NO145337B - ANALOGY PROCEDURE FOR THE PREPARATION OF PHARMACOLOGICALLY ACTIVE METHYLAMINE DERIVATIVES - Google Patents

ANALOGY PROCEDURE FOR THE PREPARATION OF PHARMACOLOGICALLY ACTIVE METHYLAMINE DERIVATIVES Download PDF

Info

Publication number
NO145337B
NO145337B NO771941A NO771941A NO145337B NO 145337 B NO145337 B NO 145337B NO 771941 A NO771941 A NO 771941A NO 771941 A NO771941 A NO 771941A NO 145337 B NO145337 B NO 145337B
Authority
NO
Norway
Prior art keywords
silicon
silicon carbide
reaction
per hour
product
Prior art date
Application number
NO771941A
Other languages
Norwegian (no)
Other versions
NO145337C (en
NO771941L (en
Inventor
Charles Pigerol
Jean-Claude Vernieres
Pierre Eymard
Madeleine Broll
Original Assignee
Sanofi Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanofi Sa filed Critical Sanofi Sa
Publication of NO771941L publication Critical patent/NO771941L/en
Publication of NO145337B publication Critical patent/NO145337B/en
Publication of NO145337C publication Critical patent/NO145337C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D203/00Heterocyclic compounds containing three-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D203/04Heterocyclic compounds containing three-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D203/06Heterocyclic compounds containing three-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D203/08Heterocyclic compounds containing three-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/04Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/027Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements containing only one hetero ring
    • C07D295/03Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements containing only one hetero ring with the ring nitrogen atoms directly attached to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/145Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/15Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Analogifremgangsmåte for fremstilling av farmakologisk aktive metylamin-derivater.Analogous process for the preparation of pharmacologically active methylamine derivatives.

Description

Fremgangsmåte til fremstilling av siliciumkarbid eller blandinger som inneholder dette. Process for the production of silicon carbide or mixtures containing this.

Oppfinnelsen vedrører en ny fremgangsmåte til fremstilling av siliciumkarbid, spesielt til fremstilling av finkornet siliciumkarbid, idet fremgangsmåten gjen-nomføres i gassfase. The invention relates to a new method for the production of silicon carbide, in particular for the production of fine-grained silicon carbide, the method being carried out in the gas phase.

Den tekniske fremstilling av silicium-karbid foregår ved reduksjon av kvartssand med koks under tilsetning av koksalt og sagmel således at en opplagring av disse stoffer oppvarmes ved hjelp av elektrisk motstandoppvarmning ved en temperatur på ca. 2000° C. Ved denne temperatur omsetter utgangsblandingen seg i sterk en-doterm reaksjon ifølge bruttoligningen Si02 + 3C=SiC + 2CO til siliciumkarbid og karbonmonoksyd. Driften foregår diskontinu-erlig og det unnvikende karbonmonoksyd avbrennes. Etter ovnens avkjøling og av-dekning av de øvre skikt samles det stykk - formede siliciumkarbid og underkastes for sin anvendelse en rekke prosesser som opp-brytning, siktning, maling, vasking, luting, tørkning og klassifisering. The technical production of silicon carbide takes place by reducing quartz sand with coke while adding coke salt and sawdust so that a storage of these substances is heated by means of electric resistance heating at a temperature of approx. 2000° C. At this temperature, the starting mixture converts in a strong endothermic reaction according to the gross equation Si02 + 3C=SiC + 2CO to silicon carbide and carbon monoxide. The operation takes place discontinuously and the escaping carbon monoxide is burned off. After the furnace has cooled and the upper layers have been uncovered, the piece-shaped silicon carbide is collected and, for its use, subjected to a series of processes such as breaking up, screening, painting, washing, leaching, drying and classification.

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av siliciumkarbid eller blandinger av siliciumkarbid med ikke omsatt siliciumoksyd og fremgangsmåten er karakterisert ved at man overfører en eller flere oksydiske siliciumforbindelser i gassfase og omsetter med minst én eller flere likeledes i gassfase befinnende karbonholdige forbindelser under mest mulig fullstendig utelukkelse av luft og fuktighet og eventuelt atskiller det dannede siliciumkarbid på i og for seg kjent måte. The invention relates to a method for producing silicon carbide or mixtures of silicon carbide with unreacted silicon oxide and the method is characterized by transferring one or more oxidic silicon compounds in the gas phase and reacting with at least one or more carbonaceous compounds also in the gas phase with as much as possible complete exclusion of air and moisture and optionally separates the formed silicon carbide in a manner known per se.

Ved gjennomføring av fremgangsmåten ifølge oppfinnelsen kan det fordelaktig gåes frem således at man først overfører den oksydiske siliciumforbindelse og den karbonholdige forbindelse i gassformet tilstand så sant de ikke allerede foreligger i gassformet tilstand og i denne tilstand, altså ved høye temperaturer, blander de seg med hverandre hurtig og intenst i et reaksjonsrom under luftutelukkelse idet det er uvesentlig om omsetningen finner sted helt eller delvis i gassfasen. Det er bare viktig at de to utgangsstoffer ved prosessens begynnelse primært overføres i gassformig tilstand. Det derved dannede finfordelte siliciumkarbid bortføres ved hjelp av de ved reaksjonen dannede gasser såvel som de eventuelt ikke omsatte gassformede karbonholdige forbindelser eller andre tilsetningsgasser og atskilles etter avkjøling ved hjelp av vanlige utskillings-innretninger fra gasstrømmen. When carrying out the method according to the invention, it can advantageously proceed in such a way that the oxidic silicon compound and the carbonaceous compound are first transferred in a gaseous state, as long as they are not already in a gaseous state and in this state, i.e. at high temperatures, they mix with each other fast and intense in a reaction chamber under exclusion of air, as it is immaterial whether the reaction takes place wholly or partly in the gas phase. It is only important that the two starting substances at the start of the process are primarily transferred in a gaseous state. The thus formed finely divided silicon carbide is carried away by means of the gases formed by the reaction as well as the possibly unreacted gaseous carbonaceous compounds or other additive gases and is separated after cooling by means of usual separation devices from the gas stream.

Siliciumkarbidets utbytte er desto høy-ere jo bedre sammenblandingen av den gassformede oksydiske siliciumforbindelse og den gassformede karbonforbindelse fo-retas. Sammenblandingen av reaksjons-deltakerne foregår hensiktsmessig direkte ved gasstrømmens utgangssted fra ovnen eller reaksjonskaret hvori disse frembringes, da den ved dette sted har sin høyeste temperatur. Fremadskridende avkjøling før avslutning av reaksjonen med den karbonholdige forbindelse fører til et mer eller mindre stort innhold av ikke omsatt siliciumoksyd i sluttproduktet. The yield of the silicon carbide is the higher the better the mixing of the gaseous oxidic silicon compound and the gaseous carbon compound is carried out. The mixing of the reaction participants conveniently takes place directly at the exit point of the gas flow from the furnace or the reaction vessel in which they are produced, as it has its highest temperature at this point. Progressive cooling before termination of the reaction with the carbonaceous compound leads to a more or less large content of unreacted silicon oxide in the final product.

Ikke omsatte deler av siliciumoksyder Unreacted parts of silicon oxides

i sluttproduktet lar seg, hvis det ønskes en mest mulig ren siliciumkarbid som sluttprodukt, fjerne på kjent måte, f. eks. ved behandling med oppløsningsmiddel som natronlut og lignende hvorved alle de i prosessen ifølge oppfinnelsen opptredende siliciumforbindelser foruten SiC bringes i oppløsning. Etter utvaskning med vann blir det tilbake rent siliciumkarbid. in the end product can, if the purest possible silicon carbide as an end product is desired, be removed in a known manner, e.g. by treatment with a solvent such as caustic soda and the like whereby all the silicon compounds appearing in the process according to the invention apart from SiC are brought into solution. After washing out with water, pure silicon carbide remains.

Som oksydiske siliciumforbindelser kommer det ved fremgangsmåten ifølge oppfinnelsen til anvendelse f. eks. siliciummonoksyd, siliciumdioksyd eller en blanding av begge oksyder. Siliciummonoksyd anvendes foretrukket. Gassformet siliciummonoksyd kan frembringes på kjent måte ved oppvarmning av en blanding av et SiO.-holdig råstoff som kvarts, kvartssand eller et silikat, som f. eks. et alumi-niumsilikat og et reduserende stoff som f. eks. koks, sot, silicium, aluminium, mag-nesium ved temperaturer over 1400° C. Gassformet siliciumdioksyd kan fremstilles ved oppvarmning av kvarts til temperaturer over 2000° C. En blanding av gassformet siliciummonoksyd og gassformet siliciumdioksyd fåes f. eks. når en blanding av kvarts og koks oppvarmes med et over-skudd av kvarts i elektrisk lysbue. As oxidic silicon compounds, the method according to the invention uses e.g. silicon monoxide, silicon dioxide or a mixture of both oxides. Silicon monoxide is preferably used. Gaseous silicon monoxide can be produced in a known manner by heating a mixture of a SiO.-containing raw material such as quartz, quartz sand or a silicate, such as e.g. an aluminum silicate and a reducing substance such as e.g. coke, carbon black, silicon, aluminium, magnesium at temperatures above 1400° C. Gaseous silicon dioxide can be produced by heating quartz to temperatures above 2000° C. A mixture of gaseous silicon monoxide and gaseous silicon dioxide is obtained, e.g. when a mixture of quartz and coke is heated with an excess of quartz in an electric arc.

Det er også i den senere tid beskrevet et siliciumoksyd med sammensetningen SL03. Om dette danner seg intermediært A silicon oxide with the composition SL03 has also recently been described. If this forms intermediately

i en SiO- og SiO-holdig gasstrøm er ennu ikke kjent. Det synes imidlertid ved fore-liggende oppfinnelse ikke ha noen betyd-ning om det dannes et slikt eller også et annet lavere siliciumoksyd da det som sluttprodukt slik det ble fastslått etter omsetningen av den siliciumoksydholdige gasstrøm med en karbonholdig forbindelse oppstår siliciumkarbid. in a SiO- and SiO-containing gas stream is not yet known. In the present invention, however, it does not seem to matter whether such or another lower silicon oxide is formed, as the final product, as determined after the reaction of the silicon oxide-containing gas stream with a carbonaceous compound, is silicon carbide.

Som karbonholdige forbindelser kan det ikke bare anvendes alifatiske og/eller aromatiske og/eller blandet alifatisk-aromatiske hydrokarboner, men også slike som inneholder oksygen i molekylet. Ved under-søkelsen av et stort antall karbonholdige forbindelser, har det vist seg at dannelsen av siliciumkarbid alltid inntrer foretrukket når forholdet mellom karbon og oksygen minst er lik 1 eller større. Som spesielt egnet har de lavere alifatiske hydrokarboner vist seg. As carbon-containing compounds, not only aliphatic and/or aromatic and/or mixed aliphatic-aromatic hydrocarbons can be used, but also those containing oxygen in the molecule. In the investigation of a large number of carbon-containing compounds, it has been shown that the formation of silicon carbide always occurs preferentially when the ratio between carbon and oxygen is at least equal to 1 or greater. The lower aliphatic hydrocarbons have proven to be particularly suitable.

Eksempler på karbonholdige forbindelser er alifatiske eller aromatiske hydrokarboner, alkoholer, ketoner, etere, karbonmonoksyd, lett- og tungolje osv. Examples of carbon-containing compounds are aliphatic or aromatic hydrocarbons, alcohols, ketones, ethers, carbon monoxide, light and heavy oil, etc.

De i høytemperaturreaksjonsrommet dannede gassformede siliciumoksyder kan uttre fra gassrommet under det egnede reaksjonstrykk og utføres ved hjelp av en på et egnet sted inn i reaksj onsrommet innmatet gasstrøm som selvsagt ikke bør tre i uønsket reaksjon med siliciumoksy-dene. The gaseous silicon oxides formed in the high-temperature reaction chamber can emerge from the gas chamber under the suitable reaction pressure and be carried out by means of a gas stream fed into the reaction chamber at a suitable location, which of course should not enter into an unwanted reaction with the silicon oxides.

Mens fordampningen av kvarts krever meget høye temperaturer lar gassformet siliciumoksyd seg som bekjent allerede fremstille ved temperaturer over 1400° C. Det er kjent tekniske anordninger som til-later ved kontinuerlig tilførsel av f. eks. en blanding av kvarts og kull å frembringe en kontinuerlig strøm av gassformet siliciummonoksyd. Av denne grunn gir man siliciummonoksydet fortrinn ved gjennom-føring av fremgangsmåten ifølge oppfinnelsen. While the evaporation of quartz requires very high temperatures, gaseous silicon oxide can already be produced at temperatures above 1400° C. There are known technical devices which allow, by continuous supply of e.g. a mixture of quartz and coal to produce a continuous stream of gaseous silicon monoxide. For this reason, silicon monoxide is preferred when carrying out the method according to the invention.

En spesiell fordel ved fremgangsmåten ifølge oppfinnelsen ligger deri at den gjen-nomføres kontinuerlig hvilket ikke kunne oppnås ved de tidligere i teknikken an-vendte fremgangsmåter til silicium-karbid fremstilling, tross forskjellige anstrengel-ser. En annen fordel ved fremgangsmåten ifølge oppfinnelsen ligger deri at karbon-monoksydet som opptrer ved prosessen, ut-vinnes uten ytterligere omkostninger og kan benyttes for oppvarmning- eller kje-miske formål hvilket ikke var mulig ved de tidligere teknisk gjennomførte fremgangsmåter. En ytterligere fordel ved fremgangsmåten ligger deri at siliciumkarbidet med en gang ved dets dannelse opptrer i en finkornet form hvorved de tidligere nød-vendige og omstendelige oppbrytnings-, malings- og siktningsprosesser kan bort-falle. Dessuten er det siliciumkarbid som er fremstilt ifølge den nye fremgangsmåte, praktisk talt fri for jern- og aluminium-forbindelser av hvilken grunn den under-tiden ved de tidligere fremgangsmåter gjennomførte vasking med svovel ikke er nødvendig. A particular advantage of the method according to the invention lies in the fact that it is carried out continuously, which could not be achieved with the methods previously used in the art for silicon carbide production, despite various efforts. Another advantage of the method according to the invention lies in the fact that the carbon monoxide that occurs during the process is extracted without additional costs and can be used for heating or chemical purposes, which was not possible with the previously technically implemented methods. A further advantage of the method lies in the fact that the silicon carbide immediately upon its formation appears in a fine-grained form whereby the previously necessary and time-consuming breaking-up, grinding and sieving processes can be dispensed with. Furthermore, the silicon carbide produced according to the new method is practically free of iron and aluminum compounds, for which reason the washing with sulfur sometimes carried out in the previous methods is not necessary.

Det siliciumkarbid som fremkommer ved fremgangsmåten ifølge oppfinnelsen har følgende data: The silicon carbide produced by the method according to the invention has the following data:

Spesifikk overflate: Specific Surface:

50—300 nr/g (målt ifølge B.R.T.) 50-300 nr/g (measured according to B.R.T.)

Volumtetthet: Volume density:

10—50 g/l 10-50 g/l

Sammenrystet tetthet (Riitteldichte) Shaken density (Riitteldichte)

15—80 g/l 15-80 g/l

Krystallstruktur: Crystal Structure:

kubisk (3 - SiC cubic (3 - SiC

(Det handelsvanlige SiC, «karborund», er a-SiC med heksagonal og rhombo- (The commercial SiC, "carborund", is a-SiC with hexagonal and rhombo-

edriske strukturer. Man kan imidlertid eksperimentelt også fremstille kubisk edric structures. However, one can experimentally also produce cubic ones

p-SiC) p-SiC)

Fuktbarhet: Wettability:

meget godt fuktbart med polare og upolare uorganiske og organiske væs-ker. very well wettable with polar and non-polar inorganic and organic liquids.

Partikkelform og partikkelstørrelse: Particle shape and particle size:

1) Tynne fiberlignende partikler for det meste krummet f. eks. ofte forgre-net. Lengde inntil 1500 millimikron, for det meste mellom 50 og 800 millimikron. Tykkelse inntil 60 millimikron, for det meste mellom 5 og 15 millimikron. 2) Runde partikler med diametere inntil 600 millimikron, for det meste mellom 10 og 200 millimikron, 3) Krystallografisk begrensede partikler av dimensjoner inntil 500 millimikron, for det meste inntil 250 millimikron. Under tiden foreligger krystal-lene (monokrystaller) i form av gan-ske tynne elektrontransparante små 1) Thin fiber-like particles mostly curved, e.g. often branched. Length up to 1500 millimicrons, mostly between 50 and 800 millimicrons. Thickness up to 60 millimicrons, mostly between 5 and 15 millimicrons. 2) Round particles with diameters up to 600 millimicrons, mostly between 10 and 200 millimicrons, 3) Crystallographically limited particles of dimensions up to 500 millimicrons, mostly up to 250 millimicrons. In the meantime, the crystals (monocrystals) are in the form of quite thin electron-transparent small ones

plater. plates.

For det meste foreligger alle 3 partikkel-former ved siden av hverandre. Man kan imidlertid influere på reaksjonen således at f. eks. fiberdelen eller den krystallinske del overveier. Prosentuelle vektsangivelser hertil er ikke mulig. For the most part, all 3 particle forms are present next to each other. However, one can influence the reaction so that, e.g. the fibrous part or the crystalline part predominates. Percentage weight statements for this are not possible.

Det fineste siliciumkarbid som fåes i handelen for tiden har følgende data: The finest silicon carbide currently available in the trade has the following data:

Partikkelstørrelse: Particle size:

inntil 6000 millimikron for det meste mellom 500 og 3000 millimikron. Partikkelform: Uregelmessige bruddstykker (male-prosess). up to 6000 millimicrons mostly between 500 and 3000 millimicrons. Particle shape: Irregular fragments (grinding process).

Krystallstruktur: Crystal Structure:

heksagonal a-SiC. hexagonal a-SiC.

Spesifikk overflate: Specific Surface:

2 m<3>/g (B.E.T.). 2 m<3>/g (B.E.T.).

Sammenrystet tetthet: (Riitteldichte) Shaken density: (Riitteldichte)

955 g/l. 955 g/l.

Eksempel 1. Example 1.

Fra en blanding av kvartssand og koks i vektforhold 5:1 frembringes i en elektrisk lysbueovn en blanding av gassformet siliciummonoksyd og karbonoksyd. Gass-mengden som trer ut fra ovnen utgjør 4,0 kg SiO pr. time og 2,5 kg CO pr. time. SiO/CO-gasstrålens temperatur ligger ved ca. 2000—2500° C. Ved hjelp av en avkjølt dysering innblåses i SiO/CO-gasstrålen under god sammenblanding og under utelukkelse av luft, 3,0 kg 100 pst.-ig metan. Reaksj onsproduktet som oppstår i fineste for-deling føres bort fra reaksjonen ved hjelp av det fra ovnen uttredende karbonmonoksyd ved hjelp av de ved reaksjonen dannede gasser, såvel som ved ikke omsatt metan og utskilles etter avkjøling i en var-meutveksler i en gruppe på to sentrifugal-utskillere. Fra utskillerne utføres pr. time 3,78 kg material som inneholder 2,28 kg SiC, 1,49 kg ikke omsatt SiO og 0,01 kg sot. From a mixture of quartz sand and coke in a weight ratio of 5:1, a mixture of gaseous silicon monoxide and carbon oxide is produced in an electric arc furnace. The amount of gas coming out of the furnace amounts to 4.0 kg of SiO per hour and 2.5 kg CO per hour. The temperature of the SiO/CO gas jet is approx. 2000—2500° C. Using a cooled nozzle, 3.0 kg of 100% methane is blown into the SiO/CO gas jet with good mixing and with the exclusion of air. The reaction product that occurs in the finest distribution is carried away from the reaction with the help of the carbon monoxide emerging from the furnace with the help of the gases formed during the reaction, as well as with unreacted methane and is separated after cooling in a heat exchanger in a group of two centrifugal separators. From the separators, per hour 3.78 kg material containing 2.28 kg SiC, 1.49 kg unreacted SiO and 0.01 kg soot.

Produktet har lysegrå farve og den spesifikke overflate er 120 mVg, en volumtetthet på 36 g/l og viser i røntgendia-gram linjene for det kubiske (3-SiC (ved siden av elementært silicium og amorft siliciumdioksyd, som stammer fra den del-vise disproporsjonering av det faste SiO). Elektronemikroskopiske undersøkelser viser fiberformede partikler som under tiden er krummede og forgrenede med lengder inntil 1000 millimikron og diametere inntil 20 millimikron såvel som runder partikler med diameter inntil 400 millimikron og dessuten krystallografisk begrensede partikler med dimensjoner inntil 400 millimikron. De forskjellige partikler foreligger i omtrent sammenlignbare mengder. The product has a light gray color and the specific surface is 120 mVg, a volume density of 36 g/l and shows in the X-ray diagram the lines for the cubic (3-SiC (next to elemental silicon and amorphous silicon dioxide, which originates from the partial disproportionation of the solid SiO).Electron microscopic investigations show fiber-shaped particles that are currently curved and branched with lengths up to 1000 millimicrons and diameters up to 20 millimicrons as well as round particles with diameters up to 400 millimicrons and also crystallographically limited particles with dimensions up to 400 millimicrons. different particles are present in approximately comparable quantities.

Eksempel 2. Example 2.

5,0 kg av det ifølge eksempel 1 dannede produkt behandles i fire timer under omrøring ved 90—100° C med 13 liter 30 pst.-ig natronlut. Herved går det ikke omsatte siliciummonoksyd i oppløsning under dannelse av vannglassoppløsning og utvikling av hydrogen. Det tilbakeblivende siliciumkarbid frafiltreres, vaskes og tør-kes. Det fåes 2,8 kg siliciumkarbid. 5.0 kg of the product formed according to example 1 is treated for four hours with stirring at 90-100°C with 13 liters of 30% caustic soda. Hereby, the unreacted silicon monoxide dissolves, forming a water glass solution and evolving hydrogen. The remaining silicon carbide is filtered off, washed and dried. 2.8 kg of silicon carbide is obtained.

Det rene produkt er en lysegrå farve og har spesifikk overflate på 205 m2 pr. g og viser i røntgendiagram bare linjene av kubisk (5-SiC. Den elektronemikroskopiske undersøkelse viser at et lignende funn som ved råproduktet som fåes ifølge eksempel 1 imidlertid overveier nå deler av fiber-formet og krystallinske partikler. The pure product is a light gray color and has a specific surface area of 205 m2 per g and shows in the X-ray diagram only the lines of cubic (5-SiC. The electron microscopic examination shows that a similar finding as in the raw product obtained according to example 1, however, now considers parts of fiber-shaped and crystalline particles.

Eksempel 3. Example 3.

En ifølge eksempel 1 anbragt gass-strøm og 0,4 kg SiO pr. time og 2,5 kg CO pr. time bringes under utelukkelse av luft til reaksjon med en blanding av 3,5 Nm<3 >metan pr. time og 3,0 Nm<3> reaksjonsavgass pr. time. Reaksjonsavgassen uttas fra av-gassen bak sentrifugalutskilleren etter ut-skillelse av de faste reaksjonsprodukter og inneholder 28 pst. metan, 21 pst. karbonmonoksyd og 51 pst. hydrogen. Det fremstilles pr. time 3,8 kg reaksjonsprodukt med et innhold av 2,1 kg siliciumkarbid. A gas flow arranged according to example 1 and 0.4 kg SiO per hour and 2.5 kg CO per hour is brought under the exclusion of air to react with a mixture of 3.5 Nm<3 >methane per hour and 3.0 Nm<3> reaction exhaust gas per hour. The reaction exhaust gas is taken from the exhaust gas behind the centrifugal separator after separation of the solid reaction products and contains 28 per cent methane, 21 per cent carbon monoxide and 51 per cent hydrogen. It is produced per hour 3.8 kg of reaction product with a content of 2.1 kg of silicon carbide.

Produktets farve er grå, den spesifikke overflate utgjør 104 m<2> pr. gram. The product's color is grey, the specific surface is 104 m<2> per gram.

Eksempel 4. Example 4.

Av en blanding av malt kvarts og ned-brutt silicium i vektsforhold 2,1 : 1 frembringes i en elektrisk lysbueovn, gassformet siliciummonoksyd. Gasstrålen som trer ut av den elektriske ovn med temperatur på 2500° C og som inneholder 8,5 kg SiO pr. time omsettes med en gassblanding av 4,5 Nn<r> metan pr. time og 2,0 Nm<3> hydrogen pr. time. Fra utskillerne fåes pr. time 8,08 kg produkt med 5,25 kg siliciumkarbid. From a mixture of ground quartz and decomposed silicon in a weight ratio of 2.1:1, gaseous silicon monoxide is produced in an electric arc furnace. The gas jet that exits the electric furnace at a temperature of 2500° C and which contains 8.5 kg of SiO per hour is reacted with a gas mixture of 4.5 Nn<r> methane per hour and 2.0 Nm<3> hydrogen per hour. From the separators, per hour 8.08 kg of product with 5.25 kg of silicon carbide.

Eksempel 5. Example 5.

En ifølge eksempel 1 frembragt gass-strøm av 4,0 kg SiO pr. time og 2,5 kg CO pr. time omsettes under utelukkelse av luft med 14,5 Nm<3> etylen pr. time. Det fåes pr. time 4,92 kg produkt med 2,16 kg siliciumkarbid, 1,63 kg ikke-omsatt siliciummonoksyd og 1,13 kg sot. A gas flow of 4.0 kg SiO per hour and 2.5 kg CO per hour is converted under the exclusion of air with 14.5 Nm<3> ethylene per hour. It is available per hour 4.92 kg of product with 2.16 kg of silicon carbide, 1.63 kg of unreacted silicon monoxide and 1.13 kg of soot.

Produktet er sort, har en spesifikk overflate på 57 m<2> pr. g og en sammenrystet tetthet på 80 g pr. 1. Det inneholder hovedsakelig krystallinske og runde partikler med dimensjoner inntil 250 millimikron. Delen av fiberformede partikler er meget liten. SiC er ifølge røntgendiagram-met kubisk (3-SiC. The product is black, has a specific surface of 57 m<2> per g and a shaken density of 80 g per 1. It mainly contains crystalline and round particles with dimensions up to 250 millimicrons. The portion of fibrous particles is very small. According to the X-ray diagram, SiC is cubic (3-SiC.

Eksempel 6. Example 6.

En ifølge eksempel 1 frembragt gass-strøm av 4,0 kg SiO pr. time og 2,5 kg CO pr. time bringes under utelukkelse av luft til reaksjon med en gassblanding av 4 Nm<3 >propylen pr. time og 8 Nm<3> hydrogen pr. time. Propylen som tas fra en bombe over-føres ved hjelp av ytre varmetilførsel fra flytende i gassformet tilstand. Reaksjons-produktet pr. time fremkommer med en mengde på 4,52 kg inneholder 1,68 kg siliciumkarbid, 2,16 kg ikke omsatt siliciummonoksyd og 0,68 kg sot. A gas flow of 4.0 kg SiO per hour and 2.5 kg CO per hour is brought to the exclusion of air to react with a gas mixture of 4 Nm<3 >propylene per hour and 8 Nm<3> hydrogen per hour. The propylene taken from a bomb is transferred with the help of external heat supply from liquid to gaseous state. The reaction product per hour appears with a quantity of 4.52 kg contains 1.68 kg silicon carbide, 2.16 kg unreacted silicon monoxide and 0.68 kg soot.

Produktet er mørkegrått, har en spesifikk overflate på 91 m<2> pr. g og en sammenrystet tetthet på 49 g pr. liter. The product is dark grey, has a specific surface of 91 m<2> per g and a shaken density of 49 g per litres.

Eksempel 7. Example 7.

En ifølge eksempel 1 frembragt gass-strøm på 4,0 SiO pr. time og 2,5 CO pr. time omsettes under luftutelukkelse med en gassblanding som ble frembragt ved for-dampning av Cs/C, flytende gass og hydrogen. Mengden av C/d-gass utgjør 5 Nm<3 >pr. time, mengden av hydrogen 10 Nm<3 >pr. time. Det fåes pr. time 4,12 kg produkt med 1,77 kg. siliciumkarbid, 2,06 kg ikke omsatt siliciummonoksyd og 0,29 kg sot. A gas flow of 4.0 SiO per hour and 2.5 CO per hour is reacted under exclusion of air with a gas mixture which was produced by evaporation of Cs/C, liquid gas and hydrogen. The amount of C/d gas amounts to 5 Nm<3 >per hour, the amount of hydrogen 10 Nm<3 >per hour. It is available per hour 4.12 kg of product with 1.77 kg. silicon carbide, 2.06 kg unreacted silicon monoxide and 0.29 kg carbon black.

Produktets farve er brungrå, dets spesifikke overflate utgjør 90 m<2> pr. g og sammenrystet tetthet 40 g pr. liter. The product's color is brown-grey, its specific surface is 90 m<2> per g and shaken density 40 g per litres.

Eksempel 8. Example 8.

I en ifølge eksempel 1 frembragt gass-strøm av 4,40 kg SiO pr. time og 2,75 kg CO pr. time innblåses ved en temperatur på ca. 1900—2200° C 7,5 Nm<3> metan pr. time. Fra atskilleren fjernes pr. time 4,25 kg produkt som inneholder 1,58 kg siliciumkarbid og 2,67 kg ikke omsatt siliciummonoksyd. In a gas flow of 4.40 kg SiO per hour and 2.75 kg CO per hour is blown in at a temperature of approx. 1900—2200° C 7.5 Nm<3> methane per hour. From the separator is removed per hour 4.25 kg of product containing 1.58 kg of silicon carbide and 2.67 kg of unreacted silicon monoxide.

Produktets farve er lysegrå, den spesifikke overflate utgjør 174 m<2> pr. g og sammenrystet tetthet er 30 g pr. liter. The product's color is light grey, the specific surface is 174 m<2> per g and shaken density is 30 g per litres.

Eksempel 9. Example 9.

6,5 kg av det ifølge eksempel 7 dannede produkt befries med 18 liter 30 pst. natronlut under omrøring ved 90° C i 3 timer for ikke omsatt siliciummonoksyd. Det fåes etter frafiltrering, vasking og tørking 2,3 kg siliciumkarbid. 6.5 kg of the product formed according to example 7 is freed with 18 liters of 30% caustic soda with stirring at 90° C. for 3 hours for unreacted silicon monoxide. After filtering off, washing and drying, 2.3 kg of silicon carbide is obtained.

Produktet har en lysegrå farve og en spesifikk overflate på 283 m2 pr. g. Rønt-gendiagrammet er det samme som for kubisk (3-SiC. Elektronemikroskopiske under-søkelser viser hovedsakelig fiberformede partikler med lengder inntil 500 millimikron og diametre inntil 15 millimikron. Ved siden av de fiberformede partikler er det tilstede i mindre mengder krystallinske og kuleformede partikler med dimensjoner inntil 300 millimikron, for det meste inntil 100 millimikron. The product has a light gray color and a specific surface of 283 m2 per g. The X-ray pattern is the same as for cubic (3-SiC. Electron microscopic examinations show mainly fibrous particles with lengths of up to 500 millimicrons and diameters of up to 15 millimicrons. Next to the fibrous particles, it is present in smaller amounts of crystalline and spherical particles with dimensions up to 300 millimicrons, mostly up to 100 millimicrons.

Eksempel 10. Example 10.

En ifølge eksempel 1 frembragt gass-strøm, inneholdende 4,0 kg SiO pr. time bringes under luftutelukkelse til reaksjon med en gassblanding av 3,1 Nm3 aceton pr. time og 6,0 Nm<3> reaksj onsavgass pr. time (bestående av hydrogen, karbonoksyd, ikke omsatt aceton og mindre mengder ved krakking dannet hydrokarboner). Det fåes pr. time 3,9 kg produkt med 1,1 kg SiC. A gas stream produced according to example 1, containing 4.0 kg of SiO per hour is brought under exclusion of air to react with a gas mixture of 3.1 Nm3 acetone per hour and 6.0 Nm<3> reaction exhaust gas per hour (consisting of hydrogen, carbon monoxide, unreacted acetone and smaller amounts of hydrocarbons formed during cracking). It is available per hour 3.9 kg product with 1.1 kg SiC.

Produktet er av lysegrå farve og har en spesifikk overflate på 110 m<2> pr. g, en sammenrystet tetthet på 41 g pr. liter og viser i røntgendiagrammet linjene for kubisk p-SiC. Det viser overfor vann hydro-fobe forhold. The product is light gray in color and has a specific surface of 110 m<2> per g, a shaken density of 41 g per liters and shows in the X-ray diagram the lines for cubic p-SiC. It shows hydrophobic properties towards water.

Claims (5)

1. Fremgangsmåte til fremstilling av1. Method for the production of siliciumkarbid eller blandinger av silicium-karbid med ikke omsatt siliciumoksyd,karakterisert ved at man overfører en eller flere oksydiske siliciumforbindelser i gassfase og omsetter med en eller flere likeledes i gassfase befinnende karbonholdige forbindelser under mest mulig fullstendig utelukkelse av luft og fuktighet og eventuelt adskiller det dannede silicium-karbid på i og for seg kjent måte. silicon carbide or mixtures of silicon carbide with unreacted silicon oxide, characterized by transferring one or more oxidic silicon compounds in gas phase and reacting with one or more carbonaceous compounds also in gas phase under as complete exclusion of air and moisture as possible and possibly separating the formed silicon carbide in a manner known per se. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at man som ok- sydisk siliciumforbindelse anvender sili ciumdioksyd eller fortrinnsvis siliciummonoksyd. 2. Method according to claim 1, characterized in that silica is used as the oxidic silicon compound cium dioxide or preferably silicon monoxide. 3. Fremgangsmåte følge påstandene 1 eller 2, karakterisert ved at man som karbonholdige forbindelser anvender alifatiske og/eller aromatiske og/eller blan-dede alifatisk-aromatiske hydrokarboner eller karbonmonoksyd. 3. Method according to claims 1 or 2, characterized in that aliphatic and/or aromatic and/or mixed aliphatic-aromatic hydrocarbons or carbon monoxide are used as carbon-containing compounds. 4. Fremgangsmåte ifølge påstandene 1—3, karakterisert ved at man for-tynner de gassformede karbonholdige forbindelser før deres omsetning med en inert gass, f. eks. med en del av reaksjonsav-gassene. 4. Method according to claims 1-3, characterized in that the gaseous carbonaceous compounds are diluted before their reaction with an inert gas, e.g. with part of the reaction off-gases. 5. Fremgangsmåte ifølge påstandene 1—4, karakterisert ved at reaksjonen utføres ved temperaturer over 1400° C.5. Method according to claims 1-4, characterized in that the reaction is carried out at temperatures above 1400° C.
NO771941A 1976-06-03 1977-06-02 ANALOGY PROCEDURE FOR THE PREPARATION OF PHARMACOLOGICALLY ACTIVE METHYLAMINE DERIVATIVES NO145337C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BE842528 1976-06-03

Publications (3)

Publication Number Publication Date
NO771941L NO771941L (en) 1977-12-06
NO145337B true NO145337B (en) 1981-11-23
NO145337C NO145337C (en) 1982-03-03

Family

ID=3861370

Family Applications (1)

Application Number Title Priority Date Filing Date
NO771941A NO145337C (en) 1976-06-03 1977-06-02 ANALOGY PROCEDURE FOR THE PREPARATION OF PHARMACOLOGICALLY ACTIVE METHYLAMINE DERIVATIVES

Country Status (17)

Country Link
JP (1) JPS6039261B2 (en)
AR (4) AR213646A1 (en)
AT (1) AT352088B (en)
AU (1) AU511705B2 (en)
DK (1) DK146063C (en)
ES (2) ES459466A1 (en)
FI (1) FI63015C (en)
FR (2) FR2374901A1 (en)
GR (1) GR61148B (en)
MX (1) MX4778E (en)
NL (1) NL7706052A (en)
NO (1) NO145337C (en)
NZ (1) NZ184161A (en)
PT (1) PT66623B (en)
SE (2) SE452317B (en)
YU (1) YU129577A (en)
ZA (1) ZA773151B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES437790A1 (en) * 1974-05-20 1977-05-16 Labaz Therapeutic compositions containing methylamine derivatives or their salts
BE842528R (en) * 1976-06-03 1976-12-03 METHYLAMINE ACTIVE DERIVATIVES, THERAPEUTIC COMPOSITIONS CONTAINING THEM AND THE PROCESSES FOR THE PREPARATION OF THESE DERIVATIVES AND COMPOSITIONS

Also Published As

Publication number Publication date
DK146063B (en) 1983-06-20
NL7706052A (en) 1977-12-06
DK244677A (en) 1977-12-04
NO145337C (en) 1982-03-03
FI63015B (en) 1982-12-31
GR61148B (en) 1978-09-27
FR2372795A1 (en) 1978-06-30
ZA773151B (en) 1978-04-26
YU129577A (en) 1983-01-21
SE452763B (en) 1987-12-14
PT66623B (en) 1978-11-07
SE452317B (en) 1987-11-23
JPS6039261B2 (en) 1985-09-05
AR215052A1 (en) 1979-08-31
DK146063C (en) 1983-11-14
ES470379A1 (en) 1979-10-16
SE8206445L (en) 1982-11-12
AU511705B2 (en) 1980-09-04
NO771941L (en) 1977-12-06
FR2372795B1 (en) 1983-08-12
PT66623A (en) 1977-07-01
AR215053A1 (en) 1979-08-31
MX4778E (en) 1982-09-15
SE8206445D0 (en) 1982-11-12
AR215175A1 (en) 1979-09-14
SE7706448L (en) 1977-12-04
JPS52148006A (en) 1977-12-08
ES459466A1 (en) 1978-08-16
ATA395877A (en) 1979-02-15
FI771780A (en) 1977-12-04
NZ184161A (en) 1980-10-08
AU2556177A (en) 1978-11-30
AT352088B (en) 1979-08-27
AR213646A1 (en) 1979-02-28
FR2374901A1 (en) 1978-07-21
FI63015C (en) 1983-04-11
FR2374901B1 (en) 1981-04-17

Similar Documents

Publication Publication Date Title
CA1111624A (en) Process for the manufacture of coarse aluminum hydroxide
US3306705A (en) Process for making silicon carbide
NO174694B (en) Apparatus and method for producing uniform, fine, boron-containing ceramic powders
CN102069002B (en) Preparation method of wolfram carbide-carbon (WC-C) composite material with large specific surface area
US3674430A (en) Process for the pyrogenic making of highly dispersed silicon dioxide
JP2001017857A (en) Spray pyrolytic apparatus
US2573057A (en) Process of preparing white finely divided amorphous silica
US2535659A (en) Amorphous silica and process for making same
NO145337B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF PHARMACOLOGICALLY ACTIVE METHYLAMINE DERIVATIVES
Krishnarao Effect of cobalt chloride treatment on the formation of SiC from burnt rice husks
US1418528A (en) Process for production of zirconium compounds
US2261319A (en) Process for the production of acetylene and carbon black by the pyrolysis of hydrocarbon gases and vapors
NO161383B (en) PROCEDURE FOR THE MANUFACTURE OF ALUMINUM SILICUM ALLOYS.
CN110330008A (en) A kind of continuous producing method of carbon nanotube
US1364273A (en) Process for the production of lampblack
RU2354503C1 (en) Method of sodium diboride nano-powders production
US2754176A (en) Preparation of alumina by burning
JPS6221707A (en) Production of trichlorosilane
JPS5891018A (en) Manufacture of fine nitride powder
US2685505A (en) Manufacture of sodium
JPS5926909A (en) Preparation of powder
FR2638733A1 (en) PROCESS FOR PRODUCING MICRONIC SILICON CARBIDE
JPH0372008B2 (en)
EP0463050A1 (en) Process
US2653082A (en) Process for production of fine graphite