth will extend the useful life of the insulation by inhibiting the growth of trees after their initiation and preventing premature breakdown of the insulation.
Til forskjell fra konvensjonelle testprosedyrer innen faget, som bestemmer den dielektriske styrke av en isolasjon, er testmetode A ansett å gi en korrelasjon til brukstiden for isolasjonen. I denne sistnevnte test vil en høy vekselspenning som i begynnelsen påføres over elektroder anbragt i isolasjonen, , bevirke treinitiering uten resulterende sammenbrudd av isolasjonen. Denne treinitiering etterfølges av en hvileperiode under hvilken ingen spenning påtrykkes i minst ca. 24 timer. Deretter måles tiden inntil sammenbrudd av isolasjonen med 12 000 volt påtrykket mellom elektroder adskilt med 2 mm, dvs. en midlere elektrisk spenning, hvis feltet var jevnt, på 6 000 volt/mm (som beskrevet i testmetode A). Feltet intensiveres imidlertid som et resultat av de små diametre av elektrodenes formede ender, til en verdi større enn 6 000 volt/mm. In contrast to conventional test procedures in the field, which determine the dielectric strength of an insulation, test method A is considered to give a correlation to the service life of the insulation. In this latter test, a high alternating voltage which is initially applied across electrodes placed in the insulation, will cause tree initiation without resulting breakdown of the insulation. This tree initiation is followed by a rest period during which no voltage is applied for at least approx. 24 hours. Then the time until breakdown of the insulation is measured with 12,000 volts applied between electrodes separated by 2 mm, i.e. an average electric voltage, if the field was uniform, of 6,000 volts/mm (as described in test method A). However, the field is intensified as a result of the small diameters of the shaped ends of the electrodes, to a value greater than 6,000 volts/mm.
Den akselererte test for bestemmelse av den elektriske motstandskraft, er antatt å gi en nyttig korrelasjon til den forlengede levetid til isolasjon som anvendes i lengre tid, f.eks. minst 30 år. Det er naturligvis upraktisk å foreta en slik langvarig testing. Bare relativt få prøver vil også i virkeligheten svikte ved langtidstesting, og en statistisk undersøkelse ville være nødvendig. Med nærvær av alkoholen i en blanding bestående hovedsakelig av LD-polyethylen er det antatt at ved normal bruk vil ingen svikt basert på dieléktrisk sammenbrudd av polyethylenet finne sted. The accelerated test for determining the electrical resistance is believed to provide a useful correlation to the extended lifetime of insulation used for a longer time, e.g. at least 30 years. It is naturally impractical to carry out such a long-term test. Only relatively few samples will actually fail in long-term testing, and a statistical investigation would be necessary. With the presence of the alcohol in a mixture consisting mainly of LD polyethylene, it is assumed that in normal use no failure based on dielectric breakdown of the polyethylene will occur.
Testen for bestemmelse av en økning i den elektriske motstandskraft er angitt som testmetode A og omfatter følgende: The test for determining an increase in the electrical resistance is specified as test method A and includes the following:
T estmetode A Test method A
Polyethylen for testing ifølge denne metode støpes først i en blokk angitt her som en "SPING" (som er en forkor- telse for "solid phase internal needle gap specimen"). En SPING er kvadratisk med sidekant 25 mm og er 6 mm tykk, og den inneholder to elektroder innstøpt deri på langs og på linje, med lik avstand fra flatene og fra motsatte kanter, med spis-sene 2 mm fra hverandre ved blokkens senter. Hver elektrode er ca. 3 0 mm lang og ca. 0,6 mm i "diameter. Den ene av elektrodene har en konusformet spiss med en vinkel på 3 0° og en radius på 5 ym og er høyspenningselektroden; den annen elektrode har en halvkule med radius på 0,3 mm jordet i den ene ende og er jordingselektroden. Polyethylene for testing according to this method is first cast in a block indicated here as a "SPING" (which is an abbreviation for "solid phase internal needle gap specimen"). A SPING is square with a side edge of 25 mm and is 6 mm thick, and it contains two electrodes embedded in it lengthwise and in line, equidistant from the faces and from opposite edges, with the tips 2 mm apart at the center of the block. Each electrode is approx. 30 mm long and approx. 0.6 mm in "diameter. One of the electrodes has a conical tip with an angle of 30° and a radius of 5 ym and is the high voltage electrode; the other electrode has a hemisphere of radius 0.3 mm grounded in one end and is the grounding electrode.
Minst fem SPINGS anvendes ved testen samtidig. Hver ■ SPING anbringes under siliconolje, som forhindrer overflate-overslag. Høyspenningselektroden kobles til en høyspennings-skinne, mens jordingselektroden kobles til et adskilt par av 6,25 cm's kuler koblet til jord gjennom en 1 megaohm motstand. En tilstrekkelig bred spalte anordnes mellom kulene for å oppnå en spenning tilstrekkelig til å initiere et tre i SPING'en. Med f.eks. kulene anordnet med en spalte på 0,76 2 cm påføres en spenning (60 Hz) økende med en hastighet på 500 volt/sek inntil en utladning finner sted mellom de to kuler. Før dette gjennomslag finner sted, er spenningen på prøvestykket hovedsakelig lik null. I detøyeblikk luftspalten brytes ned, påtrykkes imidlertid den påførte spenning plus et radiofrek-venssignal fremkalt av buen over prøvestykkeelektrodene og opprettholdes 1-2 sekunder, slik at et tre utvikles. Den spenning som er nødvendig for å initiere et tre, vil variere med blandingen som testes. For en blanding av LD-polyethylen og en alkohol ifølge foreliggende oppfinnelse er en spenning på 35-40 kV nødvendig. For LD-polyethylen som inneholder andre additiver, kan den nødvendige spenning være høyere eller lavere, men den spenning som skal anvendes, kan lett bestemmes ved visuell undersøkelse av hvert prøvestykke for å se hvorvidt et tre er initiert. At least five SPINGS are used in the test at the same time. Each ■ SPING is placed under silicone oil, which prevents surface spillage. The high voltage electrode connects to a high voltage rail, while the ground electrode connects to a separate pair of 6.25 cm balls connected to ground through a 1 megohm resistor. A sufficiently wide gap is arranged between the balls to achieve a voltage sufficient to initiate a tree in the SPING. With e.g. the spheres arranged with a gap of 0.76 2 cm is applied a voltage (60 Hz) increasing at a rate of 500 volts/sec until a discharge takes place between the two spheres. Before this penetration takes place, the stress on the test piece is essentially equal to zero. However, at the moment the air gap breaks down, the applied voltage plus a radio frequency signal produced by the arc is applied across the test piece electrodes and maintained for 1-2 seconds, so that a tree develops. The voltage required to initiate a tree will vary with the mixture being tested. For a mixture of LD polyethylene and an alcohol according to the present invention, a voltage of 35-40 kV is necessary. For LD polyethylene containing other additives, the required tension may be higher or lower, but the tension to be applied can be easily determined by visual examination of each test piece to see if a tree has been initiated.
Etterat treet er initiert holdes SPING'en uten påtrykket spenning i ca. 24 timer før den anbringes i en høyspenning på 12 000 volt påtrykt mellom elektrodene (en midlere påtrykt spenning på 6 000 volt/mm). Tiden i timer før gjennomsnitts-prøven svikter (f.eks. den tredje av fem, den femte av ni, regnet i tid frem til svikt) måles og betegnes som den elektriske motstandskraft. After the tree has been initiated, the SPING is held without applied voltage for approx. 24 hours before placing it in a high voltage of 12,000 volts applied between the electrodes (an average applied voltage of 6,000 volts/mm). The time in hours before the average sample fails (e.g. the third out of five, the fifth out of nine, counted in time until failure) is measured and referred to as the electrical resistance.
Svikt indikeres ved dieléktrisk gjennomslag. Når svikt oppstår, vil et tre forbinde de to elektroder og resultere i en plutselig økning i strømstyrken (som kan måles på et nedskrivende amperemeter) som avslutter testen for dette prøve-stykkes vedkommende. Failure is indicated by dielectric breakdown. When failure occurs, a tree will connect the two electrodes and result in a sudden increase in amperage (which can be measured on a recording ammeter) which terminates the test for that specimen.
Trevekstinhibitoren som anvendes i henhold til foreliggende oppfinnelse virker på en annen måte enn kjente additiver når det gjelder å oppnå et forbedret resultat. De tidli-gere kjente additiver er generelt angitt som forbindelser som, når de er innarbeidet i polyethylen eller andre egnede isola-sjonsmaterialer, vil kreve en høyere karakteristisk spenning for å initiere et tre ved en nålespiss. (Ved disse metoder anvendes generelt en skarp nålespiss innstøpt i prøven. Måten hvorpå en annen elektrode er tilstede varierer.) Den karakte-ristiske spenning er den spenning hvori halvparten av prøvene ved testen vil initiere et tre innen én time. Denne bestemmes ved undersøkelse av flere grupper av prøvestykker ved flere forskjellige spenninger. Testen avsluttes når den karakteris-tiske spenning er funnet. .Formålet med en trevekstinhibitor er ikke å forhindre treinitieringen, men kun å undertrykke veksten av et tre etterat dette er initiert. The wood growth inhibitor used according to the present invention works in a different way than known additives when it comes to achieving an improved result. The previously known additives are generally designated as compounds which, when incorporated into polyethylene or other suitable insulating materials, will require a higher characteristic voltage to initiate a tree at a needle tip. (These methods generally use a sharp needle tip embedded in the sample. The manner in which another electrode is present varies.) The characteristic voltage is the voltage at which half of the samples in the test will initiate a tree within one hour. This is determined by examining several groups of test pieces at several different voltages. The test ends when the characteristic voltage is found. .The purpose of a tree growth inhibitor is not to prevent tree initiation, but only to suppress the growth of a tree after this has been initiated.
Selv om blandingen ifølge oppfinnelsen hovedsakelig utgjøres av LD-polyethylen og en alkohol, skal det forståes at andre konvensjonelle additiver kan være, og normalt er tilstede i blandingen. Disse additiver innbefatter antioxydanter, f.eks. polymerisert trimethyldihyclrokinon, smøremidler, f.eks. kalsiumstearat, pigmenter, f.eks. titandioxyd, fyllstoffer, f.eks. glasspartikler, og forsterkningsmidler, f.eks. fiber-materialer slik som asbest og glassfibre, etc. Although the mixture according to the invention mainly consists of LD polyethylene and an alcohol, it should be understood that other conventional additives can be, and are normally present in the mixture. These additives include antioxidants, e.g. polymerized trimethyldichloroquinone, lubricants, e.g. calcium stearate, pigments, e.g. titanium dioxide, fillers, e.g. glass particles, and reinforcements, e.g. fiber materials such as asbestos and glass fibres, etc.
Selv om en isolasjon av ikke-tverrbundet LD-polyethylen eller tverrbundet LD-polyethylen inneholdende en trevekstinhibitor er særlig egnet for en kraftkabel beregnet for en spenning på minst 15 kV, f.eks. 15-220 kV, er den likeledes egnet for lavere eller høyere spenninger. I en elektrisk kabel vil der i samsvar med teknikkens stand være anbragt et halvledende lag mellom en elektrisk leder og et isolasjonslag. Et slikt halvledende lag innbefatter vanligvis et isolerende materiale som også inneholder carbon black. Although an insulation of non-crosslinked LD-polyethylene or cross-linked LD-polyethylene containing a wood growth inhibitor is particularly suitable for a power cable intended for a voltage of at least 15 kV, e.g. 15-220 kV, it is also suitable for lower or higher voltages. In an electric cable, in accordance with the state of the art, a semi-conductive layer will be placed between an electric conductor and an insulation layer. Such a semi-conductive layer usually includes an insulating material which also contains carbon black.
De følgende eksempler illustrerer oppfinnelsen: The following examples illustrate the invention:
Isolasjonsblanding for kontroll A og eks. 1- 4 Insulation mixture for control A and ex. 1- 4
(A) LD-polyethylen: Homopolymer (A) LD polyethylene: Homopolymer
Smelteindeks (ASTM D-1238) 1,8 g pr. 10 minutter Melt index (ASTM D-1238) 1.8 g per 10 minutes
Densitet 0,918 g pr. cm 3 (målt i henhold til ASTM Density 0.918 g per cm 3 (measured according to ASTM
D-1505-68 (reapprobert 1975)) D-1505-68 (Reapprove 1975))
(B) Antioxydant: 4,4<1->thiobis-(6-tert-butyl-m-cresol), 1500 ppm (C) Trevekstinhibitor: n-dodecylalkohol, unntatt for kont- troll A (B) Antioxidant: 4,4<1->thiobis-(6-tert-butyl-m-cresol), 1500 ppm (C) Tree growth inhibitor: n-dodecyl alcohol, except for cont- troll A
Eksempler 1 og 2 Examples 1 and 2
I eksempel 1 ble n-dodecylalkohol tilsatt til LD-polyethylenpellets ved trommelblanding etterfulgt av ekstruderingsblanding. I eksempel 2 ble n-dodecylalkoholen innsprøy-tet under anvendelse av en tannhjulspumpe i smeltet LD-polyethylen i ekstruderens blandesone. I hvert av eksemplene 1 og 2 var sluttkonsentrasjonen av n-dodecylalkoholen 3 vekt% i polyethylenet, målt ved IR-spektrometri. Ni SPINGS ble fremstilt for hvert eksempel og anvendt ved testmetode A. In Example 1, n-dodecyl alcohol was added to LD polyethylene pellets by drum mixing followed by extrusion mixing. In example 2, the n-dodecyl alcohol was injected using a gear pump into molten LD polyethylene in the mixing zone of the extruder. In each of Examples 1 and 2, the final concentration of the n-dodecyl alcohol was 3% by weight in the polyethylene, measured by IR spectrometry. Nine SPINGS were prepared for each example and used by test method A.
De ni SPINGS i eksempler 1 og 2 ble tatt ut av testen uten at noen hadde sviktet etter henholdsvis 1960 timer og 1730 timer. Den elektriske motstandskraft ville således være over henholdsvis 1960 og 1730 timer. The nine SPINGS in examples 1 and 2 were taken out of the test without any having failed after 1960 hours and 1730 hours respectively. The electrical resistance would thus be over 1960 and 1730 hours respectively.
Fortsatt testing av de samme SPINGS ble utført. De ni SPINGS for eksempler 1 og 2 ble senere tatt ut av testen uten at noen hadde sviktet etter totalt 4000 timer. I hvert tilfelle ville den elektriske motstandskraft således være over 4000 timer. Further testing of the same SPINGS was carried out. The nine SPINGS for examples 1 and 2 were later withdrawn from the test without any failure after a total of 4000 hours. In each case, the electrical resistance would thus be over 4000 hours.
Sammenligning av eksempler 1 og 2 med kontroll A viser at økningen i den .elektriske motstandskraft ville være godt over en tusenfold. Comparison of examples 1 and 2 with control A shows that the increase in the electrical resistance would be well over a thousandfold.
Eksempler 3 o g 4 Examples 3 and 4
Også i disse eksempler var additivet n-dodecylalkohol i en konsentrasjon på ca. 3 vekt% i LD-polyethylenet som målt ved IR-spektrometri. I eksempel 3 ble polyethylenet blandet med alkoholen i en Banbury-blander, mens blandingen i eksempel 4 ble utført i en Brabender-blander. Ni SPINGS ble fremstilt av blandingen i hvert eksempel og testet ved testmetode A., Alle SPINGS ifølge eksempel 3 ble fjernet fra testen etter 850 timer, mens alle SPINGS ifølge eksempel 4 ble fjernet fra testen etter 720 timer. Ingen SPINGS hadde sviktet hverken i eksempel 3 eller 4.. Den elektriske motstandskraft var således større enn 850 og 720 timer. Økningen i elektrisk motstandskraft sammenlignet med kontroll A var over en tusenfold. Also in these examples, the additive n-dodecyl alcohol was in a concentration of approx. 3% by weight in the LD polyethylene as measured by IR spectrometry. In Example 3, the polyethylene was mixed with the alcohol in a Banbury mixer, while the mixing in Example 4 was carried out in a Brabender mixer. Nine SPINGS were prepared from the mixture in each example and tested by Test Method A. All SPINGS according to Example 3 were removed from the test after 850 hours, while all SPINGS according to Example 4 were removed from the test after 720 hours. No SPINGS had failed either in example 3 or 4. The electrical resistance was thus greater than 850 and 720 hours. The increase in electrical resistivity compared to control A was over a thousandfold.
I de gjenværende eksempler (eksempler 5-10) og i kontroll B-D, ble testmetode A fremdeles anvendt, men med de mindre forandringer at hver elektrode var 1,0 mm i diameter (i stedet for 0,6 mm), og at den annen elektrode var jordet ved én ende til en halvkule med radius 0,5 mm (i stedet for 0,3 mm). Disse forandringer var gjort bare for å forenkle fabrikasjonen av formen av elektrodens ende ved maskinbearbeidelse, da en tykkelse på 1,0 mm gir mindre fleksibilitet enn 0,6 mm. Paral-lelltester utført med de tykkere og tynnere elektroder i SPINGS fremstilt av samme is"olasjonsblanding fastslo at de samme test-resultater ble oppnådd i hvert tilfelle. Testprosedyren som gjør bruk av tykkere elektroder, kan således fremdeles betegnes som testmetode A. In the remaining examples (Examples 5-10) and in controls B-D, test method A was still used, but with the minor changes that each electrode was 1.0 mm in diameter (instead of 0.6 mm), and that the other electrode was grounded at one end to a hemisphere of radius 0.5 mm (instead of 0.3 mm). These changes were made only to simplify the fabrication of the shape of the electrode end by machining, as a thickness of 1.0 mm gives less flexibility than 0.6 mm. Parallel tests carried out with the thicker and thinner electrodes in SPINGS made from the same insulation mixture determined that the same test results were obtained in each case. The test procedure that makes use of thicker electrodes can thus still be referred to as test method A.
Eksempler 5- 8 Examples 5-8
I disse eksempler var isolasjonsblandingen lik den som ble anvendt i eksempler 1-4. Den var fremdeles en poly-ethylenhomopolymer med densitet 0,918, men hadde en smelteindeks på 2,5 og inneholdt ca. 750 ppm av den samme antioxydant, In these examples, the insulation mixture was similar to that used in examples 1-4. It was still a polyethylene homopolymer with a density of 0.918, but had a melt index of 2.5 and contained approx. 750 ppm of the same antioxidant,
i in
og forskjellige trevekstinhibitorer ble anvendt. I hvert tilfelle var trevekstinhibitormengden i polyethylenet 3 vekt%. and various tree growth inhibitors were used. In each case, the amount of wood growth inhibitor in the polyethylene was 3% by weight.
I hvert av eksemplene 5-8 ble trevekstinhibitoren tilsatt til polyethylenpellets ved trommelblanding etterfulgt av ekstruderingsblanding. Fire SPINGS ble fremstilt for hvert eksempel og testet ved testmetode A. (Når fire SPINGS ble anvendt ved testen, ville den elektriske motstandskraft være større enn tiden for svikt av den annen SPING, men mindre enn tiden for svikt av den tredje SPING.) In each of Examples 5-8, the wood growth inhibitor was added to polyethylene pellets by drum mixing followed by extrusion mixing. Four SPINGS were prepared for each example and tested by test method A. (When four SPINGS were used in the test, the electrical resistive force would be greater than the time to failure of the second SPING, but less than the time to failure of the third SPING.)
I eksempel 5 var trevekstinhibitoren n-dodecylalkohol, en primær alkohol. Alle SPINGS ble fjernet fra testen etter 600 timer. Ingen SPINGS hadde sviktet. Den elektriske motstandskraft var således større enn 600 timer. In Example 5, the tree growth inhibitor was n-dodecyl alcohol, a primary alcohol. All SPINGS were removed from the test after 600 hours. No SPINGS had failed. The electrical resistance was thus greater than 600 hours.
I eksempel 6 var trevekstinhibitoren cyclohexanol, In Example 6, the tree growth inhibitor was cyclohexanol,
en primær alkohol. Alle SPINGS ble fjernet fra testen etter 768 timer. Ingen SPINGS hadde sviktet. Den elektriske motstandskraft var således større enn 768 timer. a primary alcohol. All SPINGS were removed from the test after 768 hours. No SPINGS had failed. The electrical resistance was thus greater than 768 hours.
I eksempel 7 var trevekstinhibitoren 2-decanol, en sekundær alkohol. Alle SPINGS ble fjernet fra testen etter 552 timer. Ingen SPINGS hadde sviktet. Den elektriske motstandskraft var således større enn 552 timer. In Example 7, the wood growth inhibitor was 2-decanol, a secondary alcohol. All SPINGS were removed from the test after 552 hours. No SPINGS had failed. The electrical resistance was thus greater than 552 hours.
I eksempel 8 var trevekstinhibitoren 4-decanol, en sekundær alkohol. Alle SPINGS ble fjernet fra testen etter 600 timer. Ingen SPINGS hadde sviktet. Den elektriske motstandskraft var således større enn 600 timer. In Example 8, the wood growth inhibitor was 4-decanol, a secondary alcohol. All SPINGS were removed from the test after 600 hours. No SPINGS had failed. The electrical resistance was thus greater than 600 hours.
I alle eksempler 5-8 var økningen i elektrisk motstandskraft sammenlignet med kontroll A over en tusenfold. In all of Examples 5-8, the increase in electrical resistivity compared to Control A was over a thousandfold.
Kontroll B, C og D Controls B, C and D
I kontroll B-D ble HD-polyethylen testet. In controls B-D HD polyethylene was tested.
Kontroll B gjorde bruk av polyethylen som hadde en densitet på 0,960 g/cm\ og som inneholder 100 ppm "Irganox 10-10" antioxydant. Polyethylenpelletene og 3% n-dodecylalkohol ble blandet ved trommelblanding etterfulgt av ekstruderingsblanding . Control B used polyethylene having a density of 0.960 g/cm 3 and containing 100 ppm "Irganox 10-10" antioxidant. The polyethylene pellets and 3% n-dodecyl alcohol were mixed by drum mixing followed by extrusion mixing.
I kontroll C ble 88,11 vekt% pellets av samme polyethylen med densitet 0,960 g/cm 3 og 11,89 vekt% av pellets av polyethylen med densitet 0,918 g/cm 3 (som inneholder 700 ppm "Sanotox R" antioxydant) trommelblandet og ytterligere blandet ved ekstrudering i en dobbeltskrueekstruder og pelletisert. Kontroll D var den samme, med unntagelse av at 52,38 vekt% polyethylen med densitet 0,960 og 47,62 vekt% av polyethylen med densitet 0,918 ble anvendt. I hvert tilfelle ble pelletene i blandingene deretter trommelblandet med 3% n-dodecylalkohol, fulgt av ekstruderingsblanding. In control C, 88.11% by weight of pellets of the same polyethylene with a density of 0.960 g/cm 3 and 11.89% by weight of pellets of polyethylene with a density of 0.918 g/cm 3 (containing 700 ppm "Sanotox R" antioxidant) were drum mixed and further mixed by extrusion in a twin screw extruder and pelletized. Control D was the same, except that 52.38% by weight polyethylene with a density of 0.960 and 47.62% by weight of polyethylene with a density of 0.918 were used. In each case, the pellets in the blends were then drum blended with 3% n-dodecyl alcohol, followed by extrusion blending.
SPINGS av hver blanding ble deretter fremstilt for testformål. En liten flis av polymer ble fjernet fra en SPING SPINGS of each mixture were then prepared for testing purposes. A small chip of polymer was removed from a SPING
av hver blanding for å måle dens densitet (ASTM D 1505-68). of each mixture to measure its density (ASTM D 1505-68).
: 3 : 3
Densiteten var: Kontroll B - 0,957 g/cm The density was: Control B - 0.957 g/cm
Kontroll C - 0,949 g/cm<3>Control C - 0.949 g/cm<3>
Kontroll D - 0,936 g/cm<3>Control D - 0.936 g/cm<3>
Fem SPINGS av hver blanding ble testet ved testmetode Five SPINGS of each mix were tested by test method
aJ I hver av kontrollene B, C og D sviktet alle SPINGS før et døgn var gått. Følgelig var den elektriske motstandskraft i hvert tilfelle mindre enn 24 timer. aJ In each of the controls B, C and D, all SPINGS failed before a day had passed. Accordingly, the electrical resistance in each case was less than 24 hours.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US70926676A | 1976-07-28 | 1976-07-28 | |
US80991077A | 1977-06-28 | 1977-06-28 |
Publications (3)
Publication Number | Publication Date |
---|---|
NO772670L NO772670L (en) | 1978-01-31 |
NO150376B true NO150376B (en) | 1984-06-25 |
NO150376C NO150376C (en) | 1984-10-03 |
Family
ID=27108227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO772670A NO150376C (en) | 1976-07-28 | 1977-07-27 | ELECTRICAL INSULATION MATERIAL BASED ON LD POLYETHYLENE AND ELECTRIC WIRE INSULATED WITH THE SAME |
Country Status (9)
Country | Link |
---|---|
JP (1) | JPS6034581B2 (en) |
CA (1) | CA1114979A (en) |
DE (1) | DE2734071A1 (en) |
FR (1) | FR2360159A1 (en) |
GB (1) | GB1564990A (en) |
IT (1) | IT1086163B (en) |
NL (1) | NL7708334A (en) |
NO (1) | NO150376C (en) |
SE (2) | SE425911B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2837311C2 (en) * | 1978-08-26 | 1983-11-24 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Voltage stabilized electrical insulation |
US4283459A (en) * | 1979-08-09 | 1981-08-11 | E. I. Du Pont De Nemours And Company | Insulating composition and articles made therefrom |
GB2076419B (en) * | 1980-05-21 | 1984-01-25 | Furukawa Electric Co Ltd | Cross-linked polyethylene insulated power cable |
US4369331A (en) * | 1980-12-22 | 1983-01-18 | Union Carbide Corporation | Ethylene polymer compositions stabilized against water treeing by an organic titanate; and the use thereof as insulation about electrical conductors |
DE3210139C2 (en) * | 1982-03-19 | 1985-06-27 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Polyolefin-based insulating material with voltage stabilizer |
JPS58220304A (en) * | 1982-06-15 | 1983-12-21 | 日立電線株式会社 | Electrically insulating composition and wire, cable coated with same composition |
DE3344759A1 (en) * | 1983-12-10 | 1985-06-20 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Stabilised polyolefin-based insulation material |
JPS61264033A (en) * | 1985-05-18 | 1986-11-21 | Idemitsu Petrochem Co Ltd | Polyethylene resin composition |
WO2014206437A1 (en) | 2013-06-24 | 2014-12-31 | Abb Technology Ltd | A new process for preparing insulation materials for high voltage power applications and new insulation materials |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3075040A (en) * | 1957-07-26 | 1963-01-22 | Siemens Ag | Method for improving the electric strength and flash-over or glowdischarge resistance of olefine polymers |
DE1440097A1 (en) * | 1960-02-29 | 1968-10-24 | Siemens Ag | Use of compounds based on olefin polymers for insulating electrical cables and lines |
US3372153A (en) * | 1965-04-09 | 1968-03-05 | Union Carbide Corp | Polymer powders and process therefor |
US3445394A (en) * | 1967-06-27 | 1969-05-20 | Simplex Wire & Cable Co | Voltage stabilized solid polyolefin dielectric |
DE1615837A1 (en) * | 1968-01-12 | 1970-08-06 | Basf Ag | Electrical insulating compounds based on olefin polymers |
US3522183A (en) * | 1968-05-07 | 1970-07-28 | Simplex Wire & Cable Co | Solid dielectric polyolefin compositions containing various voltage stabilizers |
DE1765583A1 (en) * | 1968-06-14 | 1971-07-29 | Basf Ag | Electrical insulating compounds based on olefin polymers |
DE2352450C2 (en) * | 1973-10-19 | 1982-05-13 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Stabilized insulating material based on polyolefin, in particular based on a cross-linked polyethylene |
-
1977
- 1977-07-26 GB GB31443/77A patent/GB1564990A/en not_active Expired
- 1977-07-26 CA CA283,549A patent/CA1114979A/en not_active Expired
- 1977-07-27 FR FR7723059A patent/FR2360159A1/en active Granted
- 1977-07-27 IT IT26215/77A patent/IT1086163B/en active
- 1977-07-27 NL NL7708334A patent/NL7708334A/en not_active Application Discontinuation
- 1977-07-27 NO NO772670A patent/NO150376C/en unknown
- 1977-07-27 SE SE7708618A patent/SE425911B/en not_active IP Right Cessation
- 1977-07-27 JP JP52089389A patent/JPS6034581B2/en not_active Expired
- 1977-07-28 DE DE19772734071 patent/DE2734071A1/en not_active Ceased
-
1982
- 1982-07-01 SE SE19828204087A patent/SE8204087D0/en unknown
Also Published As
Publication number | Publication date |
---|---|
NO150376C (en) | 1984-10-03 |
NO772670L (en) | 1978-01-31 |
SE8204087A0 (en) | 1982-07-01 |
JPS5316746A (en) | 1978-02-16 |
JPS6034581B2 (en) | 1985-08-09 |
SE8204087D0 (en) | 1982-07-01 |
FR2360159A1 (en) | 1978-02-24 |
CA1114979A (en) | 1981-12-22 |
DE2734071A1 (en) | 1978-02-02 |
SE425911B (en) | 1982-11-22 |
GB1564990A (en) | 1980-04-16 |
FR2360159B1 (en) | 1981-11-13 |
NL7708334A (en) | 1978-01-31 |
IT1086163B (en) | 1985-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4206260A (en) | Polyethylene insulation containing a tree growth-inhibiting alcohol | |
US6521695B1 (en) | Water tree resistant insulating composition | |
KR100520969B1 (en) | Optical fibre cable having high tracking resistance | |
US3951871A (en) | Deformation resistant shielding composition | |
AU2010364502A1 (en) | Energy cable having a voltage stabilized thermoplastic electrically insulating layer | |
NO150376B (en) | ELECTRICAL INSULATION MATERIAL BASED ON LD POLYETHYLENE AND ELECTRIC WIRE INSULATED WITH THE SAME | |
WO1999031675A1 (en) | A composition for an electric cable | |
McMahon | A tree growth inhibiting insulation for power cable | |
US6063845A (en) | Composition for an electric cable | |
US20150017441A1 (en) | Elastomer composition, and insulated wire and insulated cable using the same | |
SE444244B (en) | ELECTRIC CABLE WITH PLASTIC INSULATION AND LEADERSHIP OUTLETS INCLUDING POLYOLS AND / OR ALDEHYDES AND PROCEDURES FOR THEIR PREPARATION | |
US2569541A (en) | Electrical insulation comprising polyethylene, polyisobutylene, isobutylene-diolefin copolymer, and lubricant | |
Nikolajevic | Investigation of water effects on degradation of crosslinked polyethylene (XLPE) insulation | |
EP0024162B1 (en) | Insulating composition and articles made therefrom | |
KR100323179B1 (en) | Cable Insulation Structure | |
CA3065965A1 (en) | Cable comprising a semi-conducting layer that is easily peeled | |
CN107709443A (en) | Cable insulation composition comprising a sulfur-containing second antioxidant | |
CA2686291A1 (en) | A curable composition for medium and high voltage power cables | |
NO823105L (en) | ETHYLENE POLYMER MATERIAL WHICH IS RESISTANT TO DIELECTRIC FAILURE. | |
Bernstein et al. | Electro-Chemical Treeing in Ethylene-Propylene Rubber Compounds | |
Castellani et al. | Water treeing retardant materials for cable insulators | |
Eichhorn | Treeing in solid extruded electrical insulation | |
JP2001256832A (en) | Composition for electrical insulation and electric wire and cable | |
Ildstad et al. | Water treeing and breakdown strength reduction of XLPE insulation | |
JP2001256833A (en) | Composition for electrical insulation and electric wire and cable |