CA1114979A - Polyethylene insulation - Google Patents

Polyethylene insulation

Info

Publication number
CA1114979A
CA1114979A CA283,549A CA283549A CA1114979A CA 1114979 A CA1114979 A CA 1114979A CA 283549 A CA283549 A CA 283549A CA 1114979 A CA1114979 A CA 1114979A
Authority
CA
Canada
Prior art keywords
alcohol
polyethylene
article
composition
low density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA283,549A
Other languages
French (fr)
Inventor
Eugene J. Mcmahon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Application granted granted Critical
Publication of CA1114979A publication Critical patent/CA1114979A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates

Abstract

ABSTRACT OF THE DISCLOSURE

Insulation particularly suitable for high voltage power cable consists essentially of low density polyethylene (or cross-linked polyethylene) and an effective amount of an alcohol of 6 to 24 carbon atoms which is a tree growth inhibitor capable of imparting at least a thousand-fold increase in electrical endurance as measured by an accelerated test procedure. Electri-cal trees can be initiated in the polyethylene in the presence of the alcohol. However, increased electrical endurance is obtained through inhibition of continued tree growth at that site. A precursor composition for a preferred insulation con-tains (1) low density polyethylene, (ii) a peroxide cross-linking agent, and (iii) an alcohol of 8 to 12 carbon atoms.

Description

Back~round of the Invention This invention relates to electrical insula-tion such as primary insulation which is particularly suitable for use in high voltage cable and to a compo-sition of polyethylene which incorporates an additive providing resistance to electrical breakdown of the cable. More specifically, this invention relates to improving the resistance to electricalfailureoflow density polyèthylene and crosslinked polyethylene.
Electrical failure of high voltage insula-tion is often initiated at contaminating particles.
It is extremely difficult, if not impossible, to ex-trude solid organic insulation, such as polyethylene, on a conductor without any flaws. Even if the poly-ethylene manufacturer uses extremely clean techniques, contaminants can later be introduced in subsequent handling of the resin prior to final shaping.
Another cause of electrical failure in the insulation is the presence of a void.
High voltage power cables insulated with insulating polymers are subject to dielectric break-down by a mechanism known to the trade as electrical "treeing~. Treeing is a relatively slow progressive degradation of an insulation caused by electron and ion bombardment of the insulation resulting in the formation of microchannels or tubes having a tree-like appearance, hence the name. A tree initiates at points of contamination or voids which are foreign to the polymeric insulation by the action of ionization (corona) during high voltage surges. Once a tree
2. `

;3 starts it usunlly grows, particularly during ~urther high voltage surges, and at some undetermined time, dielectric failure can occur.
To overcome this problem, various additives have been disclosed, particularly in polyethylene or other polyolefin, which require an increase in applied voltage to cause initiation o~ a tree. This use of an additive attempts to prevent failure of the insulation by preventing any fo~mation of trees.
Maloney U. S. Paten~ 3,499,791 discloses a coating ~or an electrical high voltage cable comprising a polyethylene resin ~hich contains an inorganic ionic salt o~ a strong acid and a strong Zwitter-ion compound.
An insulated cable provides resistance to electrical breakdown and stress cracking under the influence of corona.
Kato et al, U. S. Patent 3,956,~20 discloses insul~tion with improved electrical breakdown resistance comprising polyole~in, a ferrocene compound and a sub-stitutea quinoline compound. Also disclosed in the paten~ is addit~onal use of a small amount of polyhydric alcohol, dispersa~t, ~ur~ctant or unsaturated polymer or mixture thereof to obtain another improvement in electrlcal breakdown strength.
MacKenzie, Jr. U. S. Patent 3,795,646 discloses an ethylene-containing polymer composition which exhibits improved ionization resistance under high voltage stress by employing a silicone ~luid in a crosslinked polyethylene com~osition.
Japanese Patent No. 14348/75, published on 1975 May 27 and assigned to Fujikura Cable l~orks, to wire cables with improved dielectric breakdown resistance provided by an insulation of polyethylene containing 0.1~ by weight of an aromatic ketone.
German 2147684, published on 1973 March 29 and assigned to Licentia Patent, discloses the concept of increasing the electrlcal breakdown resistance of polymers, especially polyethylene, by modifying the free path of charge carriers (electrons) by inco~por-ating additional scatter centers or by reducing the c~ystallinity of the polymer.
Japanese Patent Application 7201988, published on 1972 January 20 and assigned to Fujikawa ~able Works, discloses insulated power cable having improved breakdown resistance by providing an insulated layer of polyethylene, polypropylene, polycarbamate or polyester containing mica particles coated with hydrophobic insulating material of silicone oil, stearic acid3 palmitic acid, or oleic acid.
Japanese Kokai Patent 49/119,937, published on 1974 November 15 and assigned to Dainicki-Japan Cables, discloses electric inæulating resin compositions which give an i~crease in dielectric breakdown vo~tage through mixing in~o a resin co~posi~ion such as polyethylene a ferrocene-aldehyde (or ketone) polymer having ferrocene groups or a mixture of the ferrocene containing polymer and a higher alcohol.
Summary of the Invention mis invention is directed to a composition of matter and to an electrical conductor coated with such composition which consists essentially of poly-ethylene or crosslinked polyethylene and an effectiveamount of an alcohol of 6 to 24 carbon atoms which is a tree growth inhibitor capable of providing at least .. . . . .
., ~ .

a thousand-fold increase in electrical endurance of polyethylene as measured by an electrical endurance test procedure.
Suitable materials include:
(a) a composition of polyethylene and a tree growth inhibitor of at least one alcohol containing be-tween 6 to 24 carbon atoms, (b) the composition of (a) with a peroxide cross-linking agent, 0 (c) the composition of (a) or (b) which has been crosslinked and (d) the composition of (a), (b) or (c) as an insula-tion on an electrical conductor.
Detailed Description of the Invention A composition which is particularly useful as insulation for high voltage cable consists essen-tially of polyethylene or crosslinked polyethylene and a higher alcohol which improves electrical endur-ance. An accelerated test procedure referred to inTest Method A herein shows the presence of the alcohol inhibits electrical tree growth (but not tree forma-tion) and results in at least a thousand-fold increase in electrical endurance of polyethylene. Such test is believed to provide a direct correlation with long term electrical endurance of such insulation on a conductor, i.e., an increased useful life of insula-tion when employed in its inte~ded use.
As employed in the present specification the ter,m "polyethylene~ or "crosslinked polyethylene~

;i 3 is limited to a homopolymer or copolymer containing no less than 85 weight percent ethylene polymerized units and no less than 95 weight percent of olefin polymerized units.
These polymers would conform to the definition of "polyethy-lene plastics" defined in 1976 Annual Book of ASTM Standards, 1976, Part 36, page 70 as "plastics or resins prepared by the polymerization of no less than 85% ethylene and no less than 95 weight percent of total olefins". A preferred polyethylene or a crosslinked polyethylene contains about 100 weight percent ethylene polymerized units.
Suitable olefins which can be employed as comonomers include propylene, butene-l, hexene-l, octene-l and decene-l.
Other comonomers include norbornene, butadiene, styrene, methacrylic acid, vinyl acetate, ethyl acrylate, isobutyl acrylate, and methyl vinyl ether.
The term "polyethylene" is limited to a polymer which is substantially free of crosslinks while the term "crosslinked polyethylene" defines a polymer containing crosslinks. These crosslinks can be formed by any mechanism such as by use of irradiation or a peroxide crosslinking agent.
Low density polyethylene or crosslinked polyethylene is suitable for use in the present invention. The higher density polyethylenes are not suitable for use in the present invention because there is little or no improvement, certainly no thousand-fold improvement, in the electrical endurance thereof upon addition of an alcohol as specified herein. "Low density" refers to a polyethylene or crosslinked polyethylene which has a density up to about 0.92 g/cc.

Reference is also made to ASTM D 1248-74 for the term "low density".
Additionally, rigidity of an insulation is a factor in selection of a polyethylene for some uses, e.g., flexibility is necessary in transmission line cable.
The necessary additive to polyethylene or cross-linked polyethylene in the present invention is an alcohol of 6 to 24 carbon atoms and most perferably 8 to 12 carbon atoms. Preferred alcohols are aliphatic and/or monohydric.
The alcohols can be either straight or branched chain.
Suitable examples include n-hexyl, n-heptyl, n-octyl, n-decyl, n-dodecyl~ n-tetradecyl~ stearyl,andeicosylalcohols,benzylalcohol, 2-decanol, 4-decanol, cyclohexanol, 3-methylheptanol-3, 2-methyloctanol-2, 2-phenylpropanol-2, and the like. The alcohols useful herein are also referred to in this specification as "tree growth inhibitors".
The alcohol can be added by any conventional method, including mixing with the solid polyethylene prior to compounding or extrusion, injection into molten polyethylene, diffusion into solid polyethylene or crosslinked polyethylene of alcohol applied by spraying, soaking or vapor contacting, and contacting an article comprising polyethylene or cross-linked polyethylene with liquid or vapor-phase alcohol.
A test method, Test Method A, for determining whether an additive is suitable to increase electrical endurance at least a thousand-fold employs polyethylene and excludes a peroxide crosslinking agent and crosslinked polyethylene.
Since conversion of polyethylene to crosslinked polyethylene through use of a peroxide crosslinking agent can result in increase in electrical endurance, the addition of a peroxide crosslinking àgent can mask to some degree the improvement '!

imparted by a tree growth inhibitor. However, modification of Test Method A to employ c~osslinked polyethylene rather than polyethylene has proven satisfactory as a ~creening technique to demonstrate whether some improvement exists in accelerated electrical endurance through addition of an additive. Such modification of Test Method A is not sufficient to determine if at least a thousand-fold Lmprove-ment in electrical endurance exists in all instances.
In Test Method A initiation of a tree is J
10 necessary in a sample of insulation. Crosslinked polyethylene allows visual inspection of a tree. In contrast, polyethylene is opaque and does not permit visual determination of a tree without cutting into the polyethylene. Therefore, in Test Method A
using polyethylene, it is generally necessary to employ several samples and destroy one of the samples -~
~o determine if a tree has been grown under initial voltage conditions.
~hile Test Method A excludes the presence 20 of a peroxide crosslinking agent to determine if an additive imparts at least a thousand-fold increase ~ -in accelerated electrical endurance to polyethylene, the scope of the present invention includes a ; composition of matter consisting essentially of ; polyethylene or crosslinked polyethylene (crosslinked by any mechanism including use of a peroxide) and an alcohol and use of such composition thereof with an electrical conductor.
A concentration of alcohol necessary to 30 impart at least a thousand-fold increase in time to failure asmeasuredky TestMethod A is referred to as "an effective amount". This concentration (based on weight of alcohol to ~eight of polyethylene) directly results in at least the thousand-fold increase in life in polyethylene which is not crosslinked. It is understood for crosslinked polyethylene that an effective amount of an alcohol is taken to be the same concentra~ion of alcohol which would be necessary to bring about at least a thousand-fold increaseIn polyethylene. Generally, an alcohol will be present in a weight of about 0.5 to about 10% of the weight of the poly-ethylene or crosslinked polyethylene and more preferably about 1% to about 5% by weight.
Larger concentrations of alcohol can be beneficially employed. However, such additive can increase the power factor of the polyethylene or cross-linked polyethylene and an excess should not be employed where a higher power factor is detrimental, e.g., in high voltage transmission lines. Preferably in such uset the insulating composition will have a power factor not greater than 1~, preferably not greater than 0.5~.
Suitable materials include (a) a co~position of polyethylene and at least one alcohol containing between 6 to 24 carbon atoms, (b) the composition of (a) with a peroxide cross-linking agent, (c) the composition of (a) or (b) which has been crosslinked and (d) the composition of (a), (b) or (c) as an insulation on an electrical conductor.

'73 A most preferred composition in the present invention contains polyethylene, a peroxide crosslinking agent and a tree growth inhibitor of at least one alcohol of 8 to 12 carbon atoms. ThismDst preferredcomposition isa precursor to an insulationcontainingcrosslinkedpolyethylene and its use with an electrical conductor.
Conventional peroxide crosslinking agents well known in the prior art for crosslinking polyethylene can be employed herein and include di-alpha-cumyl peroxide, 2,5-bis(t-butyl peroxy-2,s_dimethyl hexane, 2,5-dimethyl-2, 5-di(t-butyl peroxy)hexyne-3, etc.
If a peroxide crosslinking agent is soluble in the alcohol, this agent can be dissolved in such alcohol and both added to polyethylene. The polyethylene containing these additives normally is not crosslinked until after application to an electrical conductor.
For purposes of explanation and without being bound to any theory concerning the manner in which an alcohol functions for tree growth inhibition, such alcohol has the ability to diffuse through polyethylene or crosslinked poly-ethylene and into voids in the insulation. Tree growth in the insulation follows initial formation of microchannels and produces a tree-like appearance. Tree growth will ordinarily continue until dielectric failure of the insula-tion occurs. In the present case, however, it is believed that an alcohol as defined in the present invention diffuses into the voids and impedes the electron and ion bombardment.
Inhibition of tree growth after initiation translates to an increase in electrical endurance of the insulation.
The underlying purpose in the test procedure is to ' ' .

10 .

g mlmic amechanism whichcausesdielectric failure. Inpractice, trees generally initiate in power cables during high voltage surges, e.g., due to switching transients, lightning bolts, etc. Thereafter failure of the insulation can occur at normal operating stress or particularly during additional high voltage surges. In the composition of this invention an alcohol functioning for tree growth inhibition extends useful life of the insulation by inhibiting growth of trees after their initiation and preventing premature failure of the insulation.
Unlikeconventionaltest proce~ures in theprior art which determinedielectric strengthof an insulation,Test Method A is consideredto givea correlationto usefullife of the insulation. In this latter test, a high AC voltage initially applied across electrodes within the insulation causes tree initiation without resulting in failure of the insulation.
This tree initiation is followed by a rest period in which a voltage is not imposed for at least about 24 hours.
Thereafter, time to failure of the insulation is measured - 20 with 12,000 volts impressed between electrodes separated by 2 mm, i.e., with an average electrical stress, if the field were uniform, of 6,000 volts/mm (as described in Test Method A). The field, however, is intensified as a result of the small diameters of the shaped ends of the electrodes to a value greater than 6,000 volts/mm.
The accelerated electrical endurance test is believed to provide a useful correlation to the extended life of insulation which is employed for prolonged time periods, e.g., at least 30 years. It is, of course, impractical to run such long term testing. Also, only a relatively few 11 .

samples will actually fail in long term testing and a statistical study would be necessary. With the presence of the alcohol in a composition consisting essentially of polyethylene, it is believed that in normal use no failure based on dielectric breakdown of polyethylene will occur.
The test for determining an increase in electrical endurance is referred to as Test Method A and comprises the following:
Test Method A
Polyethylene for testing in accordance with this method is initially molded into a block termed herein ~ --as a "SPING" (which is an acronym for solid phase internal - ~-needle gap specimen). A SPING is 25 mm square by 6 mm s thick and contains two electrodes embedded therein length-` wise and in line, equidistant from the faces and from the opposite edges, with the tips spaced 2 mm apart at the center of the block. Each electrode is about 30 mm in length and about 0.6 mm in diameter. One electrode has a cone-shaped point at a 30 included angle with a radius of 5 ~m and is the high voltage electrode; a second electrode has a 0.3 mm radius hemisphere ground on one end and is the ground electrode.
A minimum of five SPINGS are placed on test at one time. Each SPINGis placedunder siliconeoil whichprevents surface flashover. Thehigh voltage electrode is connected to a high voltagebus whilethe ground electrode is connectedto aspaced pair of 6.25centimeter spheresconnected to ground througha lmeg-bhm resistor. A gap is set sufficiently wide between the spheres to achieve a voltage sufficient to initïate a tree in the SPING. For example, with the , .
12.

~ 3;~ ~

spheres set at 0.762 centimeter gap, a voltage (60 HZ) increasing at a rate of 500 volts/sec is applied until a discharge occurs between the two spheres. Before this breakdown occurs, the stress on the specimen is essentially zero; however, the instant the air gap breaks down, the applied voltage plus a radio frequency signal developed by the arc is impressed across the specimen electrodes and is maintained for 1 to 2 seconds, so that a tree is generated.
The voltage required to initiate a tree will vary with the composition being tested. For polyethylene which contains an alcohol in accordance with the present invention, a voltage of 35 to 40 kv. is required. For polyethylene which contains other additives, the voltage required may be higher or lower, but the voltage to be used is easily determined by visual examination of each specimen to see whether a tree has been initiated.
After the tree has been initiated, the SPING is held without application of voltage for about 24 hours before placing on high voltage of 12,000 volts applied between the electrodes (an average applied voltage of 6000 v/mm). The time in hours necessary for the middle sample to fail (e.g. third out of five, fifth out of nine, in terms of time to failure) is measured and called electrical endurance.
Failure is indicated by dielectric breakdown. When failure occurs, a tree gaps the two electrodes resulting in a sudden increase in current (which can be indicated on a recording ammeter) and terminates the test on that specimen.

The tree growth inhibitor in the present invention ~- 30 functions in a different manner from prior art additives to obtain an improved result. The prior art additives are generally disclosed as compounds which,when incorporated into polyethylene or other suitable insulating materials, will require a higher characteristic voltage to initiate a tree at a needle tip. (These teachings generally employ a sharp needlepoint embedded in the sample. The manner varies in which a second electrode is present). The characteristic voltage is that voltage wherein one-half of the samples on test will initiate a tree in one hour. This is determined by examining severalgroupsof specimensatseveral differentvoltages.
The test is concluded when the characteristic voltageisfound.
In contrast, in the present invention, a tree growth inhibitor is not for the purposes of preventing tree initiation but solely for the purpose of suppressing growth of a tree after it has been initiated.
Although the present invention includes a composi-tion of polyethylene or crosslinked polyethylene and an alcohol, it is understood that other conventional additives can be and are normally present in the composition. These additives include antioxidants, e.g., polymerized trimethyl-dihydroquinone; lubricants, e.g., calcium stearate; pigments, e.g., titanium dioxide; fillers, e.g., glass particles;
reinforcing agents, e.g., fibrous materials such as asbestos and glass fibers, etc.
Although an insulation of polyethylene or cross-linked polyethylene containing a tree-growth inhibitor is particularly suitable for power cable for carrying voltage at least 15 kv, such as 15 to 220 kv, it is likewise suitable for lower or higher voltage applications. In electrical cable, in conformance to prior art teachings, a semiconducting 14.

layer would be interspaced between an electrical conductor and an insulating layer. Such semiconducting layer conventionally includes an insulating composition which also contains carbon black.
To illustrate the present invention, the following examples are provided:

Identification of Insulation Composition for Control A and Examples 1-4.
- (A) Polyethylene: Homopolymer 10Melt Index (ASTM D-1238) 1.8 grams per 10 minutes Density 0.918 gram per cubic centimeter (measured in accordance with ASTM D-1505-68 (Reapproved 1975)) (B) Antioxidant: 4,4'-thiobis(6-tert-butyl-m-cresol) 1500 ppm ~- (C) Tree Growth Inhibitor: n-dodecyl alcohol, except for Control A
Control A (No Tree Growth Inhibitor) Order of Test Method A
SPING No.Failure Time to Failure, Hours 0 . 10 2 2 0.25
3 5 0.38
4 4 0.35 3 0.25 Examples 1 and 2 In Example 1, n-dodecyl alcohol was added to polyethylene pellets by tumble blending followed by extrusion mixing. In Example 2, the n-dodecyl alcohol was injected -using a gear pump into molten polyethylene in the mixing zone of the extruder. In each of Examples 1 and 2, the final concentration of the n-dodecyl alcohol was 3~ by weight in 15.

.

the polyethylene as measured by infrared spectrometry. Nine SPINGS were prepared for each Example and placed on te~t using Test Method A.
The nine SPINGS for Examples 1 and 2 were taken off test without any having failed after 1960 hours and 1730 hours respectively. Electrical endurance would thus be in excess of 1960 hours and 1730 hours, respectively.
Continued testing of the same SPINGS was carried out. The nine SPINGS for Examples 1 and 2 were later taken off test without any having failed after a total of 4000 hours. In each case, electrical endurance would thus be in excess of 4000 hours.
Comparison of Examples 1 and 2 with Control A shows that increase of electrical endurance would be well in i excess of a thousand-fold.
- Examples 3 and 4 - In these examples, the additive was also n-dodecyl alcohol in a concentration of about 3 weight percent in the polyethylene as measured by infrared spectrometry. In Example 3, the polyethylene was mixed with the alcohol in a Banbury mixer while in Example 4 the mixing was done in a Brabender mixer. Nine SPINGS were prepared from the composition of each Example and were placed on test by Test Method A. All SPINGS of Example 3 were removed from test after 850 hours while in Example 4 all SPINGS were removed from test after 720 hours. No SPINGS had failed in either Example 3 or 4. The electrical endurance was thus greater than 850 and 720 hours, respectively. The increase in electrical endurance compared with Control A is in excess of a thousand-fold, 16.

In the remaining examples, (Examples 5 to 10) and in Controls B to D, Test Method A was still used, but with the minor changes that each electrode was 1.0 mm in diameter (instead of 0.6 mm), and the second electrode was ground on one end to a 0.5 mm radius hemisphere (instead of 0.3 mm).
These changes were made simply for ease in fabrication of the shape of the end of the electrode by machining, since a thickness of 1.0 mm provides less flexibility than 0.6 mm.
Parallel tests carried out with the thicker and thinner electrodes, in SPINGS made from the same insulation composition verified that the same test results were obtained in each case. The test procedure using the thicker electrodes is therefore still referred to herein as Test Method A.
Examples 5 - 10 - In these examples the insulation composition was similar to that of Examples 1-4; it was still a polyethylene homopolymer of density 0.918, but had a melt index of 2.5 and contained ca.750 ppm. of the same antioxidant, and different tree growth inhibitors were used. In each case the amount of tree growth inhibitor in the polyethylene was 3 by weight.
In each of Examples 5 through 10 the tree growth inhibitor was added to polyethylene pellets by tumble blending followed by extrusion mixing. Four SPINGS were prepared for each example and placed on test using Test Method A. (When four SPINGS are placed on test, the electrical endurance would be greater than the time for the second SPING to fail, but less than the time for the third SPING to fail.) In Example 5, the tree growth inhibitor was n-dodecyl 17.

`g alcohol, a primary alcohol, All SPINGS were removed from test after 600 hours. No SPINGS had failed. The electrical endurance was thus greater than 600 hours.
In Example 6, the tree growth inhibitor was cyclo- -hexanol, a primary alcohol. All SPINGS were removedfrom test after 768hours. No SPINGS had failed. The electricalendurance was thusgreater than 768 hours.
In Example 7, the tree growth inhibitor was benzyl alcohol, a primary alcohol. All SPINGS were removed from test after 720 hours. No SPINGS had failed. The electrical endurance was greater than 720 hours.
In Example 8, the tree growth inhibitor was 2-decanol, a secondary alcohol. All SPINGS were removed from test after 552 hours. No SPINGS had failed. The electrical endurance was greater than 552 hours.
In Example 9, the tree growth inhibitor was 4-decanol, a secondary alcohol. All SPINGS were removed from test after 600 hours. No SPINGS had failed. The electrical - endurance was greater than 600 hours.
In Example 10, the tree growth inhibitor was 2-phenyl-2-propanol, a tertiary alcohol, All SPINGS were removed from test after 552 hours. No SPINGS had failed.
The electrical endurance was greater than 552 hours.
In all of Examples 5-10, the increase in electrical endurance compared with Control A is in excess of a thousand-fold.
Controls B, C and D
In Controls B to D, higher density polyethylene was tested.
Control B used polyethylene which has a density 18.

~ 3.;~
of 0.960 g/cc, and which contains 100 ppm Irganox~ 1010 antioxidant (tetrakis-~methylene-3-(3~5~-di-t-butyl-4~-hydroxyphenyl)propionate~methane, available from Ciba-Geigy). The polyethylene pelle~s and 3% n-dodecyl alcohol were mixed by tumble blending, followed by extru-sion mixing.
In Control C, 88.11~ by weight of pellets of the same polyethylene of density o.960 g/cc and 11.89% by weight of pellets of polyethylene of density 0.918 g/cc (which contains 700 ppm SANTANOX~ R antloxidant viz 4,4~-thio bis-(6-tert~butyl meta cresol, available from Monsanto) were tu~ble blended, further mixed by extrusion in a double-screw extruder, and pelletized. Control D was similar except that 52.38% by weight of o.960 density polyethylene and 47.62% by weight of 0.918 density polyethylene were used. In each case, the pellets of the blend were then tumble blended with 3% n-dodecyl alcohol, followed by extrusion mixing.
SPI~GS of each composition were then fabricated for test purposes. A small chip of polymer was removed from one SPING of each composition to measure its density (ASTM D 1505-68). The densltites were: Control B, 0.957 g/cc; Control C, 0.949 g/cc; and Control D, o.936 g/cc.
Five SPINGS of each composition were placed on test using Test Method A. In each of Control B, C and D, all five SPINGS failed before one day had el~psed. Accord-ingly, the electrical endurance in each case was less than 24 hours.

Claims (62)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A composition of matter consisting essentially of:
(a) low density polyethylene, and (b) an effective amount of at least one alcohol of 6 to 24 carbon atoms, said alcohol capable of introducing at least a thousand-fold increase in electrical endurance of the polyethylene as measured by Test Method A accelerated electrical endurance test.
2. The composition of Claim 1 containing a peroxide crosslinking agent.
3. The composition of Claim 1 excluding a peroxide crosslinking agent.
4. The composition of Claim 1 wherein the polyethylene contains about 100 weight percent ethylene polymerized units.
5. The composition of Claim 1 with a power factor no greater than 0.5%.
6. The composition of Claim 1 wherein said alcohol is aliphatic.
7. The composition of Claim 1 wherein said alcohol is monohydric.
8. The composition of Claim 1 wherein said alcohol contains 8 to 12 carbon atoms.
9. The composition of Claim 8 wherein said alcohol is n-decyl alcohol.
10. The composition of Claim 8 wherein said alcohol is n-dodecyl alcohol.
11. The composition of Claim 1 wherein said alcohol is present in an amount of 0.5 to 10% of the weight of the polyethylene.
12. The composition of Claim 11 wherein said amount is 1 to 5% by weight.
13. The composition of Claim 1 wherein the density of said low density polyethylene is up to about 0.92 g/cc.
14. The composition of Claim 1 wherein the density of said low density polyethylene is about 0.918 g/cc.
15. A composition of matter consisting essentially of (a) low density crosslinked polyethylene;
(b) an effective amount of at least one alcohol of 6 to 24 carbon atoms;
said alcohol capable of introducing at least a thousand-fold increase in electrical endurance of polyethylene as measured by Test Method A accelerated electrical endurance test.
16. The composition of Claim 15 wherein (a) has been crosslinked by a peroxide crosslinking agent.
17. The composition of Claim 15 wherein the poly-ethylene contains about 100 weight percent ethylene polymerized units.
18. The composition of Claim 15 with a power factor no greater than 0.5%.
19. The composition of Claim 15 wherein said alcohol is aliphatic.
20. The composition of Claim 15 wherein said alcohol is monohydric.
21. The composition of Claim 15 wherein said alcohol contains 8 to 12 carbon atoms.
22. The composition of Claim 21 wherein said alcohol is n-decyl alcohol.
23. The composition of Claim 21 wherein said alcohol is n-dodecyl alcohol.
24. The composition of Claim 15 wherein said alcohol is present in an amount of 0.5 to 10% of the weight of the crosslinked polyethylene.
25. The composition of Claim 24 wherein said amount is 1 to 5% by weight.
26. The composition of Claim 15 wherein the density of said low density polyethylene is up to about 0.92 g/cc.
27. The composition of Claim 15 wherein the density of said low density polyethylene is about 0.918 g/cc.
28. An article comprising an electrical conductor and an insulating layer consisting essentially of (a) low density polyethylene, and (b) an effective amount of at least one alcohol of 6 to 24 carbon atoms;
said alcohol capable of introducing at least a thousand-fold increase in electrical endurance of the polyethylene as measured by Test Method A accelerated electrical endurance test.
29. The article of Claim 28 wherein (a) has been crosslinked by a peroxide crosslinking agent.
30. The article of Claim 28 wherein said insulating layer excludes use of a peroxide crosslinking agent.
31. The article of Claim 28 wherein the polyethylene contains about 100 weight percent ethylene polymerized units.
32. me article of Claim 28 with said insulating layer having a power factor no greater than 0.5%.
33. The article of Claim 28 wherein said alcohol is aliphatic.
34. The article of Claim 28 wherein said alcohol is monohydric.
35. The article of Claim 28 wherein said alcohol contains 8 to 12 carbon atoms.
36. The article of Claim 35 wherein said alcohol is n-decyl alcohol.
37. The article of Claim 35 wherein said alcohol is n-dodecyl alcohol.
38. The article of Claim 28 wherein in the insulating layer said alcohol is present in an amount of 0.5 to 10% of the weight of the crosslinked polyethylene.
39. The article of Claim 38 wherein said amount is 1 to 5% by weight.
40. The article of Claim 28 which is an electrical cable.
41. The article of Claim 28 with a semiconducting layer interspaced between the electrical conductor and said insulating layer.
42. The article of Claim 28 wherein the density of said low density polyethylene is up to about 0.92 g/cc.
43. The article of Claim 28 wherein the density of said low density polyethylene is about 0.918 g/cc.
44. An article comprising an electrical conductor and an insulating layer consisting essentially of (a) low density crosslinked polyethylene;
(b) an effective amount of at least one alcohol of at least 6 to 24 carbon atoms;
said alcohol capable of introducing at least a thousand-fold increase in electrical endurance of polyethylene as measured by Test Method A accelerated electrical endurance test.
45. The article of Claim 44 wherein (a) has been crosslinked by a peroxide crosslinking agent.
46. The article of Claim 44 wherein the polyethylene contains about 100 weight percent ethylene polymerized units.
47. The article of Claim 44 with said insulating layer having a power factor no greater than 0.5%.
48. The article of Claim 44 wherein said alcohol is aliphatic.
49. The article of Claim 44 wherein said alcohol is monohydric.
50. The article of Claim 44 wherein said alcohol contains 8 to 12 carbon atoms.
51. The article of Claim 50 wherein said alcohol is n-decyl alcohol.
52. The article of Claim 50 wherein said alcohol is n-dodecyl alcohol.
53. The article of Claim 44 wherein the insulating layer said alcohol is present in an amount of 0.5 to 10% of the weight of the crosslinked polyethylene.
54. The article of Claim 53 wherein said amount is 1 to 5% by weight.
55. The article of Claim 44 which is an electrical cable.
56. The article of Claim 44 with a semiconducting layer interspaced between the electrical conductor and said insulating layer.
57. The article of Claim 44 wherein the density of said low density polyethylene is up to about 0.92 g/cc.
58. The article of Claim 44 wherein the density of said low density polyethylene is about 0.918 g/cc.
59. In a process of forming a composition containing low density polyethylene and a peroxide crosslinking agent, said agent capable of dissolving in an effective amount of an alcohol of 6 to 24 carbon atoms, said alcohol capable of introducing at least a thousand-fold increase in electrical endurance of the polyethylene as measured by Test Method A
accelerated electrical endurance test, the improvement comprising:
(a) dissolving the peroxide in said alcohol;
and (b) adding the peroxide and the alcohol to said polyethylene.
60. The process of Claim 59 wherein said alcohol is an alcohol of 8 to 12 carbon atoms.
61. The process of Claim 59 wherein the density of said low density polyethylene is up to about 0.92 g/cc.
62. The process of Claim 59 wherein the density of said low density polyethylene is about 0.918 g/cc.
CA283,549A 1976-07-28 1977-07-26 Polyethylene insulation Expired CA1114979A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US70926676A 1976-07-28 1976-07-28
US709,266 1976-07-28
US80991077A 1977-06-28 1977-06-28
US809,910 1977-06-28

Publications (1)

Publication Number Publication Date
CA1114979A true CA1114979A (en) 1981-12-22

Family

ID=27108227

Family Applications (1)

Application Number Title Priority Date Filing Date
CA283,549A Expired CA1114979A (en) 1976-07-28 1977-07-26 Polyethylene insulation

Country Status (9)

Country Link
JP (1) JPS6034581B2 (en)
CA (1) CA1114979A (en)
DE (1) DE2734071A1 (en)
FR (1) FR2360159A1 (en)
GB (1) GB1564990A (en)
IT (1) IT1086163B (en)
NL (1) NL7708334A (en)
NO (1) NO150376C (en)
SE (2) SE425911B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2837311C2 (en) * 1978-08-26 1983-11-24 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Voltage stabilized electrical insulation
US4283459A (en) * 1979-08-09 1981-08-11 E. I. Du Pont De Nemours And Company Insulating composition and articles made therefrom
GB2076419B (en) * 1980-05-21 1984-01-25 Furukawa Electric Co Ltd Cross-linked polyethylene insulated power cable
US4369331A (en) * 1980-12-22 1983-01-18 Union Carbide Corporation Ethylene polymer compositions stabilized against water treeing by an organic titanate; and the use thereof as insulation about electrical conductors
DE3210139C2 (en) * 1982-03-19 1985-06-27 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Polyolefin-based insulating material with voltage stabilizer
JPS58220304A (en) * 1982-06-15 1983-12-21 日立電線株式会社 Electrically insulating composition and wire, cable coated with same composition
DE3344759A1 (en) * 1983-12-10 1985-06-20 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Stabilised polyolefin-based insulation material
JPS61264033A (en) * 1985-05-18 1986-11-21 Idemitsu Petrochem Co Ltd Polyethylene resin composition
WO2014206437A1 (en) 2013-06-24 2014-12-31 Abb Technology Ltd A new process for preparing insulation materials for high voltage power applications and new insulation materials

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3075040A (en) * 1957-07-26 1963-01-22 Siemens Ag Method for improving the electric strength and flash-over or glowdischarge resistance of olefine polymers
DE1440097A1 (en) * 1960-02-29 1968-10-24 Siemens Ag Use of compounds based on olefin polymers for insulating electrical cables and lines
US3372153A (en) * 1965-04-09 1968-03-05 Union Carbide Corp Polymer powders and process therefor
US3445394A (en) * 1967-06-27 1969-05-20 Simplex Wire & Cable Co Voltage stabilized solid polyolefin dielectric
DE1615837A1 (en) * 1968-01-12 1970-08-06 Basf Ag Electrical insulating compounds based on olefin polymers
US3522183A (en) * 1968-05-07 1970-07-28 Simplex Wire & Cable Co Solid dielectric polyolefin compositions containing various voltage stabilizers
DE1765583A1 (en) * 1968-06-14 1971-07-29 Basf Ag Electrical insulating compounds based on olefin polymers
DE2352450C2 (en) * 1973-10-19 1982-05-13 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Stabilized insulating material based on polyolefin, in particular based on a cross-linked polyethylene

Also Published As

Publication number Publication date
FR2360159B1 (en) 1981-11-13
NO150376C (en) 1984-10-03
JPS6034581B2 (en) 1985-08-09
GB1564990A (en) 1980-04-16
NO150376B (en) 1984-06-25
NL7708334A (en) 1978-01-31
IT1086163B (en) 1985-05-28
SE425911B (en) 1982-11-22
NO772670L (en) 1978-01-31
SE8204087D0 (en) 1982-07-01
DE2734071A1 (en) 1978-02-02
SE8204087A0 (en) 1982-07-01
FR2360159A1 (en) 1978-02-24
SE8204087A (en) 1982-07-01
JPS5316746A (en) 1978-02-16

Similar Documents

Publication Publication Date Title
US4206260A (en) Polyethylene insulation containing a tree growth-inhibiting alcohol
CA1096159A (en) Dielectric compositions stabilized against water treeing with organo silane compounds
CA1114979A (en) Polyethylene insulation
DE69837723T2 (en) COMPOSITION FOR AN ELECTRICAL PIPE
US4263158A (en) Dielectric compositions stabilized against water treeing with organo silane compounds containing the azomethine group and partial condensation products
EP0002830B1 (en) A wire or cable insulated with a dielectric composition stabilized against water treeing with organo silane compounds and its use
JPH01319204A (en) High voltage cable having insulation mainly composed of ethylene polymer having high resistance against formation of water-tree
US3499791A (en) Quaternary ammonium salt containing polyolefin covered electrical conductor
CA1157986A (en) Reduction of alcohol tree-growth inhibitor exudation from polyethylene insulation
US4426549A (en) Track and erosion resistant electrical insulation comprising zinc borate and ethylene polymer
Bernstein Service life of crosslinked polyethylene as high voltage cable insulation
EP1290700B1 (en) High performance power cable shield
EP0003239B1 (en) Dielectric compositions stabilized against water treeing with organo silane compounds and electric wires or cables insulated with these compositions
US4060659A (en) Electric wires or cables with styrene containing dielectric layer
KR20180096174A (en) Polymer composition for high voltage cable and cable having an insulating layer formed from the same and a sheath layer formed from the same
CA1185723A (en) Slow growth tree-craze ethylene polymer compositions
US4492647A (en) Organopolysiloxanes useful as dielectric fluids and anti-treeing additives
KR920004784B1 (en) Black color crosslinked resin composition for electric line and its preparing method
US4456655A (en) Electrical cable insulated with a tree-resistant ethylene polymer composition
USRE31874E (en) Tree-resistant ethylene polymer compositions
Bernstein 5 Fundamentals of Electrical Insulation Materials
CA2039894A1 (en) Water-tree resistant cable formulations
KR20010052099A (en) Water tree retarding additive
KR820001497B1 (en) Dielectric composition stabilized against water treeing with organo silane compounds
JPH1012046A (en) Electric insulation composition and wires/cables

Legal Events

Date Code Title Description
MKEX Expiry