NO142203B - PROCEDURE FOR EXPOSURE OF SILICATE BASED FORM FROM A CUSTOMIZABLE FORM - Google Patents
PROCEDURE FOR EXPOSURE OF SILICATE BASED FORM FROM A CUSTOMIZABLE FORM Download PDFInfo
- Publication number
- NO142203B NO142203B NO762234A NO762234A NO142203B NO 142203 B NO142203 B NO 142203B NO 762234 A NO762234 A NO 762234A NO 762234 A NO762234 A NO 762234A NO 142203 B NO142203 B NO 142203B
- Authority
- NO
- Norway
- Prior art keywords
- molding compound
- casting
- silicate
- sand
- water
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title description 32
- 150000001875 compounds Chemical class 0.000 claims description 41
- 238000000465 moulding Methods 0.000 claims description 41
- 238000005266 casting Methods 0.000 claims description 28
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000007864 aqueous solution Substances 0.000 claims description 17
- 239000011230 binding agent Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 3
- 239000004576 sand Substances 0.000 description 25
- 150000002148 esters Chemical class 0.000 description 13
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 239000004348 Glyceryl diacetate Substances 0.000 description 5
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 5
- 235000019443 glyceryl diacetate Nutrition 0.000 description 5
- 239000001087 glyceryl triacetate Substances 0.000 description 5
- 235000013773 glyceryl triacetate Nutrition 0.000 description 5
- 235000019353 potassium silicate Nutrition 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 229960002622 triacetin Drugs 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910001208 Crucible steel Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002895 organic esters Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- -1 triacetin Chemical class 0.000 description 3
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000006004 Quartz sand Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000012778 molding material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- UXDDRFCJKNROTO-UHFFFAOYSA-N Glycerol 1,2-diacetate Chemical compound CC(=O)OCC(CO)OC(C)=O UXDDRFCJKNROTO-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D29/00—Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
- B22D29/001—Removing cores
- B22D29/002—Removing cores by leaching, washing or dissolving
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mold Materials And Core Materials (AREA)
- Polymerisation Methods In General (AREA)
- Silicon Polymers (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
Ved fremstilling av former og kjerner for støping av metal-liske materialer, som støpejern, støpestål, lettmetaller eller bronser etc., anvendes ofte en formmasse inneholdende sand og et silikatbindemiddel, som regel vannglass. Silikatet kan herdes bl.a. ved hjelp av en,organisk ester, f.eks. triacetin, som blandes inn i formmassen, eller med carbondioxyd som ledes gjennom frem-stilte kjerner eller former. Herdingen foregår ved utfelling av siliciumdioxydgel som binder sandkornene sammen, og utføres vanligvis ved værelsetemperatur. Ved anvendelse av esterherding blandes som regel sand og ester først, hvorefter silikatet til- When making molds and cores for casting metallic materials, such as cast iron, cast steel, light metals or bronzes, etc., a molding compound containing sand and a silicate binder, usually water glass, is often used. The silicate can be hardened i.a. by means of an organic ester, e.g. triacetin, which is mixed into the molding compound, or with carbon dioxide which is passed through manufactured cores or molds. The curing takes place by precipitation of silicon dioxide gel which binds the sand grains together, and is usually carried out at room temperature. When using ester curing, sand and ester are usually mixed first, after which the silicate
føres til blandingen av sand og ester. Straks efter tilførselen av silikatet formes formmassen. Modellen kan vanligvis fjernes efter 15-30 minutter, mens det er mulig å utføre støpingen først efter noen timer. is fed to the mixture of sand and ester. Immediately after the addition of the silicate, the molding compound is formed. The model can usually be removed after 15-30 minutes, while it is possible to carry out the casting only after a few hours.
Et generelt erkjent problem med silikatbundne formmasser er deres dårlige knusningsegenskaper som nødvendiggjør en besværlig mekanisk utslagning av den herdede formmasse, f.eks. med en vibrator og til og med en slegge, for å frilegge den støpte del. Utslagningen er et tungt manuelt arbeide i et støvete og larmfylt miljø. Formrestene som består av silikatbundne sandklumper med varierende størrelse, og armeringsjern transporteres bort for å dumpes på avfallstippen, eller de underkastes regenerering i et eget anlegg. A generally recognized problem with silicate-bound molding compounds is their poor crushing properties, which necessitates a difficult mechanical knocking out of the hardened molding compound, e.g. with a vibrator and even a sledgehammer, to expose the cast part. The culling is heavy manual work in a dusty and noisy environment. The mold residues, which consist of silicate-bound sand lumps of varying sizes, and rebar are transported away to be dumped on the waste tip, or they are subjected to regeneration in a separate facility.
Det er kjent at knusningsegenskapene til silikatbundne formmasser kan forbedres ved til -formmassen å tilsette forskjellige organiske materialer, som sukker, dextrin, stivelse, tremel og kullpulver. Den forbedring av knusningsegenskapene som kan fås ved tilsetning av de nevnte materialer, løser imidlertid langtfra utslagningsproblemet. Det er også ved anvendelse av disse til-setninger nødvendig å tilgripe mekaniske metoder. It is known that the crushing properties of silicate-bound molding compounds can be improved by adding various organic materials to the molding compound, such as sugar, dextrin, starch, wood flour and coal powder. The improvement in the crushing properties that can be obtained by adding the aforementioned materials, however, is far from solving the knock-out problem. It is also necessary to resort to mechanical methods when using these additives.
Det er fra vest-tysk utlegningsskrift nr. 1936337 kjent It is known from West German interpretation document no. 1936337
å fjerne keramiske kjerner fra støpegods. Dette utføres ved opp-løsning av det keramiske materiale som sådant, dvs. av formmasse-materialet som sådant. For dette kreves bl.a. sterke alkaliske oppløsninger med høy temperatur, lang behandlingstid og høyt trykk. to remove ceramic cores from castings. This is carried out by dissolving the ceramic material as such, i.e. of the molding compound material as such. This requires, among other things, strong alkaline solutions with high temperature, long processing time and high pressure.
Det har ifølge oppfinnelsen vist seg mulig ved utslagning av en silikatbunden formmasse å unngå besværlige mekaniske metoder og således dermed forbundne ulemper. Utslagningen av formmassen og frileggingen av et støpegods med høy kvalitet kan derved radikalt lettes. Fremgangsmåten ifølge oppfinnelsen byr dessuten på den fordel at den med enkle metoder gjør det mulig å regenerere den anvendte formmasse slik at denne igjen kan anvendes for tilvirkning av nye former og kjerner. According to the invention, it has been found possible to avoid cumbersome mechanical methods and thus associated disadvantages by using a silicate-bound molding compound. The knocking out of the molding compound and the exposure of a high-quality casting can thereby be radically facilitated. The method according to the invention also offers the advantage that, with simple methods, it makes it possible to regenerate the used molding compound so that it can again be used for the production of new molds and cores.
Oppfinnelsen angår nærmere bestemt en fremgangsmåte ved utslagning av silikatbundet formmasse fra en støpegodsholdig form, More specifically, the invention relates to a method for removing silicate-bound molding compound from a mold containing casting material,
og fremgangsmåten er særpreget ved at den støpegodsholdige form utsettes for innvirkning av en alkalisk vandig oppløsning for å oppløse silikatbindemidlet og frigjøre korn av formmassen. and the method is characterized by the fact that the casting-containing mold is exposed to the action of an alkaline aqueous solution to dissolve the silicate binder and release grains of the mold mass.
Ifølge den foreliggende oppfinnelse oppløses således binde-midlet under frigjøring av formmassepartiklene, slik at det er mulig igjen å anvende disse, mens ifølge det ovennevnte vest-tyske utlegningsskrift selve formmassepartiklene oppløses. According to the present invention, the binder thus dissolves while releasing the molding compound particles, so that it is possible to use them again, while according to the above-mentioned West German explanatory document, the molding compound particles themselves dissolve.
Den støpegodsholdige form kan bl.a. utsettes for innvirkning The casting-containing form can i.a. exposed to impact
av en alkalisk vandig oppløsning ved å senkes ned i et bad av oppløsningen eller ved å overhelles eller besprøytes med den alkaliske vandige oppløsning. Overhelling og besprøytning med- of an alkaline aqueous solution by immersion in a bath of the solution or by pouring or spraying with the alkaline aqueous solution. Pouring and spraying with
fører i en rekke tilfeller fordeler sammenlignet med nedsenkning fordi det ved hjelp av disse metoder kan oppnås en suksessiv borttransportering av nedbrutt formmasse fra formens overflate, slik at den underliggende formmasse blir mer effektivt tilgjengelig for den alkaliske vandige oppløsning. Sprøytemetoden kan være verdifull leads in a number of cases to advantages compared to immersion because, with the help of these methods, a successive removal of decomposed molding material from the surface of the mold can be achieved, so that the underlying molding material becomes more effectively available to the alkaline aqueous solution. The injection method can be valuable
spesielt ved utslagning av kjerner da borttransportering av sand vanligvis er vanskeligere for kjerner. Et egnet trykk på den vandige oppløsning ved påsprøytning kan være 1-50 atm. Hvis det samtidig er ønsket å frilegge en metallisk, ren overflate på støpe-godset, kan det være nødvendig å anvende et høyere trykk, f.eks. 50-300 atm. Av økonomiske grunner bør den vandige oppløsning, efter at den er blitt anvendt for overhelling eller besprøytning av den støpegodsholdige form og efter at den er blitt skilt fra den frigjorte sand, resirkuleres til utslagningsutstyret for å anvendes for overhelling eller besprøytning av nye støpegods-holdige former. especially when knocking out cores as the removal of sand is usually more difficult for cores. A suitable pressure on the aqueous solution when spraying can be 1-50 atm. If it is also desired to expose a metallic, clean surface on the casting, it may be necessary to apply a higher pressure, e.g. 50-300 atm. For economic reasons, the aqueous solution, after it has been used for pouring or spraying the cast-containing mold and after it has been separated from the freed sand, should be recycled to the knock-out equipment to be used for pouring or spraying new casting-containing molds .
Formen av silikatbundet formmasse kan være fremstilt på vanlig måte. Således kan formmassen være fremstilt av kvartssand, kromittsand, olivinsand eller en annen innen støperiindustrien anvendt sand. Som bindemiddel for sanden foretrekkes vannglass, men også andre vannoppløselige silikater kan anvendes. Den silikatmengde som tilsettes ved fremstillingen av formmassen, er fortrinnsvis 0,5-5% av sandens vekt. Silikatet tilsettes som regel i form av en vandig oppløsning. I den ovenfor angitte silikatmengde er vannet ikke medregnet. Herdingen kan finne sted på vanlig måte, idet herding med carbondioxyd og med en organisk ester er av spesiell betydning, men også herding med andre materialer enn en organisk ester og som er blitt blandet inn i formmassen, som syrer, sement, dikalsiumsilikat og siliciumdioxyd, kan anvendes. Estere som ofte anvendes som herdemidler, er blandinger av diacetin (glyceryldiacetat) Og triacetin (glyceryltriacetat) eller blandinger av diacetin og ethyldiglycoldiacetat i forskjellige vektforhold avhengig av de ønskede herdetider. De nevnte estere kan også an-vedes hver for seg. Også andre estere kan anvendes, bl.a. acetater av glycol. Den estermengde som tilsettes til sanden ved fremstillingen av formmassen, er fortrinnsvis 0,05-2% av sandens vekt. Ved fremstilling av en form for herding med en ester kan blandingen av bestanddelene utføres f.eks. i et kontinuerlig skrueblandeapparat, idet som tidligere nevnt sand og ester vanligvis blandes før silikatet tilsettes. Formen kan fremstilles bl.a. ved at formmassen efter at silikatet er blitt tilsatt, får renne ned over modellen som fortrinnsvis vibreres eller stampes. Efter at formen har herdet i 15-30 minutter kan modellen fjernes. Formens over- og underdel settes derefter sammen efter ytterligere noen timers herding. Støpingen utføres vanligvis tidligst efter 6 timer. Utstøpingen kan foretas f.eks. fra en støpeøse med bunnuttømning. Eventuelt anvendte kjerner kan om ønsket fremstilles på tilsvarende måte. Efter at støpegodset er blitt avkjølt, behandles den støpegodsholdige form med den alkaliske vandige oppløsning i overensstemmelse med den foreliggende fremgangsmåte. The shape of silicate-bound molding compound can be produced in the usual way. Thus, the molding compound can be made from quartz sand, chromite sand, olivine sand or another sand used in the foundry industry. Water glass is preferred as a binder for the sand, but other water-soluble silicates can also be used. The amount of silicate that is added during the production of the molding compound is preferably 0.5-5% of the weight of the sand. The silicate is usually added in the form of an aqueous solution. The water is not included in the amount of silicate stated above. The hardening can take place in the usual way, as hardening with carbon dioxide and with an organic ester is of particular importance, but also hardening with materials other than an organic ester and which have been mixed into the molding compound, such as acids, cement, dicalcium silicate and silicon dioxide, can be used. Esters that are often used as curing agents are mixtures of diacetin (glyceryl diacetate) and triacetin (glyceryl triacetate) or mixtures of diacetin and ethyl diglycol diacetate in different weight ratios depending on the desired curing times. The mentioned esters can also be used separately. Other esters can also be used, e.g. acetates of glycol. The amount of ester that is added to the sand during the production of the molding compound is preferably 0.05-2% of the weight of the sand. When preparing a form of curing with an ester, the mixing of the components can be carried out, e.g. in a continuous screw mixer, as previously mentioned sand and ester are usually mixed before the silicate is added. The shape can be produced i.a. in that, after the silicate has been added, the molding compound is allowed to flow down over the model, which is preferably vibrated or rammed. After the mold has hardened for 15-30 minutes, the model can be removed. The upper and lower parts of the mold are then put together after a further few hours of hardening. Casting is usually carried out after 6 hours at the earliest. The casting can be carried out e.g. from a ladle with bottom discharge. Any cores used can, if desired, be produced in a similar manner. After the casting has been cooled, the mold containing the casting is treated with the alkaline aqueous solution in accordance with the present method.
Den alkaliske vandige oppløsning kan fremstilles ved opp-løsning av natriumhydroxyd, kaliumhydroxyd og/eller et annet alkalimetallhydroxyd og/eller ammoniakk i vann. Også andre materialer enn de nevnte som gir vandige oppløsninger med en tilstrekkelig alkalinitet, kan selvfølgelig anvendes. Den vandige oppløsnings pH er fortrinnsvis minst 12, og helst minst 13. Ved anvendelse av alkalimetallhydroxyd for å oppnå alkaliniteten bør alkali-hydroxydmengden være minst 0,4%, fortrinnsvis 0,4-20%, og helst 0,4-10%, av den samlede vekt av hydroxyd og vann. Ved anvendelse The alkaline aqueous solution can be prepared by dissolving sodium hydroxide, potassium hydroxide and/or another alkali metal hydroxide and/or ammonia in water. Materials other than those mentioned which provide aqueous solutions with a sufficient alkalinity can of course also be used. The pH of the aqueous solution is preferably at least 12, and preferably at least 13. When using alkali metal hydroxide to achieve the alkalinity, the amount of alkali hydroxide should be at least 0.4%, preferably 0.4-20%, and most preferably 0.4-10%, of the combined weight of hydroxide and water. When applying
av ammoniakk foretrekkes en mengde på 10-30% av den samlede vekt of ammonia, an amount of 10-30% of the total weight is preferred
av ammoniakk og vann. of ammonia and water.
En økning av den vandige oppløsnings temperatur forbedrer An increase in the temperature of the aqueous solution improves
.sammenfal1 ingen sterkt. Spesielt hvis det forekommer problemer med å bryte ned en formmasse som ligger nær inntil støpegodset og derfor er blitt utsatt for mest varme, kan det være av vesent- .coincidence1 none strong. Especially if there are problems with breaking down a molding compound that is close to the casting and has therefore been exposed to the most heat, it can be of
lig betydning å øke den vandige oppløsnings temperatur. Hvis slike problemer forekommer, anbefales det også å anvende et høyt innhold av alkalimetallhydroxyd i den vandige oppløsning. Den vandige oppløsnings temperatur er fortrinnsvis minst 40°C, og fortrinnsvis høyst 100°C, helst 50-80°C. Behandlingen utføres vanligvis ved atmosfæretrykk i en av tid av 1 minutt - 1 time. Equally important is increasing the temperature of the aqueous solution. If such problems occur, it is also recommended to use a high content of alkali metal hydroxide in the aqueous solution. The temperature of the aqueous solution is preferably at least 40°C, and preferably at most 100°C, preferably 50-80°C. The treatment is usually carried out at atmospheric pressure for a period of 1 minute - 1 hour.
Efter at støpegodsdelene er blitt frigjort fra formmassen, After the cast parts have been released from the molding compound,
gjøres de rene med vann, f.eks. ved spyling eller skylling. they are cleaned with water, e.g. when flushing or rinsing.
Den nedbrutte formmasse i form av sand som er forurenset med alkalimetallhydroxyd, kan efter rengjøring utført ved gjen-tatt skylling med vann og påfølgende tørking, anvendes for fremstilling av ny formmasse, dvs.at formmassen igjen kan anvendes. Ved anvendelse av et esterherdemiddel innblandes som beskrevet ovenfor først esteren og derefter vannglass eller et annet silikatbindemiddel i den rengjorte formmasse. Denne er derefter klar for fremstilling av nye former. The decomposed molding compound in the form of sand that is contaminated with alkali metal hydroxide can, after cleaning carried out by repeated rinsing with water and subsequent drying, be used for the production of new molding compound, i.e. that the molding compound can be used again. When using an ester hardener, as described above, first the ester and then water glass or another silicate binder are mixed into the cleaned molding compound. This is then ready for the production of new forms.
Eksempel 1 Example 1
En formmasse ble fremstilt av kvartssand med en gjennom-snittlig kornstørrelse på 0,25 mm. Sanden ble først blandet med 0,4 vekt% (regnet på sanden) av et esterherdemiddel bestående av en blanding av like deler diacetin og triacetin og derefter med 4 vekt% (regnet på sanden) vannglass som inneholdt 40 vekt% silikat og 60 vekt% vann. Efter fremstilling av en blokkform og istøping av støpestål på vanlig måte ble den støpegodsholdige form avkjølt inntil støpegodset hadde en temperatur på 200-500°C. Den støpegodsholdige form ble derefter senket ned i et 55-60°C varmt bad bestående av en 3%-ig natriumhydroxydoppløsning. A molding compound was produced from quartz sand with an average grain size of 0.25 mm. The sand was first mixed with 0.4% by weight (calculated on the sand) of an ester curing agent consisting of a mixture of equal parts of diacetin and triacetin and then with 4% by weight (calculated on the sand) of water glass containing 40% by weight silicate and 60% by weight water. After making a block mold and pouring in cast steel in the usual way, the mold containing the casting was cooled until the casting had a temperature of 200-500°C. The casting-containing mold was then lowered into a 55-60°C hot bath consisting of a 3% sodium hydroxide solution.
Efter ca. 5 minutter var formmassen brutt ned og støpegodset frilagt. After approx. 5 minutes later, the molding compound was broken down and the casting exposed.
Eksempel 2 Example 2
En støpegodsholdig form ble fremstilt som beskrevet i eksempel 1. Den ble derefter overhelt med en 55-60°C varm 3%-ig natriumhydroxydoppløsning. Efter noen minutter var formmassen brutt ned og støpegodset frilagt. A castable mold was prepared as described in example 1. It was then poured over with a 55-60°C hot 3% sodium hydroxide solution. After a few minutes, the molding compound had broken down and the castings were exposed.
Eksempel 3 Example 3
En flaskeform ble fremstilt av den samme formmasse som beskrevet i eksempel 1. Den støpegodsholdige form ble senket ned i et alkalisk bad av samme type som beskrevet i eksempel 1. Også i dette tilfelle ble formmassen brutt ned og støpegodset hurtig frilagt. På grunn av at den for støpemetall utsatte formmasse be-fant seg i en flaske, tok imidlertid nedbrytningen og frileggingen noe lenger tid enn for en blokkform. A bottle mold was produced from the same molding compound as described in example 1. The mold containing the casting was lowered into an alkaline bath of the same type as described in example 1. Also in this case, the molding compound was broken down and the casting quickly exposed. Due to the fact that the molding compound exposed to cast metal was in a bottle, however, the breakdown and exposure took somewhat longer than for a block mold.
En støpegodsholdig flaskeform ble fremstilt som beskrevet i eksempel 3. Den støpegodsholdige form ble besprøytet med en alkalisk vandig oppløsning av samme type som beskrevet i eksempel 1 og med et trykk på ca. 5 atm. Også i dette tilfelle ble formmassen brutt ned og støpegodset hurtig frilagt. A bottle mold containing casting material was produced as described in example 3. The mold containing casting material was sprayed with an alkaline aqueous solution of the same type as described in example 1 and with a pressure of approx. 5 atm. In this case too, the molding compound was broken down and the casting quickly exposed.
Eksempel 5 Example 5
Formmasse som var blitt brutt ned som beskrevet i eksemplene 1-4, fikk risle ned i en beholder som var fylt med vann og hvortil vann kontinuerlig ble tilført via en sprinkleranordning i kassens bunn. På grunn av denne vanntilførsel oppsto det turbulens i vannet og en kontinuerlig gjennomstrømning av vann. Vannet forlot beholderen via et randavløp. Sanden ble derved vasket mens den passerte gjennom vannet. Formmassens finstoffandel forlot beholderen via randavløpet. Behandlingen ble slik utført at vannets pH ble holdt på under 10. Efter at vaskingen var avsluttet, ble sanden fjernet fra beholderen og tørket i et sandtørkeanlegg. Den på denne måte regenererte sand ble blandet for fornyet anvendelse, først med 0,4 vekt% (regnet på sanden) av et esterherdemiddel bestående av like deler diacetin og triacetin og derefter med 4 vekt% (regnet på sanden) vannglass som inneholdt 40 vekt% silikat og 60 vekt% vann. Formmassen ble påført på en modell og fikk herde i 20 minutter, hvorefter modellen ble tatt ut. Efter en herdetid på 8 timer ble støpingen foretatt, og ved oppslagning viste godset seg å ha gode overflater, og det forekom ingen tilbøyelighet til inntrengning. Molding compound which had been broken down as described in examples 1-4 was allowed to trickle down into a container which was filled with water and to which water was continuously supplied via a sprinkler device in the bottom of the box. Because of this water supply, turbulence arose in the water and a continuous flow of water. The water left the container via an edge drain. The sand was thereby washed as it passed through the water. The fines portion of the molding compound left the container via the edge drain. The treatment was carried out in such a way that the pH of the water was kept below 10. After the washing was finished, the sand was removed from the container and dried in a sand drying plant. The sand thus regenerated was mixed for renewed use, first with 0.4% by weight (calculated on the sand) of an ester curing agent consisting of equal parts of diacetin and triacetin and then with 4% by weight (calculated on the sand) of water glass containing 40 wt. % silicate and 60% water by weight. The molding compound was applied to a model and allowed to harden for 20 minutes, after which the model was removed. After a curing time of 8 hours, the casting was carried out, and when opened, the goods proved to have good surfaces, and there was no tendency to penetration.
Den foreliggende fremgangsmåte er anvendbar for utslagning og regenerering av silikatbundne formmasser for alle slags støpe-gods, som støpejern, støpestål, lettmetaller og bronser etc. Spesielt store fordeler oppnås ved den foreliggende fremgangsmåte når den anvendes for støpestål. The present method can be used for knocking out and regenerating silicate-bound molding compounds for all kinds of castings, such as cast iron, cast steel, light metals and bronzes, etc. Particularly great advantages are achieved by the present method when it is used for cast steel.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7507435A SE398829B (en) | 1975-06-30 | 1975-06-30 | KIT FOR KEEPING OUT OF THE SILICATE-BONDED MASS PASS |
SE7512964A SE414601B (en) | 1975-11-18 | 1975-11-18 | SET FOR MOLDING OF THE SILICATE BOTTOM FORMASSA UR PAGJUTEN FORM |
Publications (3)
Publication Number | Publication Date |
---|---|
NO762234L NO762234L (en) | 1977-01-03 |
NO142203B true NO142203B (en) | 1980-04-08 |
NO142203C NO142203C (en) | 1980-07-16 |
Family
ID=26656629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO762234A NO142203C (en) | 1975-06-30 | 1976-06-28 | PROCEDURE FOR EXPOSURE OF SILICATE BASED FORM FROM A CUSTOMIZABLE FORM |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS526338A (en) |
CA (1) | CA1078131A (en) |
DE (1) | DE2626224C2 (en) |
DK (1) | DK153527C (en) |
FI (1) | FI61648C (en) |
FR (1) | FR2316024A1 (en) |
GB (1) | GB1549220A (en) |
NO (1) | NO142203C (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55114457A (en) * | 1979-02-27 | 1980-09-03 | Hitachi Ltd | Core removing method |
DE3537351A1 (en) * | 1985-10-19 | 1987-04-23 | Thyssen Industrie | Method and device for removing a ceramic core from a cast element |
US5678583A (en) * | 1995-05-22 | 1997-10-21 | Howmet Research Corporation | Removal of ceramic shell mold material from castings |
US6241000B1 (en) * | 1995-06-07 | 2001-06-05 | Howmet Research Corporation | Method for removing cores from castings |
US7216691B2 (en) | 2002-07-09 | 2007-05-15 | Alotech Ltd. Llc | Mold-removal casting method and apparatus |
AU2003270542A1 (en) | 2002-09-11 | 2004-04-30 | Alotech Ltd. Llc. | Chemically bonded aggregate mold |
EP1539398A1 (en) | 2002-09-20 | 2005-06-15 | Alotech Ltd. LLC | Lost pattern mold removal casting method and apparatus |
US7121318B2 (en) | 2002-09-20 | 2006-10-17 | Alotech Ltd. Llc | Lost pattern mold removal casting method and apparatus |
US8763247B2 (en) | 2010-10-06 | 2014-07-01 | GM Global Technology Operations LLC | Diesel piston with bi-metallic dome |
US8813357B2 (en) | 2010-10-06 | 2014-08-26 | GM Global Technology Operations LLC | Piston with bi-metallic dome |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE364227C (en) * | 1922-03-18 | 1922-11-18 | Fritz Wuest Dr | Process for cleaning castings |
US3044087A (en) * | 1959-11-17 | 1962-07-17 | Powers Alex | Apparatus for eliminating ceramic cores |
US3563711A (en) * | 1968-07-18 | 1971-02-16 | Trw Inc | Process for removal of siliceous cores from castings |
US3698467A (en) * | 1971-01-04 | 1972-10-17 | United Aircraft Corp | Method of removing silaceous cores from nickel and cobalt superalloy castings |
-
1976
- 1976-06-11 DE DE2626224A patent/DE2626224C2/en not_active Expired
- 1976-06-24 FI FI761846A patent/FI61648C/en not_active IP Right Cessation
- 1976-06-28 CA CA255,890A patent/CA1078131A/en not_active Expired
- 1976-06-28 NO NO762234A patent/NO142203C/en unknown
- 1976-06-28 JP JP51076299A patent/JPS526338A/en active Pending
- 1976-06-29 GB GB26974/76A patent/GB1549220A/en not_active Expired
- 1976-06-29 DK DK292876A patent/DK153527C/en not_active IP Right Cessation
- 1976-06-30 FR FR7619880A patent/FR2316024A1/en active Granted
Also Published As
Publication number | Publication date |
---|---|
DK153527C (en) | 1988-11-28 |
FI61648C (en) | 1982-09-10 |
CA1078131A (en) | 1980-05-27 |
DK292876A (en) | 1976-12-31 |
FR2316024A1 (en) | 1977-01-28 |
FR2316024B1 (en) | 1982-04-02 |
JPS526338A (en) | 1977-01-18 |
DE2626224C2 (en) | 1985-01-03 |
DK153527B (en) | 1988-07-25 |
NO142203C (en) | 1980-07-16 |
GB1549220A (en) | 1979-08-01 |
NO762234L (en) | 1977-01-03 |
DE2626224A1 (en) | 1977-02-03 |
FI761846A (en) | 1976-12-31 |
FI61648B (en) | 1982-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO142203B (en) | PROCEDURE FOR EXPOSURE OF SILICATE BASED FORM FROM A CUSTOMIZABLE FORM | |
US7503379B2 (en) | Method of improving the removal of investment casting shells | |
CN104439041A (en) | Core-making sand composition of warm core box and sand making method | |
JPS6026620B2 (en) | Method of manufacturing recycled sand | |
JP2006068815A5 (en) | ||
CN114080284B (en) | Foundry sand regeneration method | |
US3738415A (en) | Method of molding articles and reclaiming the foundry sand used | |
GB722816A (en) | Improvements relating to precision casting by the lost-wax process | |
US1975398A (en) | Process for the manufacture of molding sand, as used for making cores and flask molding, free and template moldings | |
CH622726A5 (en) | Method for knocking out silicate-bound moulding compound from a mould filled with casting | |
SU1787651A1 (en) | Mold investment casting method | |
US3212144A (en) | Sand molds for metal casting and methods therefor | |
JPS58937B2 (en) | Method for recycling foundry sand using inorganic binder | |
US1975399A (en) | Process for the manufacture of molding sand more particularly suitable for the confection of cores and stone bed molds | |
JPS63256239A (en) | Method for disintegrating ceramic shell mold | |
US4106548A (en) | Mass for production of cores and casting moulds | |
JP4125854B2 (en) | Disappearance casting casting agent | |
JPS6023900B2 (en) | Method for recycling self-hardening foundry sand | |
JP2001334347A (en) | Method for treating recovered sand and replenishing sand for the same | |
JPH07171671A (en) | Method and device for gate breaking of die casting cast iron | |
SU872019A1 (en) | Multilayer casting production method | |
JPS5848265B2 (en) | How to recycle foundry sand | |
SU50628A1 (en) | Method of preparing refractory mass for lubrication of profitable extensions, profitable part of siphon molds and troughs | |
ES2028707A6 (en) | Drying used sand, before cleaning by attrition | |
GB177909A (en) | Improvements in and relating to casting machines |