NO146707B - PROCEDURE FOR THE PREPARATION OF Saturated Aldehydes by Oxidation of Propylene or Isobutylene in the Presence of an Oxidation Catalyst - Google Patents

PROCEDURE FOR THE PREPARATION OF Saturated Aldehydes by Oxidation of Propylene or Isobutylene in the Presence of an Oxidation Catalyst Download PDF

Info

Publication number
NO146707B
NO146707B NO761326A NO761326A NO146707B NO 146707 B NO146707 B NO 146707B NO 761326 A NO761326 A NO 761326A NO 761326 A NO761326 A NO 761326A NO 146707 B NO146707 B NO 146707B
Authority
NO
Norway
Prior art keywords
catalyst
catalytic material
reactor
tubes
catalysts
Prior art date
Application number
NO761326A
Other languages
Norwegian (no)
Other versions
NO761326L (en
NO146707C (en
Inventor
David Roger Bridgeman
Serge Roman Dolhyj
Ernest Carl Milberger
Original Assignee
Standard Oil Co Ohio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Oil Co Ohio filed Critical Standard Oil Co Ohio
Publication of NO761326L publication Critical patent/NO761326L/no
Publication of NO146707B publication Critical patent/NO146707B/en
Publication of NO146707C publication Critical patent/NO146707C/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00858Moving elements
    • B01J2208/00876Moving elements outside the bed, e.g. rotary mixer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

Et stort antall katalysatorer vites å være effektiv ved oxydasjon av propylen og isobutylen. Denne oppfinnelse angår en fremgangsmåte ved hvilken slike kjente katalysatorer anvendes på en ny måte for fremstilling av umettede aldehyder ut fra de nevnte olefiner. A large number of catalysts are known to be effective in the oxidation of propylene and isobutylene. This invention relates to a process in which such known catalysts are used in a new way for the production of unsaturated aldehydes from the aforementioned olefins.

Ved en oxydasjonsreaksjon som utføres under anvendelse By an oxidation reaction that is carried out during use

av et stasjonært katalysatorskikt, oppstår meget betydelige problemer med varmeutvikling ved høye påmatningshastigheter på grunn av reaksjonens eksoterme natur. For å tillate bort-ledning av den utviklede varme har man tidligere måttet ty til økonomisk ugunstige forholdsregler som lave temperaturer, of a stationary catalyst bed, very significant problems with heat generation occur at high feed rates due to the exothermic nature of the reaction. In order to allow the heat developed to be dissipated, in the past it has been necessary to resort to economically unfavorable measures such as low temperatures,

små gjennomgangshastigheter, små katalysatormengder og liten diameter av reaktorrørene. small throughput rates, small amounts of catalyst and small diameter of the reactor tubes.

I US patentskrift nr. 3.801.634 foreslåes en løsning A solution is proposed in US patent no. 3,801,634

på problemet med varmeutvikling ved en kontinuerlig fremgangsmåte for fremstilling av acrylsyre ved katalytisk oxydasjon av propylen med elementært oxygen i reaktorrør inneholdende fast, stasjonær katalysator. Reaksjonen utføres i to trinn, on the problem of heat generation in a continuous process for the production of acrylic acid by catalytic oxidation of propylene with elemental oxygen in a reactor tube containing a fixed, stationary catalyst. The reaction is carried out in two steps,

idet propylenet oxyderes i det alt vesentlige til acrolein i et første trinn, og acroleinet oxyderes videre til acryl- as the propylene is essentially oxidized to acrolein in a first step, and the acrolein is further oxidized to acryl

syre i et andre trinn. For å motvirke overopphetning avpasses aktiviteten av katalysatorene i de to trinn ved at katalysatorene fortynnes med inert materiale, slik at aktiviteten ved inntaket til de enkelte reaktorrør reduseres til ca. 25 - 75% acid in a second step. To counteract overheating, the activity of the catalysts in the two stages is adjusted by diluting the catalysts with inert material, so that the activity at the intake of the individual reactor tubes is reduced to approx. 25 - 75%

av full aktivitet. Innblandingen av inert materiale tilpasses slik at katalysatorenes aktivitet i reaktorrørenes lengde-retning øker gradvis inntil aktiviteten når 100% i en viss avstand fra reaktorrørenes utløpsende. Fortynningen av katalysatorene foretas enten ved at formet katalysator blandes med formet inert materiale under påfyllingen av katalysator i reaktoren, eller ved at katalysatoren og det inerte materiale på forhånd blandes i pulverform og deretter formes og anbringes i reaktorrørene. of full activity. The mixing of inert material is adapted so that the activity of the catalysts in the longitudinal direction of the reactor tubes increases gradually until the activity reaches 100% at a certain distance from the outlet end of the reactor tubes. The dilution of the catalysts is carried out either by mixing shaped catalyst with shaped inert material during the filling of catalyst in the reactor, or by mixing the catalyst and the inert material beforehand in powder form and then shaping and placing them in the reactor tubes.

Om enn den fremgangsmåte som beskrives i nevnte US patentskrift, bidrar til å effektivisere oxydasjonsreaksjonene ved å muliggjøre en økning av reaktantgjennomstrømningen pr. reaktorvolumenhet, er den tungvint og krever stor påpasselig-het ved ifyllingen av katalysatorene i reaktorrørene. Den foreliggende oppfinnelse er rettet på å løse det omtalte Although the method described in the aforementioned US patent helps to make the oxidation reactions more efficient by enabling an increase in the reactant throughput per unit of reactor volume, it is cumbersome and requires great care when filling the catalysts into the reactor tubes. The present invention is aimed at solving the aforementioned

problem på en mer økonomisk akseptabel måte. problem in a more economically acceptable way.

Ved hjelp av oppfinnelsen tilveiebringes der således en fremgangsmåte ved fremstilling av umettede aldehyder ved omsetning av en blanding av propylen eller isobutylen med molekylært oxygen i en reaktor hvor reaktantene gjennomstrømmer ett eller flere parallelt koblede rør som er omgitt av et varmeoverfør-ingsmedium og hvori det befinner seg en fast, stasjonær oxydasjonskatalysator, i hvilken det aktive katalytiske materiale består av blandingsoxyder inneholdende metallene Fe, Bi og Mo, idet det katalytiske materiale fortrinnsvis har sammensetningen: With the help of the invention, a method is thus provided for the production of unsaturated aldehydes by reacting a mixture of propylene or isobutylene with molecular oxygen in a reactor where the reactants flow through one or more parallel connected tubes which are surrounded by a heat transfer medium and in which there is a fixed, stationary oxidation catalyst, in which the active catalytic material consists of mixed oxides containing the metals Fe, Bi and Mo, the catalytic material preferably having the composition:

hvor A er et alkalimetall, et jordalkalimetall, Sm, Ta, Tl, In, Ga, B, P, As, Sb eller en blanding derav, where A is an alkali metal, an alkaline earth metal, Sm, Ta, Tl, In, Ga, B, P, As, Sb or a mixture thereof,

B er nikkel, kobolt, magnesium, mangan eller en blanding derav, a er et tall fra 0 til 8, B is nickel, cobalt, magnesium, manganese or a mixture thereof, a is a number from 0 to 8,

b er et tall fra 0 til 20, b is a number from 0 to 20,

c er et tall fra 0,1 til 10, c is a number from 0.1 to 10,

d er et tall fra 0,01 til 6, og d is a number from 0.01 to 6, and

x er det antall oxygenatomer som kreves for å tilfredsstille valensbehovene til de andre elementer som er tilstede. x is the number of oxygen atoms required to satisfy the valence requirements of the other elements present.

Den nye fremgangsmåte utmerker seg ved at der anvendes to katalysatorer i hvert av ett eller flere av rørene i reaktoren, idet den første katalysator er "en katalysator bestående av en i det vesentlige inert bærer med en ytre overflate og et belegg av et katalytisk materiale som fester sterkt til den ytre overflate av bæreren, og den annen katalysator er en katalysator som består i det vesentlige av det katalytiske materiale, og ved at The new method is distinguished by the fact that two catalysts are used in each of one or more of the tubes in the reactor, the first catalyst being "a catalyst consisting of an essentially inert carrier with an outer surface and a coating of a catalytic material which adheres strongly to the outer surface of the support, and the second catalyst is a catalyst consisting essentially of the catalytic material, and in that

katalysatorene anordnes i rørene av . fastlagsreaktoren på the catalysts are arranged in the tubes of . the fixed bed reactor on

en slik måte at den første katalysator kommer i kontakt med reaktantene først, og den annen katalysator kommer i kontakt med reaktantene etter kontakten med den første katalysator. such a way that the first catalyst comes into contact with the reactants first, and the second catalyst comes into contact with the reactants after the contact with the first catalyst.

Ved fremgangsmåten ifølge oppfinnelsen blir temperatur-reguleringen av den eksoterme reaksjon meget bekvem, samtidig som det oppnåes høy omdannelse av olefinene. With the method according to the invention, the temperature regulation of the exothermic reaction becomes very convenient, while at the same time a high conversion of the olefins is achieved.

Blant de foretrukne katalysatorer inneholder de særlig foretrukne katalysatorer nikkel, kobolt, magnesium, mangan eller en blanding av to eller flere av disse. De katalysatorer som inneholder kalium, er likeledes fordelaktige. Among the preferred catalysts, the particularly preferred catalysts contain nickel, cobalt, magnesium, manganese or a mixture of two or more of these. The catalysts containing potassium are likewise advantageous.

Det vesentlige trekk ved fremgangsmåten ifølge oppfinnelsen er anvendelsen av to katalysatorer som foreligger i hver sin fysikalske form. Den første katalysator er en belagt katalysator, og den andre katalysator består i det vesentlige av selve det katalytiske materiale. The essential feature of the method according to the invention is the use of two catalysts, each of which exists in its own physical form. The first catalyst is a coated catalyst, and the second catalyst essentially consists of the catalytic material itself.

Uttrykket "inert bærer" som er benyttet ovenfor, be-tegner et bærermateriale som, når det anbringes i reaktoren alene og anvendes under reaksjonsbetingelsene for oxydasjonen, gir mindre enn 10% omdannelse til det ønskede aldehyd pr. gjennomgang. Den inerte bærer kan være et hvilket som helst materiale som ikke er aktivt under oxydasjonsreaksjonen. Eksempler på slike hovedsakelig inerte bærermaterialer er siliciumdioxyd, aluminiumoxyd, "Alundum", siliciumcarbid, borfosfat og zirkoniuiaoxyd. Den inerte bærer må The term "inert carrier" as used above denotes a carrier material which, when placed in the reactor alone and used under the reaction conditions for the oxidation, gives less than 10% conversion to the desired aldehyde per review. The inert support can be any material that is not active during the oxidation reaction. Examples of such mainly inert carrier materials are silicon dioxide, aluminum oxide, "Alundum", silicon carbide, boron phosphate and zirconium oxide. The inert carrier must

være i det minste delvis porøs. Bæreren kan foreligge i form av partikler av dimensjon 0,1 cm eller større. Skjønt det ikke er noen teoretisk øvre grense for størrelsen, har de inerte bærerpartikler vanligvis en diameter som er mindre enn 2 cm. be at least partially porous. The carrier can be in the form of particles of dimensions 0.1 cm or larger. Although there is no theoretical upper limit to the size, the inert carrier particles usually have a diameter of less than 2 cm.

Uttrykket "katalytisk.materiale" som her benyttes, be-tegner de aktive katalytiske bestanddeler, som eventuelt kan inneholde et bærermateriale, såsom siliciumdioxyd, dispergert i de aktive bestanddeler. The term "catalytic material" used here denotes the active catalytic components, which may optionally contain a carrier material, such as silicon dioxide, dispersed in the active components.

Det katalytiske materiale kan anbringes på den inerte bærer ved at bæreren delvis fuktes med vann eller annen væske og det delvis våte bærermateriale deretter bringes i kontakt med et pulver av det aktive katalytiske materiale, fortrinnsvis ved anvendelse av en rullende bevegelse. Ved bruk av denne metode danner det katalytiske materiale et sterkt ved-heftende belegg på bærermaterialet. Ved den foretrukne fremstilling av den første katalysator anvendes bærere som foreligger som kuleformede partikler, slik at der fåes en første katalysator av denne form. The catalytic material can be placed on the inert carrier by partially wetting the carrier with water or other liquid and the partially wet carrier material is then brought into contact with a powder of the active catalytic material, preferably using a rolling motion. When using this method, the catalytic material forms a strongly adherent coating on the carrier material. In the preferred preparation of the first catalyst, carriers are used which are in the form of spherical particles, so that a first catalyst of this form is obtained.

De relative mengdeforhold mellom den inerte bærer og The relative quantity ratios between the inert carrier and

det katalytiske materiale kan variere meget. Belegget av katalytisk materiale kan være relativt tynt eller relativt tykt. Ved en foretrukken utførelse av fremgangsmåten ifølge oppfinnelsen anvendes der en første katalysator som inneholder fra 5 til 60 vekt% av det katalytiske materiale. the catalytic material can vary greatly. The coating of catalytic material can be relatively thin or relatively thick. In a preferred embodiment of the method according to the invention, a first catalyst containing from 5 to 60% by weight of the catalytic material is used.

Den andre katalysator består i det vesentlige av selve det katalytiske materiale. Denne katalysator kan som nevnt inneholde et bærermateriale dispergert i katalysatoren. Det er denne type katalysator som vanligvis er blitt benyttet alene ved oxydasjonsreaksjoner. Ulike former av denne andre katalysator, såsom tabletter, kuler og pellets, er kjent. The second catalyst essentially consists of the catalytic material itself. As mentioned, this catalyst can contain a carrier material dispersed in the catalyst. It is this type of catalyst that has usually been used alone in oxidation reactions. Various forms of this second catalyst, such as tablets, spheres and pellets, are known.

Ved en foretrukken utførelse av fremgangsmåten ifølge oppfinnelsen er det katalytiske materiale som anvendes i den første katalysator, og katalysatormaterialet som anvendes i den andre katalysator, i det vesentlige det samme materiale. Derved elimineres eventuell uheldig innvirkning av én aktiv bestanddel på en annen. In a preferred embodiment of the method according to the invention, the catalytic material used in the first catalyst and the catalyst material used in the second catalyst are essentially the same material. Thereby, any adverse effect of one active ingredient on another is eliminated.

De relative mengdeforhold mellom den første katalysator og den andre katalysator kan variere innen vide grenser. Det bør anvendes en tilstrekkelig stor mengde av den første katalysator for regulering av reaksjonstemperaturen, og det bør anvendes en tilstrekkelig stor mengde av den andre katalysator til å sikre høy omdannelse av olefinet (ca. 90%). Ved en foretrukken utførelse av fremgangsmåten ifølge oppfinnelsen anvendes den første katalysator i en mengde som fyller fra 10 til 80 volum% av reaktorrøret. The relative quantity ratios between the first catalyst and the second catalyst can vary within wide limits. A sufficiently large amount of the first catalyst should be used to regulate the reaction temperature, and a sufficiently large amount of the second catalyst should be used to ensure a high conversion of the olefin (approx. 90%). In a preferred embodiment of the method according to the invention, the first catalyst is used in an amount which fills from 10 to 80% by volume of the reactor tube.

Fremgangsmåten ifølge oppfinnelsen utføres i henhold til de parametere som er kjent i faget. Reaktantene, katalysatorene, reaksjonsbetingelsene, osv., er som for de i faget kjente fremgangsmåter. Molforholdet mellom molekylært oxygen og olefin er fra 0,7 til 4. Reaksjonen kan utføres ved atmosfære-trykk eller ved underatmosfærisk eller overatmosfærisk trykk. Temperaturene varierer fra 200° til 600°C, idet temperaturer fra 300° til 500°C foretrekkes. Kontakttiden kan være opp til 20 sekunder. The method according to the invention is carried out according to the parameters known in the art. The reactants, catalysts, reaction conditions, etc., are the same as for methods known in the art. The molar ratio between molecular oxygen and olefin is from 0.7 to 4. The reaction can be carried out at atmospheric pressure or at subatmospheric or superatmospheric pressure. The temperatures vary from 200° to 600°C, with temperatures from 300° to 500°C being preferred. The contact time can be up to 20 seconds.

På den vedføyede tegning viser fig. 1 et sideriss av In the attached drawing, fig. 1 a side view of

en acroleinreaktor med fast, stasjonær katalysator, mens fig. 2 viser et planriss, sett ovenfra, av acroleinreaktoren. an acrolein reactor with solid, stationary catalyst, while fig. 2 shows a top plan view of the acrolein reactor.

Av fig. 1 vil det sees at reaktoren består av en ytre mantel 1 som inneholder en rekke rør 2. Hvert rør inneholder' en første katalysator 3 og en andre katalysator 4 på en slik måte at reaktantene først kommer i kontakt med den første katalysator . From fig. 1 it will be seen that the reactor consists of an outer jacket 1 which contains a number of tubes 2. Each tube contains a first catalyst 3 and a second catalyst 4 in such a way that the reactants first come into contact with the first catalyst.

Reaktantene innføres gjennom rørledning 5 til fordelings-kammer 6, hvorfra reaktantene fordeles jevnt på rørene 2. Produktene oppsamles i et oppsamlingskammer 7 og føres der- The reactants are introduced through pipeline 5 to the distribution chamber 6, from where the reactants are distributed evenly on the pipes 2. The products are collected in a collection chamber 7 and conveyed there-

fra til utvinnings- og renseoperasjoner (ikke vist) gjennom rørledning 8. from to extraction and purification operations (not shown) through pipeline 8.

Reaktoren er utstyrt med en rører 9 som omrører en varmeoverføringsvæske 10. Varmeoverføringsvæsken 10 avkjøles ved hjelp av et varmevekslingssystem 12, 13, 14 og 15 og føres tilbake til reaktormantelen. The reactor is equipped with a stirrer 9 which stirs a heat transfer fluid 10. The heat transfer fluid 10 is cooled by means of a heat exchange system 12, 13, 14 and 15 and is fed back to the reactor jacket.

Sammenlingningseksempel A og eksempler 1 og 2 - Sammenligning mellom tablettert katalysator anvendt alene og belagt, henholds-vis tablettert katalysator anvendt sammen. Comparison example A and examples 1 and 2 - Comparison between tableted catalyst used alone and coated, respectively tableted catalyst used together.

Det ble konstruert en reaktor for anvendelse av fast, stasjonær katalysator, med en -4 m lang reaksjonssone, under anvendelse av rør av rustfritt stål av indre diameter 2,7 mm. A reactor was constructed for the use of solid, stationary catalyst, with a -4 m long reaction zone, using stainless steel tubes of internal diameter 2.7 mm.

En katalysator med sammensetningen 87,5% KQ 1Ni2 5Co^ ^Fe3BiPQ 5~ Mo o og 17,5% SiC) ble fremstilt i henhold til US patentskrift 3.746.657. Katalysatoren ble befridd for nitrogen ved 425°C, formet til tabletter med 0,5 cm diameter og kalsinert. En annen katalysator av samme sammensetning (hva den aktive bestanddel angår), men uten siliciumdioxyd, ble fremstilt og belagt på "Alundum"-kuler av diameter 0,32 mm. Denne belegning ble utført ved delvis å væte "Alundum"-kulene med vann, bringe kulene i kontakt med et pulver av det katalytiske materiale i rullende bevegelse og tørre de belagte bærerkuler. Den belagte katalysator inneholdt 33,3 vekt% av det katalytiske materiale. Den belagte katalysator ble kalsinert i 2 timer ved 5 38°C. A catalyst with the composition 87.5% KQ 1Ni2 5Co^ ^Fe3BiPQ 5~ Mo o and 17.5% SiC) was prepared according to US patent document 3,746,657. The catalyst was freed of nitrogen at 425°C, formed into tablets of 0.5 cm diameter and calcined. Another catalyst of the same composition (as far as the active ingredient is concerned), but without silicon dioxide, was prepared and coated on "Alundum" spheres of diameter 0.32 mm. This coating was accomplished by partially wetting the "Alundum" beads with water, contacting the beads with a powder of the catalytic material in a rolling motion, and drying the coated carrier beads. The coated catalyst contained 33.3% by weight of the catalytic material. The coated catalyst was calcined for 2 hours at 538°C.

Sammenligningseksempel A Comparative example A

Hele reaksjonssonen av en reaktor ble fylt med den The entire reaction zone of a reactor was filled with it

tabletterte katalysator alene. Intet av den belagte katalysator ble anvendt. Forsøk på å tilveiebringe en stabil acrolein-reaksjon ble gjort ved anvendelse av en rekke igangsetningsmetoder. Ikke ved noen av disse igangsetningsmetoder lykkedes det å opprettholde en stabil reaksjon. I hvert tilfelle oppsto der en ukontrollerbar temperaturøkning, og reaksjonen ble av-brudt av sikkerhetsgrunner. Det ble fastslått at den tabletterte katalysator ikke kunne anvendes alene i denne reaktor under tilfredsstillende reaktantpåmatningshastigheter. tableted catalyst alone. None of the coated catalyst was used. Attempts to provide a stable acrolein reaction were made using a variety of initiation methods. None of these initiation methods succeeded in maintaining a stable reaction. In each case, an uncontrollable increase in temperature occurred, and the reaction was interrupted for safety reasons. It was determined that the tableted catalyst could not be used alone in this reactor under satisfactory reactant feed rates.

Eksempel 1- 2 Example 1-2

Den samme reaktor som i sammenligningseksempel A ble fylt med en belagt katalysator og en tablettert katalysator, The same reactor as in comparative example A was filled with a coated catalyst and a tableted catalyst,

i henhold til oppfinnelsen. Den første halvdel av reaksjons-røret nærmest reaktorinnløpet ble fylt med den belagte katalysator, og den annen halvdel av reaksjonsrøret ble fylt med den tabletterte katalysator.Dette katalysatorsystem ble drevet under anvendelse av en påmatning av propylen/luft/damp på l/,5/6. For forsøket betegnet eksempel 1, som ble utført ved en temperatur av 345°C og en romhastighet på 1500 volum-deler reaktanter ved standard temperatur- og trykkbetingelser pr. time pr. volumdel reaktorvolum opptatt av katalysatoren, var omsetningen til nyttige produkter (målt som antall mol acrolein og acrylsyre produsert ganger 100 og dividert med antall mol propylen innmatet) på 90,8%. Av propylenpåmatningen var 96,3% omdannet. Ved forsøket betegnet eksempel 2, hvor det ble benyttet en temperatur av 355°C og en romhastighet på 1700, var utbyttet ved én enkelt gjennomgang 89,4% ved 95,5% propylenomdannelse. Dette eksempel 2 ga den største produksjons-hastighet i et gitt tidsrom. I begge tilfeller inneholdt pro-duktet mer enn 80% acrolein. according to the invention. The first half of the reaction tube nearest the reactor inlet was filled with the coated catalyst, and the second half of the reaction tube was filled with the tableted catalyst. This catalyst system was operated using a propylene/air/steam feed of 1/.5/ 6. For the experiment, example 1, which was carried out at a temperature of 345°C and a space velocity of 1500 parts by volume, denoted reactants at standard temperature and pressure conditions per hour per volume fraction reactor volume occupied by the catalyst, the conversion to useful products (measured as the number of moles of acrolein and acrylic acid produced times 100 and divided by the number of moles of propylene fed in) was 90.8%. Of the propylene feed, 96.3% was converted. In the experiment designated example 2, where a temperature of 355°C and a space velocity of 1700 were used, the yield in a single pass was 89.4% with 95.5% propylene conversion. This example 2 gave the greatest production rate in a given period of time. In both cases, the product contained more than 80% acrolein.

Eksempel 3 - Avvikende rørdiameter og annen beleggprosent. Example 3 - Deviating pipe diameter and other coating percentage.

Et reaksjonsrør med 2 cm innvendig diameter og lengde A reaction tube with an internal diameter and length of 2 cm

4 m ble fylt 1/3 med belagt katalysator mot innløpet og 2/3 4 m was filled 1/3 with coated catalyst towards the inlet and 2/3

med tablettert katalysator i resten av røret. Under anvendelse av en temperatur på 355°C, en påmatning av propylen/luft/damp på 1/8,6/6 og en romhastighet på ca. 1300 var enkeltgjennom-gangsomdannelsen til nyttige produkter 90,0% med en propylen-overføring på 95,5%. Forskjellen mellom temperaturen av badet og temperaturen av katalysatoren var 5 8°C. with tableted catalyst in the rest of the tube. Using a temperature of 355°C, a propylene/air/steam feed rate of 1/8.6/6 and a space velocity of approx. 1300, the single-pass conversion to useful products was 90.0% with a propylene carryover of 95.5%. The difference between the temperature of the bath and the temperature of the catalyst was 58°C.

På samme måte som vist i eksempelet ovenfor anvendes isobutylen i stedet for propylen i påmatningen, hvorved methacrolein og methacrylsyre dannes. Når man, på samme måte som vist for den gitte katalysator, anvender andre katalysatorer som vites å være anvendelige ved oxydasjon av olefiner, i belagt form og i kombinasjon med det i det vesentlige rene katalytiske materiale, oppnåes tilsvarende fordelaktive oxyda-sjonsprosesser. In the same way as shown in the example above, isobutylene is used instead of propylene in the feed, whereby methacrolein and methacrylic acid are formed. When, in the same way as shown for the given catalyst, other catalysts are used which are known to be applicable in the oxidation of olefins, in coated form and in combination with the essentially pure catalytic material, similarly beneficial oxidation processes are achieved.

Claims (5)

1. Fremgangsmåte ved fremstilling av umettede aldehyder ved omsetning av en blanding av propylen eller isobutylen med molekylært oxygen i en reaktor hvor reaktantene gjennom-strømmer ett eller flere parallelt koblede rør som er omgitt av et varmeoverføringsmedium og hvori det befinner seg en fast, stasjonær oxydasjonskatalysator, i hvilken det aktive katalytiske materiale består av blandingsoxyder inneholdende metallene Fe, Bi og Mo, idet det katalytiske materiale fortrinnsvis har sammensetningen: hvor A er et alkalimetall, et jordalkalimetall, Sm, Ta, Tl, In, Ga, B, P, As, Sb eller en blanding derav, B er nikkel, kobolt, magnesium, mangan eller en blanding derav, a er et tall fra 0 til 8, b er et tall fra 0 til 20, c er et tall fra 0,1 til 10, d er et tall fra 0,01 til 6, og x er det antall oxygenatomer som kreves for å tilfredsstille valensbehovene til de andre elementer som er tilstede, karakterisert ved at der- anvendes to katalysatorer i hvert av ett eller flere av rørene i reaktoren, idet den første katalysator er en katalysator bestående av en i det vesentlige inert bærer med en ytre overflate og et belegg av et katalytisk materiale som fester sterkt til den ytre overflate av bæreren, og den annen katalysator er en katalysator som består i det vesentlige av det katalytiske materiale, og ved at katalysatorene anordnes i rørene av fastlagsreaktoren på en slik måte at den første katalysator kommer i kontakt med reaktantene først, og den annen katalysator kommer i kontakt med reaktantene etter kontakten med den første katalysator.1. Process for the production of unsaturated aldehydes by reacting a mixture of propylene or isobutylene with molecular oxygen in a reactor where the reactants flow through one or more parallel connected tubes which are surrounded by a heat transfer medium and in which there is a fixed, stationary oxidation catalyst , in which the active catalytic material consists of mixed oxides containing the metals Fe, Bi and Mo, the catalytic material preferably having the composition: where A is an alkali metal, an alkaline earth metal, Sm, Ta, Tl, In, Ga, B, P, As, Sb or a mixture thereof, B is nickel, cobalt, magnesium, manganese or a mixture thereof, a is a number from 0 to 8, b is a number from 0 to 20, c is a number from 0.1 to 10, d is a number from 0.01 to 6, and x is the number of oxygen atoms required to satisfy the valency requirements of the other elements present, characterized by the fact that two catalysts are used in each of one or more of the tubes in the reactor, wherein the first catalyst is a catalyst consisting of a substantially inert support with an outer surface and a coating of a catalytic material which adheres strongly to the outer surface of the support, and the second catalyst is a catalyst consisting substantially of the catalytic material, and by that the catalysts are arranged in the tubes of the fixed bed reactor in such a way that the first catalyst comes into contact with the reactants first, and the second catalyst comes into contact with the reactants after contact with the first catalyst. 2. Fremgangsmåte ifølge krav 1, karakterisert ved at der som det katalytiske materiale av den første katalysator og som det katalytiske materiale av den annen katalysator anvendes i det vesentlige det samme materiale.2. Method according to claim 1, characterized in that essentially the same material is used as the catalytic material of the first catalyst and as the catalytic material of the second catalyst. 3. Fremgangsmåte ifølge krav 1 eller 2, karakterisert ved at der anvendes en første katalysator som inneholder 5 - 60% katalytisk materiale.3. Method according to claim 1 or 2, characterized in that a first catalyst containing 5 - 60% catalytic material is used. 4. Fremgangsmåte ifølge krav 1-3, karakterisert ved at den første katalysator anvendes i en mengde som fyller fra 10 til 80 volumprosent av reaktorrøret eller -rørene.4. Method according to claims 1-3, characterized in that the first catalyst is used in an amount which fills from 10 to 80 percent by volume of the reactor tube or tubes. 5. Fremgangsmåte ifølge krav 1-4, karakterisert ved at den første katalysator anvendes i form av kuleformede partikler.5. Method according to claims 1-4, characterized in that the first catalyst is used in the form of spherical particles.
NO761326A 1975-04-21 1976-04-20 PROCEDURE FOR THE PREPARATION OF Saturated Aldehydes by Oxidation of Propylene or Isobutylene in the Presence of an Oxidation Catalyst NO146707C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US57012675A 1975-04-21 1975-04-21

Publications (3)

Publication Number Publication Date
NO761326L NO761326L (en) 1976-10-22
NO146707B true NO146707B (en) 1982-08-16
NO146707C NO146707C (en) 1982-11-24

Family

ID=24278352

Family Applications (1)

Application Number Title Priority Date Filing Date
NO761326A NO146707C (en) 1975-04-21 1976-04-20 PROCEDURE FOR THE PREPARATION OF Saturated Aldehydes by Oxidation of Propylene or Isobutylene in the Presence of an Oxidation Catalyst

Country Status (20)

Country Link
JP (1) JPS51127013A (en)
AT (1) AT343091B (en)
BE (1) BE839955A (en)
BR (1) BR7602429A (en)
CA (1) CA1065341A (en)
CH (1) CH619442A5 (en)
CS (1) CS193541B2 (en)
DD (1) DD124592A5 (en)
DE (1) DE2611249A1 (en)
ES (1) ES446290A1 (en)
FR (1) FR2308609A1 (en)
GB (1) GB1529384A (en)
IN (1) IN142430B (en)
IT (1) IT1058418B (en)
MX (1) MX3250E (en)
NL (1) NL7604153A (en)
NO (1) NO146707C (en)
PT (1) PT64923B (en)
RO (1) RO69673A (en)
YU (1) YU72876A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1523772A (en) * 1974-07-22 1978-09-06 Standard Oil Co Oxidation catalysts
IL55073A (en) * 1977-07-28 1982-01-31 Standard Oil Co Catalysts for the oxidation and ammoxidation of olefins
CA1133505A (en) * 1977-07-28 1982-10-12 Andrew T. Guttmann Process for the oxidation of olefins
JPS5517306A (en) * 1978-07-20 1980-02-06 Standard Oil Co Olefin oxidation using catalyst containing various promoter elements
DE3125061C2 (en) * 1981-06-26 1984-03-15 Degussa Ag, 6000 Frankfurt Process for the production of acrolein or methacrolein by catalytic oxidation of propylene or isobutylene or tertiary butanol in oxygen-containing gas mixtures
SG50687A1 (en) * 1989-12-06 1998-07-20 Nippon Catalytic Chem Ind Process for producing methacrolein and methacrylic acid
JPH0784400B2 (en) * 1990-04-03 1995-09-13 株式会社日本触媒 Process for producing unsaturated aldehyde and unsaturated acid
KR940002982B1 (en) * 1990-06-06 1994-04-09 미쯔이도오아쯔가가꾸 가부시기가이샤 Method for preparing acrolein or methacrolein
DE4023239A1 (en) * 1990-07-21 1992-01-23 Basf Ag METHOD FOR CATALYTIC GAS PHASE OXIDATION OF PROPEN OR ISO-BUTEN TO ACROLEIN OR METHACROLEIN
US5245083A (en) * 1991-02-27 1993-09-14 Mitsui Toatsu Chemicals, Inc. Method for preparing methacrolein and method for preparing a catalyst for use in the preparation of methacrolein
DE4132263A1 (en) * 1991-09-27 1993-04-01 Basf Ag METHOD FOR CATALYTIC GAS PHASE OXIDATION FROM ACROLEIN TO ACRYLIC ACID
DE4431957A1 (en) * 1994-09-08 1995-03-16 Basf Ag Process for the catalytic gas-phase oxidation of propene to acrolein
JP3943311B2 (en) 2000-05-19 2007-07-11 株式会社日本触媒 Process for producing unsaturated aldehyde and unsaturated carboxylic acid
JP4867129B2 (en) 2003-12-15 2012-02-01 三菱化学株式会社 Method for producing (meth) acrylic acid or (meth) acrolein
JP2005213179A (en) * 2004-01-29 2005-08-11 Mitsubishi Rayon Co Ltd Catalyst layer and method for forming the same, fixed bed tubular reactor, method for producing methacrolein or methacrylic acid
US20050171365A1 (en) * 2004-02-03 2005-08-04 Grey Roger A. Epoxidation process using a mixed catalyst system
JP5130562B2 (en) * 2007-11-06 2013-01-30 日本化薬株式会社 Method for producing methacrolein and / or methacrylic acid
JP2020093216A (en) * 2018-12-12 2020-06-18 株式会社Ihi Catalyst reaction device

Also Published As

Publication number Publication date
NO761326L (en) 1976-10-22
GB1529384A (en) 1978-10-18
NL7604153A (en) 1976-10-25
AT343091B (en) 1978-05-10
BR7602429A (en) 1976-10-19
FR2308609A1 (en) 1976-11-19
CH619442A5 (en) 1980-09-30
ATA252676A (en) 1977-09-15
PT64923B (en) 1977-08-24
CA1065341A (en) 1979-10-30
PT64923A (en) 1976-04-01
YU72876A (en) 1982-05-31
ES446290A1 (en) 1977-06-16
MX3250E (en) 1980-08-06
DE2611249A1 (en) 1976-11-04
IN142430B (en) 1977-07-09
FR2308609B1 (en) 1980-10-03
NO146707C (en) 1982-11-24
IT1058418B (en) 1982-04-10
JPS51127013A (en) 1976-11-05
RO69673A (en) 1981-08-17
DD124592A5 (en) 1977-03-02
BE839955A (en) 1976-07-16
CS193541B2 (en) 1979-10-31

Similar Documents

Publication Publication Date Title
NO146707B (en) PROCEDURE FOR THE PREPARATION OF Saturated Aldehydes by Oxidation of Propylene or Isobutylene in the Presence of an Oxidation Catalyst
US4438217A (en) Catalyst for oxidation of propylene
EP1156027B1 (en) A process for producing unsaturated aldehydes and unsaturated carboxylic acids
US7667072B2 (en) Method for vapor phase catalytic oxidation
US5929275A (en) Catalyst and process for producing unsaturated aldehyde and unsaturated acid
EP0102641B1 (en) Catalyst for manufacturing methacrolein
CN101495229B (en) Multi-metal oxide catalyst and method for producing (meth)acrylic acid by using the same
KR100904134B1 (en) Method of producing unsaturated aldehyde and/or unsaturated acid
US4954650A (en) Method for production of methacrylic acid
US5149884A (en) Tube bundle reactor, use thereof in exothermic organic reactions, and preparation of ketones and aldehydes using same
US20070021632A1 (en) Gas-phase catalytic oxidation process and process for producing (METH) acrolein or (METH) acrylic acid
WO1993000166A1 (en) Process for the transformation of vanadium/phosphorus mixed oxide catalyst precursors into active catalysts for the production of maleic anhydride
EP1055662A1 (en) A process for producing acrylic acid
JP2008535784A (en) Process for producing unsaturated aldehyde and / or unsaturated acid
EP0027351B1 (en) Oxidation catalysts and process for the preparation of methacrolein by vapour phase oxidation
JP2007509051A (en) Method for producing unsaturated aldehyde and / or unsaturated fatty acid
CA2236614A1 (en) Continuous industrial production of unsaturated aliphatic aldehydes in a tube bundle reactor
US4377534A (en) Production of unsaturated nitriles
NO119083B (en)
US3883573A (en) Commercial fixed-bed acrylonitrile or methacrylonitrile
NO147068B (en) PROCEDURE FOR THE PREPARATION OF ACRYLIC ACID AND METACRYLIC ACID BY REPLACING PROPYLEN OR ISOBUTYLENE WITH MOLECYCLES OXYGEN
CN100424064C (en) Process for producing (meth)acrylic acid or (meth)acrolein
JPH0211307B2 (en)
JPH0679666B2 (en) Catalyst for methacrylic acid synthesis and its production method with excellent reproducibility
EP0112323B1 (en) Maleic anhydride production with high butane feed concentration