NO140895B - PROCEDURE FOR THE PRODUCTION OF INORGANIC FIBERS - Google Patents

PROCEDURE FOR THE PRODUCTION OF INORGANIC FIBERS Download PDF

Info

Publication number
NO140895B
NO140895B NO2142/71A NO214271A NO140895B NO 140895 B NO140895 B NO 140895B NO 2142/71 A NO2142/71 A NO 2142/71A NO 214271 A NO214271 A NO 214271A NO 140895 B NO140895 B NO 140895B
Authority
NO
Norway
Prior art keywords
fibers
stated
solution
fiber
weight
Prior art date
Application number
NO2142/71A
Other languages
Norwegian (no)
Other versions
NO140895C (en
Inventor
James Derek Birchall
Michael John Morton
John Edward Cassidy
Original Assignee
Ici Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB436971*[A external-priority patent/GB1360197A/en
Application filed by Ici Ltd filed Critical Ici Ltd
Publication of NO140895B publication Critical patent/NO140895B/en
Publication of NO140895C publication Critical patent/NO140895C/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • B01J35/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/78Preparation by contact processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Description

Oppfinnelsen vedrører en fremgangsmåte for fremstilling The invention relates to a method for production

av uorganiske fibre, omfattende fiberdannelse ved blåsing av en blanding med viskositet over 1 poise, omfattende et løsningsmiddel og en metallforbindelse, hvor metallforbindelsen er utvalgt blant kloridene, sulfatene, acetatene, formiatene, hydroksydene og nitratene av aluminium, jern, zirconium, titan, beryllium, krom, magnesium, thorium, uran, yttrium, nikkel, vanadium, mangan, molybden, wolfram og kobolt. Videre omfatter blandingen 0,1-10 vekt%, of inorganic fibres, comprising fiber formation by blowing a mixture having a viscosity above 1 poise, comprising a solvent and a metal compound, the metal compound being selected from the chlorides, sulphates, acetates, formates, hydroxides and nitrates of aluminium, iron, zirconium, titanium, beryllium , chromium, magnesium, thorium, uranium, yttrium, nickel, vanadium, manganese, molybdenum, tungsten and cobalt. Furthermore, the mixture comprises 0.1-10% by weight,

basert på blandingens samlede vekt, av en organisk polymer med molekylvekt i området 10 3 -10 7. Både metallforbindelsen og den organiske polymer er løselig i løsningsmidlet, og vektandelen av den organiske polymer er under 10 % av vektandelen av metallforbindelsen . based on the total weight of the mixture, of an organic polymer with a molecular weight in the range 10 3 -10 7. Both the metal compound and the organic polymer are soluble in the solvent, and the weight share of the organic polymer is below 10% of the weight share of the metal compound.

Etter fiberdannelsen fjernes minst en del av løsnings-midlet fra de fremstilte fibre, og fibrene oppvarmes for spaltning av metallforbindelsen og/eller den organiske polymer. After fiber formation, at least part of the solvent is removed from the fibers produced, and the fibers are heated to split the metal compound and/or the organic polymer.

Fremgangsmåten i henhold til oppfinnelsen er karakteri- The method according to the invention is characteristically

sert ved at fiberdannelsen utføres ved at den nevnte blanding ekstruderes gjennom én eller flere åpninger inn i minst én gass- characterized by fiber formation being carried out by extruding said mixture through one or more openings into at least one gas

strøm som har en komponent med høy hastighet i ekstruderingsretnin- stream that has a high-velocity component in the extrusion direction

gen til den ekstruderte blanding. Den fiberdannende.blanding inne holder eventuelt et katalysatormateriale eller en forløper for dette. gen to the extruded mixture. The fiber-forming mixture contains possibly a catalyst material or a precursor for this.

Det er underforstått at metallforbindelsen er løselig It is understood that the metal compound is soluble

i løsningsmidlet når den er i stand til å danne en ekte løsning eller en kolloidal-løsning (en sol) med løsningsmidlet. in the solvent when it is able to form a true solution or a colloidal solution (a sol) with the solvent.

Vektandelen av metallforbindelsen i den nevnte blanding The weight proportion of the metal compound in the said mixture

er større enn vektandelen av den organiske polymer, is greater than the weight proportion of the organic polymer,

f.eks. når det er minst dobbelt så meget metallforbindelse som e.g. when there is at least twice as much metal compound as

organisk polymer til stede. Mer spesielt utgjør den organiske polymer mindre enn 10 vekt% av metallforbindelsen, f.eks. 2-8 organic polymer present. More particularly, the organic polymer constitutes less than 10% by weight of the metal compound, e.g. 2-8

vekt%, eller i noen utførelsesformer 0,1-2 vekt%. wt%, or in some embodiments 0.1-2 wt%.

Metallforbindelsen er en vannløselig metallforbindel- The metal compound is a water-soluble metal compound-

se, f.eks. et metallsalt (som kan være et basisk salt) som gir en viskøs løsning eller sol i vann. Den vannløselige metallforbin- see, e.g. a metal salt (which may be a basic salt) that gives a viscous solution or sol in water. The water-soluble metal compound

delse kan med fordel utvelges fra gruppen som består av klorider, part can advantageously be selected from the group consisting of chlorides,

sulfater, acetater, formiater, hydroksyder og nitrater av alu- sulphates, acetates, formates, hydroxides and nitrates of aluminum

minium, jern, zirconium, titan, beryllium, krom, magnesium, minium, iron, zirconium, titanium, beryllium, chromium, magnesium,

thorium, uran, yttrium, nikkel, vanadium, mangan, molybden, thorium, uranium, yttrium, nickel, vanadium, manganese, molybdenum,

wolfram og kobolt eller blandinger av dem. Spesielt foretrukket tungsten and cobalt or mixtures thereof. Especially preferred

er metallsalter som kan danne et ildfast oksyd, spesielt aluminiumoksyklorid, basisk aluminiumacetat, basisk aluminiumformiat, zirconiumoksyklorid, basisk zirconiumacetat, basisk zirconiumnitrat eller basisk zirconiumformiat, blandinger av disse eller are metal salts which can form a refractory oxide, in particular aluminum oxychloride, basic aluminum acetate, basic aluminum formate, zirconium oxychloride, basic zirconium acetate, basic zirconium nitrate or basic zirconium formate, mixtures of these or

blandede salter av dem. mixed salts thereof.

Løsningsmidlet er et polart løsningsmiddel, f.eks. en The solvent is a polar solvent, e.g. one

alkohol, særlig metanol eller etanol, iseddik, dimetylsulfoksyd eller dimetylformamid. Det er spesielt bekvemt å bruke vann som løsningsmiddel. Blandinger av løsningsmidler kan brukes. alcohol, especially methanol or ethanol, glacial acetic acid, dimethylsulfoxide or dimethylformamide. It is particularly convenient to use water as a solvent. Mixtures of solvents may be used.

Den organiske polymer er en vannløselig organisk polymer, The organic polymer is a water-soluble organic polymer,

gjerne en ikke-ionisk vannløselig organisk polymer, en polyhydrok- preferably a non-ionic water-soluble organic polymer, a polyhydric

sylert organisk polymer eller en naturlig vannløselig gummi. Den organiske polymer er fortrinnsvis varmestabil under betingelsene for fiberdannelse, f.eks. fra omgivelsestemperatur til noen grader fra løsningsmidlets kokepunkt. Eksempler på foretrukne organiske polymerer er: sylated organic polymer or a natural water-soluble rubber. The organic polymer is preferably heat stable under the conditions of fiber formation, e.g. from ambient temperature to a few degrees above the boiling point of the solvent. Examples of preferred organic polymers are:

delvis hydrolysert polyvinylacetat partially hydrolyzed polyvinyl acetate

polyvinylalkohol polyvinyl alcohol

polyaktylamid og delvis hydrolysert polyakrylamid polyactylamide and partially hydrolyzed polyacrylamide

polyakrylsyrer polyacrylic acids

polyetylenoksyder polyethylene oxides

karboksyalkylcelluloser, f.eks. karboksymetylcellulose carboxyalkyl celluloses, e.g. carboxymethyl cellulose

hydroksyalkylcelluloser, f.eks. hydroksymetylcellulose hydroxyalkyl celluloses, e.g. hydroxymethyl cellulose

alkylcelluloser, f.eks. metylcellulose alkyl celluloses, e.g. methyl cellulose

hydrolyserte stivelser hydrolyzed starches

dekstraner dextrans

guargummi guar gum

polyvinylpyrrolidoner polyvinyl pyrrolidones

polyetylenglykoler polyethylene glycols

alginsyrer alginic acids

polyisobutylen-derivater polyisobutylene derivatives

polyuretaner, og polyurethanes, and

estere, kopolymerer eller blandinger av disse. esters, copolymers or mixtures thereof.

Mest foretrukket av organiske polymerer er rettkjedede polyhydroksylater av organiske polymerer, f.eks. polyvinylalkohol, delvis hydrolysert polyvinylacetat, polyetylenoksyd eller polyetylenglykol. Most preferred organic polymers are straight-chain polyhydroxylates of organic polymers, e.g. polyvinyl alcohol, partially hydrolyzed polyvinyl acetate, polyethylene oxide or polyethylene glycol.

Molekylvekten til den organiske polymer ligger i området 10 3 til 10 7, fortrinnsvis så høyt som det er forenelig med evnen til den organiske polymer å oppløse seg i løsningsmidlet som anvendes ved fremgangsmåten i henhold til oppfinnelsen. Eksempelvis foretrekkes det at polyvinylalkoholen eller det delvis hydrolyserte polyvinylacetat har en middels eller høy molekylvekt, The molecular weight of the organic polymer lies in the range 10 3 to 10 7 , preferably as high as is compatible with the ability of the organic polymer to dissolve in the solvent used in the method according to the invention. For example, it is preferred that the polyvinyl alcohol or the partially hydrolyzed polyvinyl acetate has a medium or high molecular weight,

4 6 4 6

at polyetylenoksydet har en molekylvekt på 10 -10 og at polyme-rene som stammer fra cellulose har en molekylvekt på 10 000 til 50 000. that the polyethylene oxide has a molecular weight of 10 -10 and that the polymers originating from cellulose have a molecular weight of 10,000 to 50,000.

Det foretrekkes at konsentrasjonen av organisk polymer It is preferred that the concentration of organic polymer

i den fiberdannende blanding er fra 0,1 til 2 vekt%. in the fiber-forming mixture is from 0.1 to 2% by weight.

Det foretrekkes at det inntreffer liten eller ingen kjemisk reaksjon mellom metallforbindelsen og den organiske polymer i den f iberdannende blanding. It is preferred that little or no chemical reaction occurs between the metal compound and the organic polymer in the fiber-forming mixture.

Viskositeten til den fiberdannende blanding skal være over 1 poise. Bekvemt ligger viskositeten i området 1-3000 poise, fortrinnsvis 100-1000 poise, spesielt når fiberdannelsen utføres ved ekstrudering av blandingen gjennom en spinnedyse for dannelse av et kontinuerlig filament. Fiberdannelse av blandinger med lav viskositet, f.eks. 1-100 poise, utføres fortrinnsvis ved en blåse-prosess som skal beskrives i det følgende. The viscosity of the fiber-forming mixture should be above 1 poise. Conveniently, the viscosity is in the range of 1-3000 poise, preferably 100-1000 poise, especially when the fiber formation is carried out by extruding the mixture through a spinning die to form a continuous filament. Fiber formation of low viscosity mixtures, e.g. 1-100 poise, is preferably carried out by a blowing process which will be described below.

Fiberdannelse ved blåsing omfatter ekstrudering av den fiberdannende blanding gjennom en eller flere åpninger inn i minst én gass-strøm som har en komponent med høy hastighet i utstrømningsretningen for den ekstruderte blanding. Dimensjo-nene og formen på den nevnte åpning kan variere innen vide grenser. Fiber formation by blowing comprises extruding the fiber-forming mixture through one or more openings into at least one gas stream having a high velocity component in the outflow direction of the extruded mixture. The dimensions and shape of the said opening can vary within wide limits.

Det foretrekkes å bruke en åpning som har minst én dimensjon større enn 50 mikron og mindre enn 500 mikron. Gass-strøm- It is preferred to use an aperture having at least one dimension greater than 50 microns and less than 500 microns. gas-electric-

men er fortrinnsvis luft, mer fortrinnsvis luft ved omgivelsestemperatur. Det er bekvemt å anvende to gass-strømmer som konvergerer ved eller nær det punkt hvor blandingen ekstruderes fra åpningen. Fortrinnsvis er vinkelen mellom de konvergerende gass-strømmer fra 30 til 60°. Minst en del av løsningsmidlet i blandingen fjernes av gass-strømmen, og fjerningshastigheten kan bekvemt reguleres ved blanding av gassen med løshingsmiddeldampen, og f.eks. kan man anvende luft med relativ fuktighet over 80 %, spesielt for vandige blandinger. Hastigheten av gass-strømmen kan varieres innen vide grenser, men det foretrekkes å bruke has-tigheter i området 60 til 450 m/sek. Det trykk som anvendes for å ekstrudere blandingen gjennom åpningene, vil være avhengig av blandingens viskositet og av den ønskede ekstruderingshastighet. Man har funnet at trykk fra 0,07 til 7 kg/cm absolutt er passende for blandinger med viskositeter opptil ca. 100 poise. but is preferably air, more preferably air at ambient temperature. It is convenient to use two gas streams which converge at or near the point where the mixture is extruded from the orifice. Preferably, the angle between the converging gas streams is from 30 to 60°. At least part of the solvent in the mixture is removed by the gas stream, and the removal rate can be conveniently regulated by mixing the gas with the solvent vapor, and e.g. air with a relative humidity above 80% can be used, especially for aqueous mixtures. The speed of the gas flow can be varied within wide limits, but it is preferred to use speeds in the range of 60 to 450 m/sec. The pressure used to extrude the mixture through the openings will depend on the viscosity of the mixture and on the desired extrusion speed. It has been found that pressures from 0.07 to 7 kg/cm are absolutely suitable for mixtures with viscosities up to approx. 100 poise.

Fibrene som fremstilles ved blåsing, har generelt liten diameter, typisk 0,5-5,0 mikron, og foreligger generelt i avbrutte lengder, som imidlertid kan ha meget høye forhold mellom lengde og diameter, f.eks. over 5000. Fibrene kan oppsamles som en-keltfibre eller i form av et garn, en matte eller filt. Om ønskes kan fibrene bindes sammen, f.eks. ved å samle opp fibrene før de tørker og å oppvarme den resulterende matte eller filt. Binding av fibrene kan utføres ved bruk av et bindemiddel. The fibers produced by blowing generally have a small diameter, typically 0.5-5.0 microns, and are generally available in interrupted lengths, which may, however, have very high ratios between length and diameter, e.g. over 5000. The fibers can be collected as single kelt fibers or in the form of a yarn, a mat or felt. If desired, the fibers can be tied together, e.g. by collecting the fibers before they dry and heating the resulting mat or felt. Binding of the fibers can be carried out using a binding agent.

Den fiberdannende blanding kan bekvemt fremstilles ved The fiber-forming mixture can be conveniently prepared by

å oppløse metallforbindelsen og den organiske polymer i løsnings-midlet. Rekkefølgen som oppløsningen utføres i, er ikke vanligvis kritisk og kan velges for maksimal bekvemhet i hver utførel-sesform. En vandig sol kan gjerne lages ved hydrolyse eller oppvarmning av en vandig løsning av metallforbindelsen. Metallforbindelsen eller den organiske polymer kan dannes fra en egnet forløper, vanligvis i nærvær av løsningsmidlet. Det kan være bekvemt å konsentrere løsningen, fortrinnsvis etter filtrering for fjerning av fast stoff, f.eks. ved inndampning av en del av to dissolve the metal compound and the organic polymer in the solvent. The order in which the resolution is performed is not usually critical and can be chosen for maximum convenience in each embodiment. An aqueous sol can often be made by hydrolysis or heating of an aqueous solution of the metal compound. The metal compound or organic polymer can be formed from a suitable precursor, usually in the presence of the solvent. It may be convenient to concentrate the solution, preferably after filtration to remove solids, e.g. by evaporation of a part of

løsningsmidlet for oppnåelse av den forlangte viskositet for fiberdannelse. Eventuelt kan den fiberdannende blanding avluftes før fiberdannelsen. the solvent to achieve the required viscosity for fiber formation. Optionally, the fiber-forming mixture can be deaerated before fiber formation.

Det foretrekkes å fjerne løsningsmiddel fra fibrene som danner seg ved fiberdannelse ved inndampning, f.eks. ved oppvarmning ved en temperatur fra 30 til 110°C, eventuelt under redusert trykk. It is preferred to remove solvent from the fibers which are formed by fiber formation by evaporation, e.g. by heating at a temperature from 30 to 110°C, possibly under reduced pressure.

Fibren oppvarmes ytterligere for spaltning av metallforbindelsen og/eller den organiske polymer for dannelse av en fiber av annen sammensetning. Spesielt viktig er utførelsesfor-mer hvor det er ønskelig å lage en fiber som består av et ildfast metalloksyd, f.eks. aluminiumoksyd eller zirconiumoksyd. Typisk kan fibren oppvarmes ved en temperatur fra 100 til 2000°C i fra 5 minutter til 24 timer. Den ildfaste fiber som danner seg, kan eventuelt sintres ved ytterligere oppvarmning ved en temperatur fra 500 til 2000°C i f.eks. 5 minutter til 4 timer. Oppvarmning for spaltning eller sintring kan utføres trinnvis, f.eks. i påfølgende trinn med økende temperatur. The fiber is further heated to split the metal compound and/or the organic polymer to form a fiber of a different composition. Particularly important are embodiments where it is desirable to make a fiber consisting of a refractory metal oxide, e.g. alumina or zirconium oxide. Typically, the fibers can be heated at a temperature from 100 to 2000°C for from 5 minutes to 24 hours. The refractory fiber that forms can optionally be sintered by further heating at a temperature from 500 to 2000°C in e.g. 5 minutes to 4 hours. Heating for cleavage or sintering can be carried out in stages, e.g. in successive steps with increasing temperature.

Under fiberdannelsen og/eller løsningsmiddel-fjernin-gen og/eller den videre oppvarmning kan fibren utsettes for strekk. During fiber formation and/or solvent removal and/or further heating, the fibers may be subjected to tension.

Forskjellige additiver kan innarbeides i fibren, en-keltvis eller i hvilken som helst kombinasjon, gjerne ved at de tilsettes til den fiberdannende blanding. Additiver kan også tilsettes på overflaten av fibren ved enhver egnet behandlings-prosess. Eksempler på additiver som kan tilsettes, er: (a) kornvekts-inhibitorer, f.eks. forbindelser av magnesium, kalsium eller aluminium, (b) sintringshjelpemidler, f.eks. fluorider eller salter Various additives can be incorporated into the fibres, individually or in any combination, preferably by adding them to the fibre-forming mixture. Additives can also be added to the surface of the fibers by any suitable treatment process. Examples of additives that can be added are: (a) grain weight inhibitors, e.g. compounds of magnesium, calcium or aluminium, (b) sintering aids, e.g. fluorides or salts

av natrium eller kalium, of sodium or potassium,

(c) overflateaktive midler, f.eks. alkoholer, (c) surfactants, e.g. alcohols,

(d) stabilisatorer for den fiberdannende blanding, f.eks. (d) stabilizers for the fiber-forming mixture, e.g.

maursyre, eddiksyre eller vinsyre, formic acid, acetic acid or tartaric acid,

(e) faseforandringsstabilisatorer, f.eks. forbindelser av litium, kalsium, magnesium, hafnium, yttrium, lantani-dene eller borsyre, (f) forsterkende-partikler som f.eks. kolloidal-kiselsyre, (e) phase change stabilizers, e.g. compounds of lithium, calcium, magnesium, hafnium, yttrium, the lanthanides or boric acid, (f) reinforcing particles such as e.g. colloidal silicic acid,

f.eks. kiselsyre laget ved en plasma-prosess, e.g. silicic acid made by a plasma process,

(g) en forbindelse som forbedrer de ildfaste egenskaper (g) a compound which improves the refractory properties

ved en ildfast fiber, f.eks. syreoksyder, spesielt Si02/ B203 eller P2°5 eller forbindelser som spaltes by a refractory fiber, e.g. acid oxides, especially SiO2/ B2O3 or P2°5 or compounds that decompose

for dannelse av sure oksyder, for the formation of acidic oxides,

(h) katalysatormaterialer, f.eks. forbindelser av platina, (h) catalyst materials, e.g. compounds of platinum,

kobber, palladium, sølv, rutenium, nikkel, kobolt, krom, jern, titan, vanadium eller mangan som beskrevet copper, palladium, silver, ruthenium, nickel, cobalt, chromium, iron, titanium, vanadium or manganese as described

i det følgende, in the following,

(i) luminescerende salter, f.eks. salter av thorium eller (i) luminescent salts, e.g. salts of thorium or

cerium, cerium,

(j) fargemidler, f.eks. beisefargestoffer eller pigmenter. (j) coloring agents, e.g. mordant dyes or pigments.

For utførelsesformer hvor fibre som omfatter zirconiumoksyd fremstilles, foretrekkes det å bruke aluminiumoksyd som kornvekst-inhibitor, fortrinnsvis fra 0,2 til 20 vekt%, basert på zirconiumoksydinnholdet..Som faseforandringsstabilisator for den nevnte fiber foretrekkes det å bruke yttriumoksyd eller kalsiumoksyd, fortrinnsvis fra 2 til 15 vekt% av zirconiumoksydet. Det foretrekkes spesielt å bruke aluminiumoksyd i kombinasjon med yttriumoksyd eller kalsiumoksyd i en zirconiumoksyd-holdig fiber. For embodiments where fibers comprising zirconium oxide are produced, it is preferred to use aluminum oxide as a grain growth inhibitor, preferably from 0.2 to 20% by weight, based on the zirconium oxide content. As a phase change stabilizer for said fiber, it is preferred to use yttrium oxide or calcium oxide, preferably from 2 to 15% by weight of the zirconium oxide. It is particularly preferred to use aluminum oxide in combination with yttrium oxide or calcium oxide in a zirconium oxide-containing fiber.

Fibrene som fremstilles i henhold til oppfinnelsen kan behandles med en stor mengde materialer. Eksempelvis kan de be-legges med et bestrykningsmiddel, f.eks. polyvinylalkohol eller stearinsyre. De kan neddykkes i en løsning av etylsilikat, vas-kes og oppvarmes slik at man får en fiber som inneholder silisium-oksyd. De kan også bløtes i løsninger av metallsalter, og de behandlede fibre kan oppvarmes slik at man får en fiber som inneholder ytterligere ildfast metalloksyd. The fibers produced according to the invention can be processed with a large amount of materials. For example, they can be coated with a coating agent, e.g. polyvinyl alcohol or stearic acid. They can be immersed in a solution of ethyl silicate, washed and heated so that a fiber containing silicon oxide is obtained. They can also be soaked in solutions of metal salts, and the treated fibers can be heated so that a fiber containing additional refractory metal oxide is obtained.

Ved fremgangsmåten i henhold til oppfinnelsen tilveie-bringes således en fiber som omfatter en metallforbindelse og en organisk polymer som kan være i uendelige eller avbrutte lengder eller i form av en masse eller filt. Vektandelen av metallforbindelsen i fibren er større enn vektandelen av den organiske polymer. Således utgjør den organiske polymer mindre enn 10 vekt% av metallforbindelsen, f.eks. 2-8 vekt%, gjerne 0,1-2 vekt%. The method according to the invention thus provides a fiber comprising a metal compound and an organic polymer which can be in infinite or interrupted lengths or in the form of a mass or felt. The weight proportion of the metal compound in the fibers is greater than the weight proportion of the organic polymer. Thus the organic polymer makes up less than 10% by weight of the metal compound, e.g. 2-8% by weight, preferably 0.1-2% by weight.

Ved fremgangsmåten i henhold til oppfinnelsen kan det fremstilles en kontinuerlig, diskontinuerlig eller filtet fiber av ildfast metalloksyd, f.eks. en fiber som omfatter aluminiumoksyd eller zirconiumoksyd. Zirconiumoksydet foreligger fortrinnsvis i sin tetragonale eller kubiske form. Vanligvis har With the method according to the invention, a continuous, discontinuous or felted fiber of refractory metal oxide can be produced, e.g. a fiber comprising aluminum oxide or zirconium oxide. The zirconium oxide is preferably in its tetragonal or cubic form. Usually have

fibrene en gjennomsnittsdiameter på fra 0,5 til 50 mikron, the fibers an average diameter of from 0.5 to 50 microns,

selv om fremgangsmåten ikke er begrenset til fremstilling av fibre i dette diameterområde. Fibre med diametre fra 0,5 til 5 mikron er spesielt nyttige, da de er sterke og fleksible. Om ønskes kan de kontinuerlige fibre omdannes til korte lengder, eller fibren kan fremstilles i en hvilken som helst passende lengde. although the method is not limited to the production of fibers in this diameter range. Fibers with diameters from 0.5 to 5 microns are particularly useful, as they are strong and flexible. If desired, the continuous fibers can be converted into short lengths, or the fibers can be made to any suitable length.

Som nevnt tidligere,kan den fiberdannende blanding inne-holde et katalysatormateriale eller en forløper for dette. As mentioned earlier, the fiber-forming mixture may contain a catalyst material or a precursor thereof.

Katalysatormaterialet kan være til stede på overflaten av fibren eller kan være innblandet slik at den er inne i fibren. Eventuelt kan katalysatormaterialet være delvis inne i fibren og delvis på overflaten. The catalyst material may be present on the surface of the fiber or may be incorporated so that it is inside the fiber. Optionally, the catalyst material can be partly inside the fibers and partly on the surface.

Når minst en del av katalysatormaterialet omfattes i fibren, er det passende å dispergere katalysatormaterialet, When at least part of the catalyst material is included in the fibers, it is appropriate to disperse the catalyst material,

eller en forløper for dette i den fiberdannende blanding. or a precursor thereof in the fiber-forming mixture.

Det foretrekkes å dispergere katalysatormaterialet eller dettes forløper i en fiberdannende blanding som omfatter en aluminium-eller zirconiumforbindelse. Med katalysatormaterial-forløper menes et materiale som, når det er passende behandlet, f.eks. ved oppvarmning eller reduksjon, vil gi et katalysatormateriale, direkte eller indirekte. It is preferred to disperse the catalyst material or its precursor in a fiber-forming mixture comprising an aluminum or zirconium compound. By catalyst material precursor is meant a material which, when suitably treated, e.g. on heating or reduction, will provide a catalyst material, directly or indirectly.

Spesielt bekvemt kan katalysatormaterialet dispergeres i nevnte blanding ved å oppløse det, eller dets forløper, i nevnte blanding. Det foretrekkes å oppløse vannløselige materialer, f.eks. salter av katalytiske metaller, spesielt metallnit-rater, i vandige fiberdannende blandinger. Particularly conveniently, the catalyst material can be dispersed in said mixture by dissolving it, or its precursor, in said mixture. It is preferred to dissolve water-soluble materials, e.g. salts of catalytic metals, especially metal nitrates, in aqueous fiber-forming compositions.

Dispergeringen av katalysatormaterialet i den fiberdannende blanding kan også godt utføres ved blanding av uløselig eller delvis løselig partikkelformet katalysatormateriale med den fiberdannende blanding . Fortrinnsvis bør gjennomsnittstørrelsen av partiklene som således er dispergert, være mindre enn den gjennomsnittlige diameter av den produserte fiber, og mer spesielt bør partiklene være av kolloidal størrelse. The dispersion of the catalyst material in the fiber-forming mixture can also be carried out by mixing insoluble or partially soluble particulate catalyst material with the fiber-forming mixture. Preferably, the average size of the particles thus dispersed should be less than the average diameter of the fiber produced, and more particularly the particles should be of colloidal size.

Enhver ønsket mengde av katalysatormateriale kan , dispergeres i den fiberdannende blanding, forutsatt at den produserte fiber fremdeles er tilstrekkelig sterk og koherent for bruk som fiberkatalysator. Det viser seg at opp til ca. 5 % Any desired amount of catalyst material may be dispersed in the fiber-forming mixture, provided that the fiber produced is still sufficiently strong and coherent for use as a fiber catalyst. It turns out that up to approx. 5%

av et katalysatormateriale av egnet størrelse kan innarbeides i fibren uten alvorlig forringelse av fiberegenskapene. of a catalyst material of suitable size can be incorporated into the fibers without serious deterioration of the fiber properties.

Det foretrekkes at katalysatormaterialet er kjemisk forlikelig med bestanddelene i den fiberdannende blanding. It is preferred that the catalyst material is chemically compatible with the constituents of the fiber-forming mixture.

Når fibren oppvarmes for dannelse av f.eks. et ildfast metalloksyd, som her beskrevet, foretrekkes det at katalysatormaterialet er stabilt ved oppvarmningstemperaturen. Når det gjelder en katalysatormateriale-forløper, er det ofte bekvemt at katalysatoren dannes fra forløperen under oppvarmnin-gen av fibren. When the fibers are heated to form e.g. a refractory metal oxide, as described here, it is preferred that the catalyst material is stable at the heating temperature. In the case of a catalyst material precursor, it is often convenient that the catalyst is formed from the precursor during the heating of the fibers.

Katalysatormaterialet kan innarbeides i fibren ved at fibren bløtes i en løsning av katalysatormaterialet eller en katalysatormateriale-forløper i et egnet løsningsmiddel, hvoretter løsningsmidlet fjernes fra fibren. Vann er et egnet løs-ningsmiddel for mange katalysatormaterialer eller deres for-løpere, f.eks. metallsalter. En fiber kan bløtes før eller etter at den oppvarmes for dannelse av en fiber av annen sammensetning, som her beskrevet. The catalyst material can be incorporated into the fibers by soaking the fibers in a solution of the catalyst material or a catalyst material precursor in a suitable solvent, after which the solvent is removed from the fibers. Water is a suitable solvent for many catalyst materials or their precursors, e.g. metal salts. A fiber can be soaked before or after it is heated to form a fiber of a different composition, as described here.

Katalysatormaterialet kan gjerne avsettes i egnet form på minst en del av fiberoverflaten. For dette formål kan det om ønskes bindes til overflaten ved hjelp av et bindemiddel, som selv kan være et katalysatormateriale, f.eks. aluminium-fosfat. Binding kan også utføres ved hjelp av en påføring av fiberdannende blanding på overflaten eller på katalysatormaterialet eller begge steder, og fjerning av løsningsmidlet fra den nevnte blanding. Organiske polymermaterialer kan også brukes for å binde katalysatoren til fiberoverflaten. The catalyst material can preferably be deposited in a suitable form on at least part of the fiber surface. For this purpose, it can, if desired, be bound to the surface by means of a binding agent, which can itself be a catalyst material, e.g. aluminum phosphate. Bonding can also be carried out by means of an application of fiber-forming mixture on the surface or on the catalyst material or both, and removal of the solvent from said mixture. Organic polymer materials can also be used to bind the catalyst to the fiber surface.

Hvis det ikke anvendes noe bindemiddel for å hjelpe på vedhenget av katalysatormaterialet til fiberoverflaten, er det ofte mulig å få i stand kjemisk reaksjon mellom katalysatormaterialet og fibren for å forbedre bindingen. I de fleste utførelsesformer av oppfinnelsen er det imidlertid tilfredsstil-lende å bare avsette katalysatormaterialet på fiberoverflaten i en form som er tilstrekkelig fin til at de normale krefter av fysisk tiltrekningskraft finner sted. Således er det praktisk å avsette katalysatormaterialet fra en tåkedis eller damp som omfatter katalysatormaterialet eller dettes forløper. Det er mest praktisk å avsette katalysatormaterialet eller dettes forlø-per på fiberoverflaten ved å behandle overflaten med en disper-sjon som omfatter katalysatormaterialet eller dettes forløper og en egnet væske. En løsning av katalysatormaterialet eller dettes forløper i et flyktig løsningsmiddel er spesielt nyttig. Hvis katalysatormaterialet dispergeres i en væske som ikke oppløser det, foretrekkes det at katalysatormaterialet er i findelt form, mest fortrinnsvis med en gjennomsnittstørrelse under 0,5 mikron. If no binder is used to aid in the attachment of the catalyst material to the fiber surface, it is often possible to induce chemical reaction between the catalyst material and the fibers to improve bonding. In most embodiments of the invention, however, it is satisfactory to simply deposit the catalyst material on the fiber surface in a form sufficiently fine for the normal forces of physical attraction to take place. Thus, it is practical to deposit the catalyst material from a mist or vapor comprising the catalyst material or its precursor. It is most practical to deposit the catalyst material or its precursor on the fiber surface by treating the surface with a dispersion comprising the catalyst material or its precursor and a suitable liquid. A solution of the catalyst material or its precursor in a volatile solvent is particularly useful. If the catalyst material is dispersed in a liquid that does not dissolve it, it is preferred that the catalyst material be in finely divided form, most preferably with an average size below 0.5 microns.

Katalysatormaterialet kan behandles ytterligere, eksempelvis for å få i stand ønskede forandringer. For eksempel, i tilfelle hvor det er innarbeidet en katalysatormateriale-for-løper i eller på fibren, vil det være nødvendig å frembringe det aktive katalysatormateriale ved en egnet prosess. De fremgangsmåter som normalt brukes, omfatter kjemisk reaksjon for dannelse av en annen forbindelse, reduksjon og oppvarmning. Hvilke som helst av disse fremgangsmåter, spesielt oppvarmning, The catalyst material can be further processed, for example to bring about desired changes. For example, in the case where a catalyst material precursor is incorporated in or on the fibres, it will be necessary to produce the active catalyst material by a suitable process. The methods normally used include chemical reaction to form another compound, reduction and heating. Any of these methods, especially heating,

kan kombineres med trinnet som går ut på oppvarmning av fibren for spaltning av metallforbindelsen eller den organiske polymer i den fiberdannende blanding. Behandling av katalysatormaterialet for oppnåelse av ønskelige fysikalske forandringer kan også utføres. Eksempelvis kan det være ønskelig med forandringer i overflatearealet eller krystallstrukturen for å oppnå spesifikke katalytiske effekter. Behandling for å fjerne uønskede substan-ser, f.eks. katalysatorgifter, kan være nyttig i noen utførelses-former. can be combined with the step of heating the fibers to decompose the metal compound or the organic polymer in the fiber-forming mixture. Treatment of the catalyst material to achieve desirable physical changes can also be carried out. For example, it may be desirable to have changes in the surface area or the crystal structure to achieve specific catalytic effects. Treatment to remove unwanted substances, e.g. catalyst poisons, may be useful in some embodiments.

Et meget stort antall katalysatormaterialer kan brukes, og de produkter som fremstilles med disse kan brukes i et stort antall kjemiske prosesser av industriell betydning. A very large number of catalyst materials can be used, and the products produced with these can be used in a large number of chemical processes of industrial importance.

Fosforsyre eller svovelsyre som katalysatormateriale gir et produkt som er nyttig som katalysator i adiponitrilsyntese, ved polymerisering av blandede olefiner til bensin, hydratisering av olefiner til alkoholer og alkylering av aromater. Phosphoric or sulfuric acid as a catalyst material provides a product useful as a catalyst in adiponitrile synthesis, in the polymerization of mixed olefins to gasoline, the hydration of olefins to alcohols, and the alkylation of aromatics.

Produkter som fremstilles i henhold til oppfinnelsen, som omfatter metallene kobber, rutenlum, nikkel, palladium, platina eller sølv, eller kombinasjoner av disse, er spesielt nyttige ved fremgangsmåter som f.eks. de følgende: Products produced according to the invention, which comprise the metals copper, rutenlum, nickel, palladium, platinum or silver, or combinations thereof, are particularly useful in methods such as e.g. the following:

dehydratisering av alkoholer, dehydration of alcohols,

metanolsyntese methanol synthesis

reduksjon av nitrobenzen reduction of nitrobenzene

ammoniakkspalting ammonia splitting

dampreformering av petroleum eller natur-gass hydrogenering av olefiner, aromater, nitrider, fett og oljer svoveldioksyd-oksydasjon steam reforming of petroleum or natural gas hydrogenation of olefins, aromatics, nitrides, fats and oils sulfur dioxide oxidation

hydro-dealkylering hydro-dealkylation

metan-ammoksydasjon methane ammoxidation

etylenoksyd fra etylen ethylene oxide from ethylene

formaldehyd fra metanol. formaldehyde from methanol.

Bruken av aluminiumoksyd-fibre i noen av disse reak-sjoner foretrekkes, spesielt i tilfeller hvor den riktige aluminiumoksyd-fase brukes, f.eks. i Jf- eller 7[-formen. The use of alumina fibers in some of these reactions is preferred, especially in cases where the correct alumina phase is used, e.g. in the Jf or 7[ form.

Halvleder-oksyder er nyttige katalysatormaterialer. Semiconductor oxides are useful catalyst materials.

For eksempel kan Cr203 på f- eller Tt-aluminiumoksyd brukes for paraffin-dehydrogenering eller petroleum-reformering. For example, Cr2O3 on f- or Tt-alumina can be used for paraffin dehydrogenation or petroleum reforming.

Metallhalogenider, f.eks. CuCl2, SbCl3, A1C13 eller CrCl-j gir produkter som er nyttige som katalysator for mange klorerings- eller oksykloreringsreaksjoner eller for isomerisa-sjon av paraffiner, olefiner og aromater. Metal halides, e.g. CuCl2, SbCl3, AlCl3 or CrCl-j give products which are useful as catalysts for many chlorination or oxychlorination reactions or for the isomerisation of paraffins, olefins and aromatics.

Organo-metalliske katalysatorer kan best anvendes i forbindelse med oppfinnelsen ved bløting eller bestrykning av den på forhånd dannede fiber. Slike fiberkatalysatorer er nyttige ved fremstilling av etylen-oligomerer, polyetylener og poly-estere. Metallkarbonyler, f.eks. HCo(CO)4, gir fiberkatalysatorer som er nyttige for utførelse av "0X0"-prosesser. Organo-metallic catalysts can best be used in connection with the invention by soaking or coating the previously formed fiber. Such fiber catalysts are useful in the production of ethylene oligomers, polyethylenes and polyesters. Metal carbonyls, e.g. HCo(CO)4, provide fiber catalysts useful for carrying out "0X0" processes.

Fiberkatalysatorene, spesielt slike som inneholder platina, palladium, molybdenum, Co304, V20,-, Cr203, Mn02, Fe2°3 eller NiO eller kombinasjoner av disse, kan brukes for å kata-lysere oksydasjonen av bileksos-gasser, f.eks. i en etter-brenner. The fiber catalysts, especially those containing platinum, palladium, molybdenum, Co 3 O 4 , V 2 O 2 -, Cr 2 O 3 , MnO 2 , Fe 2° 3 or NiO or combinations thereof, can be used to catalyze the oxidation of car exhaust gases, e.g. in an afterburner.

Andre katalytiske materialer som er funnet nyttige, omfatter: Other catalytic materials found useful include:

koboltmolybdat cobalt molybdate

nikkelmolybdat nickel molybdate

vismutmolybdat bismuth molybdate

kobbermolybdat copper molybdate

sinkkromitt zinc chromite

koboltoksyd, Co-jO^ . cobalt oxide, Co-jO^ .

Fiberkatalysatorer som fremstilles i henhold til oppfinnelsen er fordelaktige på grunn av sine høye utvendige overflatearealer. Fiberkatalysatorer som omfatter et ildfast oksyd, spesielt aluminiumoksyd eller zirconiumoksyd, er varme-resistente og mekanisk sterke. Fiber catalysts produced according to the invention are advantageous because of their high external surface areas. Fiber catalysts comprising a refractory oxide, especially aluminum oxide or zirconium oxide, are heat-resistant and mechanically strong.

Oppfinnelsen er således nyttig ved fremstilling av fibre som kan ha meget liten diameter, er tette, ildfaste, sterke og har høy modul. De kan med fordel brukes ved høy temperatur som isolasjonsmaterialer, fyllstoffer, som for-sterkningsmiddel for harpikser, metaller og keramiske metaller, inerte filtere, katalysatorer eller katalysatorbærere. Fibrene kan spinnes til garn som kan veves til stoff. The invention is thus useful in the production of fibers which can have a very small diameter, are dense, refractory, strong and have a high modulus. They can be advantageously used at high temperature as insulating materials, fillers, as a reinforcing agent for resins, metals and ceramic metals, inert filters, catalysts or catalyst carriers. The fibers can be spun into yarn that can be woven into fabric.

Oppfinnelsen skal i det følgende belyses av eksempler. In the following, the invention will be illustrated by examples.

Eksempel 1 Example 1

En aluminiumoksykloridløsning med molforhold A1:C1 på 1,8:1 ble fremstilt ved reaksjon mellom rent aluminiumpulver og en løsning som inneholdt 260 g/l av aluminiumklorid under tilbakeløpsbetingelser. Løsningen ble omhyggelig filtrert gjennom et fint, syreresistent filterpapir. An aluminum oxychloride solution with a molar ratio A1:C1 of 1.8:1 was prepared by reaction between pure aluminum powder and a solution containing 260 g/l of aluminum chloride under reflux conditions. The solution was carefully filtered through a fine, acid-resistant filter paper.

En 2 vekt% løsning av et delvis hydrolysert kaldtvanns-løselig polyvinylacetat med høy molekylvekt ble laget ved å røre inn destillert vann i 6 timer. Løsningen ble silt og A 2% by weight solution of a partially hydrolyzed cold water soluble high molecular weight polyvinyl acetate was made by stirring in distilled water for 6 hours. The solution was filtered and

filtrert. filtered.

Da polymerløsningen var fri for bobler, ble 25 ml When the polymer solution was free of bubbles, 25 ml

tilsatt til 50 ml av aluminiumoksykloridløsningen, sammen med 5 dråper iseddik. Den resulterende blanding ble inndampet på added to 50 ml of the aluminum oxychloride solution, along with 5 drops of glacial acetic acid. The resulting mixture was evaporated onto

en standard låboratorierotasjonsinndamper ved 35°C under redu- a standard low laboratory rotary evaporator at 35°C under redu-

sert trykk. 2 timer at den roterende inndamper var stanset, hard pressure. 2 hours that the rotary evaporator was stopped,

hadde løsningen en viskositet på 360 poise ved en skjærhastig- the solution had a viscosity of 360 poise at a shear rate of

het på 200 sek og en viskositet på 700 poise ved ekstra- heat of 200 sec and a viscosity of 700 poise at extra-

polering ved 0 skjærhastighet, målt på et Ferranti-Shirley-viskosimeter med konus og plate. polishing at 0 shear rate, measured on a Ferranti-Shirley cone-plate viscometer.

Løsningen ble innført i et trykk-kar av rustfritt stål The solution was introduced into a stainless steel pressure vessel

og ekstrudert under nitrogentrykk via et millipore-filter med 10 mikron hullstørrelse gjennom en spinnedyse med 100 mikron i diameter. and extruded under nitrogen pressure via a 10 micron pore size millipore filter through a 100 micron diameter spinneret.

Den ekstruderte fiber ble tvunnet opp i en hastighet The extruded fiber was wound up at a rate of

av 180 m/min etter at den hadde passert gjennom 46 m luft ved en temperatur av 25°C og relativ fuktighet 60 %. of 180 m/min after it had passed through 46 m of air at a temperature of 25°C and relative humidity 60%.

Diameteren på den opptvunne fiber var 5 mikron. The diameter of the recovered fiber was 5 microns.

Strekkprøver på en Instron-tester utstyrt med en A- Tensile tests on an Instron tester equipped with an A-

celle og som ga en 2 g full-skala grafisk avlesning, ga strekk- cell and which gave a 2 g full-scale graphic reading, gave tensile

styrke i områo det 840 til 1050 kg/cm 2. strength in the region of 840 to 1050 kg/cm 2.

Ved ytterligere oppvarmning ble fibren sort på grunn Upon further heating, the fibers became black on the ground

av spaltningen av polymeren, og kullet brant av ved temperaturer over 500°C slik at man fikk en hvit, glassaktig fiber. of the splitting of the polymer, and the coal burned off at temperatures above 500°C so that a white, glassy fiber was obtained.

Eksempel 2 Example 2

En 2 vekt% løsning av en vannløselig polyvinylalkohol A 2% by weight solution of a water-soluble polyvinyl alcohol

med middels molekylvekt ble laget ved å røre polyvinylalkohol-granulatet inn i vann natten over. Løsningen ble silt og filtrert. of medium molecular weight was made by stirring the polyvinyl alcohol granules into water overnight. The solution was strained and filtered.

50 ml av denne løsning ble tilsatt til 50 ml av en aluminiumoksyklorid-løsning som ved analyse viste seg å inne- 50 ml of this solution was added to 50 ml of an aluminum oxychloride solution which, by analysis, was found to contain

holde 11,2 vekt% aluminium og 8,1 vekt% klor. 3 dråper iseddik ble tilsatt til blandingen som stabilisator. Løsningen ble inndampet under redusert trykk på en roterende inndamper og ga en viskositet ved null skjærhastighet på 800 poise. keep 11.2 wt% aluminum and 8.1 wt% chlorine. 3 drops of glacial acetic acid were added to the mixture as a stabilizer. The solution was evaporated under reduced pressure on a rotary evaporator to give a viscosity at zero shear rate of 800 poise.

Løsningen ble innført i et trykk-kar av rustfritt stål utstyrt med et millipore-filter og en spinnedyse med senke av 75 mikron diameter. Fibren ble ekstrudert under nitrogen- The solution was introduced into a stainless steel pressure vessel equipped with a millipore filter and a spinning nozzle with a sink of 75 micron diameter. The fiber was extruded under nitrogen

trykk og tvunnet opp ved en oppsamlingshastighet på 120 m/min på en trommel som befant seg 3 meter under senking. Fiber- pressure and wound up at a pick-up speed of 120 m/min on a drum which was 3 meters under lowering. Fiber-

diameteren på trommelen var 3 mikron. the diameter of the drum was 3 microns.

Filtret på trommelen ble gjenoppvunnet på en annen trommel etter å ha passert gjennom en rørformet ovn ved 800°C slik at det ble tilnærmet 30 sekunder ved denne temperatur. Hastigheten til trommel nummer to ble justert til tilnærmet The filter on the drum was recycled on another drum after passing through a tubular furnace at 800°C for approximately 30 seconds at this temperature. The speed of drum number two was adjusted to approx

25 % mindre enn for den første, slik at fibrene skulle krympe. Fiberhespler fra trommel nummer to ble oppvarmet natten over 25% less than for the first, so that the fibers would shrink. Fiber spools from drum number two were heated overnight

i en ovn ved 750°C. Produktet var en hvit, glassaktig fiber med diameter i området 2 til 2,5 mikron. Strekktester ga styrker i områo det 840 til 1400 kg/can 2 og en modul i områ■>det I, 3 til 1,7 x IO<6> kg/cm<2>. in an oven at 750°C. The product was a white glassy fiber with a diameter in the range of 2 to 2.5 microns. Tensile tests gave strengths in the range 840 to 1400 kg/can 2 and a modulus in the range I, 3 to 1.7 x 10<6> kg/cm<2>.

Eksempel 3 Example 3

50 ml av en aluminiumoksykloridløsning som inneholder II, 2 vekt% aluminium og 8,1 vekt% klor, ble blandet med 25 ml av en 2 vekt% løsning av en løselig polyvinylalkohol med middels molekylvekt. 1 g borsyre og 2 dråper eddiksyre ble oppløst i blandingen. 50 ml of an aluminum oxychloride solution containing II, 2 wt% aluminum and 8.1 wt% chlorine, was mixed with 25 ml of a 2 wt% solution of a soluble medium molecular weight polyvinyl alcohol. 1 g of boric acid and 2 drops of acetic acid were dissolved in the mixture.

Løsningen ble inndampet til en viskositet av 900 poise ved null skjærhastighet, og fibre med diameter 5 mikron ble oppsamlet på en trommel ved ekstrudering under trykk gjennom en 100 mikron spinnedyse fulgt av trekking gjennom 3 m luft ved relativ fuktighet 65 %. The solution was evaporated to a viscosity of 900 poise at zero shear rate and 5 micron diameter fibers were collected on a drum by extrusion under pressure through a 100 micron spinneret followed by drawing through 3 m of air at 65% relative humidity.

Fiberhespler ble fjernet fra trommelen og hengt opp i en ovn under strekk. Fibren ble oppvarmet til 800°C i tidsrom av 3 timer og holdt ved denne temperatur i ytterligere 3 timer. Den fremstilte fiber var hvit og glassaktig og hadde strekk-styrker i områo det 1050 til 1400 kg/cm 2. De kunne veves til stoff. Fiber skeins were removed from the drum and suspended in an oven under tension. The fiber was heated to 800°C for a period of 3 hours and held at this temperature for a further 3 hours. The fibers produced were white and vitreous and had tensile strengths in the region of 1050 to 1400 kg/cm 2 . They could be woven into fabric.

Eksempel 4 Example 4

100 g ZrOCl2.8H20 ble oppvarmet med 100 ml destillert vann og 2 g CaO og 10 g zirconiumacetatløsning til CaO var fullstendig løst. 50 ml av en 2 vekt% løsning av kaldtvannsløselig polyvinylalkohol med høy molekylvekt ble blandet med den fremstilte løsning, og blandingen ble inndampet til en viskøs sirup med viskositet 800 poise ved null skjærhastighet. 100 g of ZrOCl2.8H20 was heated with 100 ml of distilled water and 2 g of CaO and 10 g of zirconium acetate solution until the CaO was completely dissolved. 50 ml of a 2% by weight solution of cold water soluble high molecular weight polyvinyl alcohol was mixed with the prepared solution and the mixture was evaporated to a viscous syrup of viscosity 800 poise at zero shear rate.

Det ble ekstrudert fibre fra en spinnedyse og disse ble trukket av en oppvinningstrommel som befant seg 3 m under spinnedyse-senken som hadde en diameter på 100 mikron. Fibre med diameter 5 mikron ble oppsamlet på trommelen som ble dekket Fibers were extruded from a spinneret and these were pulled by a recovery drum located 3 m below the spinneret sinker which had a diameter of 100 microns. Fibers of diameter 5 microns were collected on the drum which was covered

med en polyetylenfilm. with a polyethylene film.

Polyetylenfilmen ble trukket av trommelen, og fibrene ble fjernet fra filmen uten at de ble brukket. Den resulterende fiberhespel ble hengt opp i en ovn som ble oppvarmet til 1000°C i et tidsrom av 24 timer. The polyethylene film was pulled off the drum and the fibers were removed from the film without breaking. The resulting fiber coil was suspended in an oven which was heated to 1000°C for a period of 24 hours.

Produktene var gule, polykrystallinske, stabiliserte zirconiumoksydfibre som var fleksible og hadde en gjennomsnittlig strekkstyrke på 1400 kg/cm 2. The products were yellow, polycrystalline, stabilized zirconium oxide fibers which were flexible and had an average tensile strength of 1400 kg/cm 2 .

Eksempel 5 Example 5

Til 50 ml av en aluminiumoksykloridløsning med et molforhold A1:C1 på 1,8:1 og som inneholdt 11 vekt% aluminium, ble det tilsatt 20 ml av en 0,5 vekt% løsning av et polyetylenoksyd med høy molekylvekt, 1,0 g borsyre og 20 g MgCl2.6H20. 30 ml vann ble tilsatt og blandingen omrørt ved 50°C til alle bestanddelene var oppløst. Løsningen ble inndampet til en klar sirup med viskositet 700 poise ved null skjærhastighet og fiber-dannet ved den fremgangsmåte som er beskrevet i eksempel 4 i luft med relativ fuktighet 45 %. Fibre med diameter 4 mikron ble tvunnet opp i en oppsamlingshastighet av 150 m/min og oppvarmet under strekk i en ovn. Ovnen ble oppvarmet til 1000°C To 50 ml of an aluminum oxychloride solution with a molar ratio A1:C1 of 1.8:1 and containing 11% by weight of aluminum was added 20 ml of a 0.5% by weight solution of a high molecular weight polyethylene oxide, 1.0 g boric acid and 20 g of MgCl2.6H20. 30 ml of water was added and the mixture stirred at 50°C until all the ingredients were dissolved. The solution was evaporated to a clear syrup with a viscosity of 700 poise at zero shear rate and fiber formed by the method described in example 4 in air with a relative humidity of 45%. Fibers with a diameter of 4 microns were spun up at a take-up speed of 150 m/min and heated under tension in an oven. The furnace was heated to 1000°C

i en hastighet av 100°C stigning pr. time. at a rate of 100°C rise per hour.

Produktene var fibre med diameter 2 til 3 mikron som inneholdt blandede faser av magnesium-spinell, aluminiumborat og aluminiumoksyd. The products were 2 to 3 micron diameter fibers containing mixed phases of magnesium spinel, aluminum borate and alumina.

Eksempel 6 Example 6

50 ml aluminiumoksykloridløsning som inneholdt 11,2 vekt% Al og 8,1 vekt% Cl, ble blandet med 30 ml av en 2 vekt% løsning av en polyvinylalkohol med høy molekylvekt. Blandingen ble konsentrert ved inndampning under redusert trykk til viskositet 50 poise. Den konsentrerte løsning ble innført i en fiberblåseinnretning hvor to luftstrømmer av høy hastighet ble sendt inn fra hver side i en vinkel av 30° til en strøm av løsningen som strømmet ut fra en 25 mikron vid spalte under trykk. Luftstrømmene hadde temperatur 35°C og relativ fuktighet 40 %. 50 ml of aluminum oxychloride solution containing 11.2 wt% Al and 8.1 wt% Cl was mixed with 30 ml of a 2 wt% solution of a high molecular weight polyvinyl alcohol. The mixture was concentrated by evaporation under reduced pressure to a viscosity of 50 poise. The concentrated solution was introduced into a fiber blowing device where two high velocity air streams were introduced from each side at an angle of 30° to a stream of the solution which exited from a 25 micron wide pressurized slot. The air currents had a temperature of 35°C and a relative humidity of 40%.

En matte av meget fine fibre med lengder opp til 10 can og diametre vurdert til 1 mikron ble oppsamlet på en silduk av gas.. Matten ble oppvarmet ved 800°C i 1 time og ga da klare,, glassaktige fibre som var silkeaktige og fleksible. A mat of very fine fibers with lengths up to 10 can and diameters rated at 1 micron was collected on a gas screen cloth. The mat was heated at 800°C for 1 hour, yielding clear, glassy fibers that were silky and flexible. .

En annen matte av ubrente fibre ble oppvarmet ved 600°C i 15 minutter, bløtt i en alkoholisk etylsilikatløsning, vasket med etanol og fikk tørke. Fibrene ble oppvarmet igjen ved å heve temperaturen til 1000°C i et tidsrom av 24 timer og ga da et fleksibelt, silkeaktig produkt med forbedret strekkstyrke. Another mat of unburnt fibers was heated at 600°C for 15 minutes, soaked in an alcoholic ethyl silicate solution, washed with ethanol and allowed to dry. The fibers were reheated by raising the temperature to 1000°C over a period of 24 hours, yielding a flexible, silky product with improved tensile strength.

Eksempel 7 Example 7

En vandig løsning ble fremstilt som inneholdt følgende: 200 g zirconiumoksykloridløsning (50 vekt% ZrOCl2.8H20) An aqueous solution was prepared containing the following: 200 g of zirconium oxychloride solution (50% by weight ZrOCl2.8H20)

200 ml zirconiumacetatløsning (20 vekt% Zr02) 200 ml zirconium acetate solution (20% by weight Zr02)

125 ml 2 vekt% polyvinylalkohol-løsning 125 ml 2% by weight polyvinyl alcohol solution

12 ml kons. HC1 12 ml conc. HC1

8 g aluminiumoksykloridløsning (26 vekt% A^O^) - 8 g aluminum oxychloride solution (26% by weight A^O^) -

Løsningen ble grundig blandet og alle partikler større enn 0,3 mikron filtrert ut. Løsningen ble konsentrert ved fjerning av vann ved 40°C under partielt vakuum til viskositeten var 4,2 poise, målt ved 25°C. Løsningen ble formet til fibre ved ekstrudering gjennom en rekke små hull inn i en luftstrøm som beveget seg i samme retning, nær lydens hastighet. Luft-strømmen hadde relativ fuktighet 90 % ved 25°C. De produserte fibre i denne strøm ble delvis tørket av en annen strøm med tørr luft som blandet seg med fibrene ca. 1,2 m under "spinne"-dysene. Fibrene ble avsatt på et transportbånd som gikk gjennom en ovn ved 1000 C med en oppholdstid på 5 minutter i ovnen. Produktene var myke, hvite og fleksible. The solution was thoroughly mixed and all particles larger than 0.3 microns were filtered out. The solution was concentrated by removal of water at 40°C under partial vacuum until the viscosity was 4.2 poise, measured at 25°C. The solution was formed into fibers by extrusion through a series of small holes into a stream of air moving in the same direction, near the speed of sound. The air stream had a relative humidity of 90% at 25°C. The fibers produced in this stream were partially dried by another stream of dry air which mixed with the fibers approx. 1.2 m below the "spin" nozzles. The fibers were deposited on a conveyor belt which passed through an oven at 1000 C with a residence time of 5 minutes in the oven. The products were soft, white and flexible.

Zirconiumoksydet var i en krystallinsk form med en gjennomsnittlig krystallittstørrelse på 100 Å. Studier med Stereoscan-elektronmikroskop viste at overflaten av fibrene var i alt vesentlig glatt og at gjennomsnittsdiameteren var 1 mikron. The zirconium oxide was in a crystalline form with an average crystallite size of 100 Å. Stereoscan electron microscope studies showed that the surface of the fibers was substantially smooth and that the average diameter was 1 micron.

Fibrene ble impregnert med et nikkelkatalysator-materiale som følger: 10 g zirconiumoksydfibre, fremstilt som angitt oven-for , ble oppbløtt i en varm (60°C) løsning av nikkelklorid i vann (50 vekt% mettet NiCl2.6H20 ved 25°C) i 10 minutter. Fibrene ble sentrifugert mens de fremdeles var varme, og de The fibers were impregnated with a nickel catalyst material as follows: 10 g of zirconium oxide fibers, prepared as indicated above, were soaked in a warm (60°C) solution of nickel chloride in water (50% by weight saturated NiCl2.6H20 at 25°C) for 10 minutes. The fibers were centrifuged while they were still warm, and they

ble oppvarmet ved 800°C i 5 minutter. was heated at 800°C for 5 minutes.

Fibrene ble deretter oppvarmet i en 3:1, i volum, bland-.ing av nitrogen og hydrogen ved 600°C i 10 minutter for frembringelse av sorte fibre som inneholdt 5 vekt% nikkel. The fibers were then heated in a 3:1, by volume, mixture of nitrogen and hydrogen at 600°C for 10 minutes to produce black fibers containing 5 wt% nickel.

Eksempel 8 Example 8

Fibre som var fremstilt som beskrevet i eksempel 7, ble sintret ved 145°C i 10 minutter for å øke tettheten og forbedre styrken og stivheten til fibrene. Stereoscan-elektronmikro- Fibers prepared as described in Example 7 were sintered at 145°C for 10 minutes to increase the density and improve the strength and stiffness of the fibers. Stereoscan electron micro-

grafer viste at overflaten av fibrene var ganske ru. Disse fibre ble belagt med koboltoksyd ( Co^ O^) ved bløting i en 10 graphs showed that the surface of the fibers was quite rough. These fibers were coated with cobalt oxide (Co^O^) by soaking in a 10

vekt% løsning av koboltnitrathydrat i metanol, fulgt av grundig awanning av fibrene og oppvarmning ved 450°C i 10 minutter. wt% solution of cobalt nitrate hydrate in methanol, followed by thorough dewatering of the fibers and heating at 450°C for 10 minutes.

De således fremstilte fibre var sorte og besto av et belegg av koboltoksyd (Co^O^) som ble anslått å være ca. 1/10 mikron tykt på zirconiumoksydfibre. De var sterke og fleksible. The fibers thus produced were black and consisted of a coating of cobalt oxide (Co^O^) which was estimated to be approx. 1/10 micron thick on zirconia fibers. They were strong and flexible.

Eksempel 9 Example 9

Fibre som var fremstilt som angitt i eksempel 7, ble Fibers prepared as indicated in Example 7 were

oppbløtt i en 10 % løsning av koboltnitrathydrat i kokende vann. Fibrene ble så sentrifugert og oppvarmet ved 500°C i luft i soaked in a 10% solution of cobalt nitrate hydrate in boiling water. The fibers were then centrifuged and heated at 500°C in air

15 minutter. Vektøkningen som skyldtes koboltoksydet, Co^O^, 15 minutes. The increase in weight due to the cobalt oxide, Co^O^,

som var avsatt i overflatesjiktet og på overflaten av fibrene, which was deposited in the surface layer and on the surface of the fibers,

var tilnærmet 5 %. was approximately 5%.

Eksempel 10 Example 10

Fibre som var fremstilt som i eksempel 7, ble oppvarmet Fibers prepared as in Example 7 were heated

ved 1000°C i 3 timer for fjerning av resterende kloridion og ble belagt med koboltoksyd, Co^O^, som i eksempel 2. Katalysatorens aktivitet ble forbedret ved fjerning av kloridionet. at 1000°C for 3 hours to remove residual chloride ion and was coated with cobalt oxide, Co^O^, as in Example 2. The activity of the catalyst was improved by removal of the chloride ion.

Eksempel 11 Example 11

Fibre som var fremstilt som beskrevet i eksempel 7 og Fibers which were prepared as described in example 7 and

laget til en filt med tykkelse 2,54 mm, ble sprøytet med en 30 vekt/volum % løsning av koboltnitrathydrat. Den resulterende filt ble behandlet ved 450°C i luft i 30 minutter. Vekten av fibrene hadde øket med 5 % på grunn av dannelsen av et belegg av C0.3O4. made into a 2.54 mm thick felt, was sprayed with a 30% w/v solution of cobalt nitrate hydrate. The resulting felt was treated at 450°C in air for 30 minutes. The weight of the fibers had increased by 5% due to the formation of a coating of C0.3O4.

Eksempel 12 Example 12

Fibre som var fremstilt som beskrevet i eksempel 7 ble oppbløtt i fortynnet svovelsyre og oppvarmet ved 700°C i 5 Fibers prepared as described in Example 7 were soaked in dilute sulfuric acid and heated at 700°C for 5

minutter. minutes.

Eksempel 13 Example 13

Fibre som var fremstilt som beskrevet i eksempel 7, ble oppbløtt i en 1 vekt% løsning av klorplatinasyre i fortynnet saltsyre. Fibrene ble deretter oppvarmet ved 800°C. Fibers prepared as described in Example 7 were soaked in a 1% by weight solution of chloroplatinic acid in dilute hydrochloric acid. The fibers were then heated at 800°C.

Eksempel 14 Example 14

Fibre ble laget som beskrevet i eksempel 7, med unn- Fibers were made as described in Example 7, except

tagelse av at det ble brukt følgende resept: assumption that the following recipe was used:

200 g zirconiumoksykloridløsning (50 vekt% ZrOCl2.8H20) 230 ml zirconiumacetatløsning (20 vekt% Zr02^ 200 g zirconium oxychloride solution (50 wt% ZrOCl2.8H20) 230 ml zirconium acetate solution (20 wt% ZrO2^

125 ml 2 vekt% polyvinylalkohol-løsning 40 g aluminiumoksyklorid (20 vekt/volum % Al?03) inneholdende 2,0 g H2S04. 125 ml 2% by weight polyvinyl alcohol solution 40 g aluminum oxychloride (20% w/v Al?O 3 ) containing 2.0 g H 2 SO 4 .

Ved brenning ved 1000°C av ovennevnte blanding fikk man zirconiumoksyd i den kubiske fase som var spesielt nyttig for "syre"-katalyse - By burning the above mixture at 1000°C, zirconium oxide was obtained in the cubic phase which was particularly useful for "acid" catalysis -

Eksempel 15 Example 15

Det ble laget fibre ved bruk av følgende fiberdannende blanding: 200 g zirconiumoksykloridløsning (50 vekt% Zr0Cl2.8H20) 230 ml zirconiumacetatløsning (20 vekt% Zr02^ Fibers were made using the following fiber-forming mixture: 200 g zirconium oxychloride solution (50 wt% Zr0Cl2.8H20) 230 ml zirconium acetate solution (20 wt% Zr02^

125 ml 2 vekt% polyvinylalkohol-løsning 125 ml 2% by weight polyvinyl alcohol solution

24 g NiCl2.6H20 24 g of NiCl2.6H20

5,8 g CuCl2.2H20 5.8 g of CuCl 2 . 2 H 2 O

Løsningen ble filtrert, inndampet til viskositet 4,0 poise, "blåst" til fibre og oppvarmet ved 800°C i 20 minutter. Fibrene ble oppvarmet videre i en 3:1, i volum, blanding av nitrogen og hydrogen ved 600°C i 15 minutter for frembringelse av en høyaktiv katalytisk fiber. The solution was filtered, evaporated to viscosity 4.0 poise, "blown" into fibers and heated at 800°C for 20 minutes. The fibers were further heated in a 3:1, by volume, mixture of nitrogen and hydrogen at 600°C for 15 minutes to produce a highly active catalytic fiber.

Eksempel 16 Example 16

Fibre ble fremstilt fra følgende fiberdannende blanding som beskrevet i eksempel 15: 200 g basisk zirconiumnitratiøsning (20 vekt% z^02) 230 ml basisk zirconiumacetatløsning (20 vekt% Zr02) 150 ml 2 vekt% polyvinylalkohol-løsning 20 g Co(N03)2.6H20 De fremstilt fibre ble oppvarmet ved 450 C i 30 minutter og ga en fiberkatalysator. Fibers were prepared from the following fiber-forming mixture as described in Example 15: 200 g basic zirconium nitrate solution (20 wt% z^O2) 230 ml basic zirconium acetate solution (20 wt% ZrO2) 150 ml 2 wt% polyvinyl alcohol solution 20 g Co(N03)2.6 H 2 O The prepared fibers were heated at 450 C for 30 minutes and produced a fiber catalyst.

Eksempel 17 Example 17

En løsning med egnet viskositet for spinning ble fremstilt ved å oppløse sammen følgende komponenter i en løsning av handelsvanlig zirconiumacetat: A solution of suitable viscosity for spinning was prepared by dissolving together the following components in a solution of commercial zirconium acetate:

50 g ZrOCl2.8H20 50 g of ZrOCl2.8H2O

115 ml zirconiumacetatløsning (22 % Zr02) 115 ml zirconium acetate solution (22% Zr02)

1,25 g polyvinylalkohol - middels molekylvekt. 1.25 g polyvinyl alcohol - medium molecular weight.

Løsningen ble "blåst" til fibre som beskrevet i eksempel 7, og de således dannede fibre ble oppvarmet ved 1000°C i 10 minutter og ga da sterke, fleksible, zirconiumoksydfibre med middels diameter 1 mikron. The solution was "blown" into fibers as described in Example 7, and the fibers thus formed were heated at 1000°C for 10 minutes, yielding strong, flexible, zirconium oxide fibers with an average diameter of 1 micron.

Fibrene ble belagt ved sprøyting med en 5 % vektløsning av Ni(NO^)2•6H20 i metanol, fulgt av oppvarmning ved 800°C. Vektøkningen av fibrene på grunn av nikkeloksydbelegget var 5 %. The fibers were coated by spraying with a 5% by weight solution of Ni(NO^)2•6H2O in methanol, followed by heating at 800°C. The weight gain of the fibers due to the nickel oxide coating was 5%.

Eksempel 18 Example 18

En løsning ble fremstilt fra en polyvinylalkohol av filmdannelse-kvalitet og hadde følgende sammensetning: 200 g zirconiumoksykloridløsning (50 vekt% ZrOCl2.8H20) 250 ml zirconiumacetatløsning (20 % Zr02 handelsvanlig kvalitet) 150 ml 2 vekt% lav molekylvekt polyvinylalkohol-løsning 12 ml kons. HCl A solution was prepared from a film-forming grade polyvinyl alcohol and had the following composition: 200 g zirconium oxychloride solution (50 wt% ZrOCl2.8H20) 250 ml zirconium acetate solution (20% ZrO2 commercial grade) 150 ml 2 wt% low molecular weight polyvinyl alcohol solution 12 ml conc. . HCl

8 g aluwiiniumoksykloridløsning (26 vekt% Al-^O^) . 8 g aluminum oxychloride solution (26% by weight Al-^O^) .

Løsningen ble filtrert for fjerning av alle partikler som var større enn 0,5 mikron og ble inndampet til en viskositet av 4 poise under partiell vakuum ved 40°C. Løsningen ble "blåst" til fibre med luft av høy hastighet ved 30°C og relativ fuktighet 85 %. Fibrene ble oppvarmet ved 1000°C i 10 minutter for frembringelse av en fiberkatalysator. The solution was filtered to remove all particles larger than 0.5 micron and was evaporated to a viscosity of 4 poise under partial vacuum at 40°C. The solution was "blown" into fibers with high velocity air at 30°C and relative humidity 85%. The fibers were heated at 1000°C for 10 minutes to produce a fiber catalyst.

Eksempel 19 Example 19

Det ble fremstilt en løsning med følgende komponenter: 100 g aluminiumoksykloridløsning (25 vekt% Al203) A solution was prepared with the following components: 100 g aluminum oxychloride solution (25% by weight Al203)

10,4 g zirconiumacetatløsning (22 vekt% Zj:^ 2^ 10.4 g of zirconium acetate solution (22% by weight Zj:^ 2^

64 g 2 vekt% løsning av polyvinylalkohol. 64 g 2% by weight solution of polyvinyl alcohol.

Blandingen ble konsentrert ved inndampning til viskositet 10 poise og sprøytet gjennom et 250 mikron hull inn i en luft-strøm av høy hastighet slik at man fikk fibre med gjennomsnittlig diameter 4 mikron. Fibrene var' lange og silkeaktige med meget lite innhold av korn. The mixture was concentrated by evaporation to a viscosity of 10 poise and sprayed through a 250 micron hole into a high velocity air stream to obtain fibers with an average diameter of 4 microns. The fibers were long and silky with very little grain content.

Fibrene ble tørket ved 100°C i 10 minutter, ved 200 C i en 1/2 time og til slutt brent ved 520°C i 1 time. Produktet som hadde form av en ullaktig matte, var mykt og silkeaktig å The fibers were dried at 100°C for 10 minutes, at 200°C for 1/2 hour and finally fired at 520°C for 1 hour. The product, which had the form of a woolly mat, was soft and silky

ta på. touch.

Eksempel 20 Example 20

En løsning egnet for fremstilling av en yttrium-stabilisert zirconiumoksydfiber med høy-temperatur-resistens, spesielt nyttig for varmeisolasjon, ble fremstilt fra: A solution suitable for the production of a yttrium-stabilized zirconium oxide fiber with high-temperature resistance, particularly useful for thermal insulation, was prepared from:

500 g zirconiumacetatløsning (22 vekt% Zr02) 500 g zirconium acetate solution (22 wt% Zr02)

220 ml 1 vekt% polyetylenoksydløsning 220 ml 1% by weight polyethylene oxide solution

12,8 g yttriumkloridhydrat 12.8 g of yttrium chloride hydrate

2 ml konsentrert saltsyre. 2 ml of concentrated hydrochloric acid.

Løsningen ble redusert på en roterende vakuum-inndamper til viskositet 15 poise ved 20°C og overført til et kar utstyrt med en spinnedyse med hull av diameter 0,0254 mm. The solution was reduced on a rotary vacuum evaporator to a viscosity of 15 poise at 20°C and transferred to a vessel equipped with a spin nozzle with a hole of 0.0254 mm diameter.

En luftstråle med høy hastighet som kom ut gjennom spalter på hver side av ovennevnte hull og som konvergerte i en vinkel av 30°, tjente til å trekke ned en væske-strøm fra hullet til i alt vesentlig kornfrie fibre med gjennomsnittlig diameter 1,5 mikron. A high velocity air jet exiting through slits on either side of the above hole and converging at an angle of 30° served to draw down a stream of liquid from the hole into substantially grain-free fibers having an average diameter of 1.5 microns .

Fibrene ble tørket ved 200°C i 1/2 time og brent ved 1000°C i 1/2 time slik at man fikk fibre med en gjennomsnittlig diameter på 1 mikron. The fibers were dried at 200°C for 1/2 hour and fired at 1000°C for 1/2 hour so that fibers with an average diameter of 1 micron were obtained.

Eksempel 21 Example 21

En forløperløsning egnet for fremstilling av kontinuerlige zirconiumoksydfibre ble fremstilt av følgende bestanddeler: A precursor solution suitable for the production of continuous zirconium oxide fibers was prepared from the following ingredients:

76 ml handelsvanlig zirconiumacetatløsning (22 vekt% Zr02) 76 ml commercial zirconium acetate solution (22 wt% ZrO2)

1 g yttriumoksyd, oppløst i 16 ml konsentrert HCl 1 g of yttrium oxide, dissolved in 16 ml of concentrated HCl

15 ml 1 vekt% løsning av polyetylenoksyd. 15 ml 1% by weight solution of polyethylene oxide.

Løsningen ble inndampet på en roterende vakuum-inndamper og ga en viskøs væske med viskositet 250 poise, målt ved 25°C. The solution was evaporated on a rotary vacuum evaporator to give a viscous liquid with a viscosity of 250 poise, measured at 25°C.

Løsningen ble innført i en bombe som var utstyrt med The solution was introduced into a bomb that was equipped with

en spinnedyse med hull av 100 mikron og ekstrudert under nitrogentrykk inn i luft med relativ fuktighet 70 %. a spinning die with a hole of 100 microns and extruded under nitrogen pressure into air with a relative humidity of 70%.

Fibrene ble trukket av på en 61 cm i diameter trommel belagt med polyetylenfilm og oppsamlet i en hastighet av 305 m/min. The fibers were pulled onto a 61 cm diameter drum coated with polyethylene film and collected at a speed of 305 m/min.

Fiberhespelen ble fjernet fra trommelen og ført inn i The fiber reel was removed from the drum and fed into

en tørkeovn ved 200°C i 10 minutter og deretter oppvarmet ved 1000°C i 10 minutter slik at man fikk sterke, fleksible, hvite fibre med gjennomsnittlig diameter 6 mikron. Røntgen-krystallo-grafiske resultater viste at zirconiumoksydet var i den tetragonale fase. a drying oven at 200°C for 10 minutes and then heated at 1000°C for 10 minutes to give strong, flexible, white fibers with an average diameter of 6 microns. X-ray crystallographic results showed that the zirconium oxide was in the tetragonal phase.

Eksempel 22 Example 22

En løsning egnet for fremstilling av zirconiumoksydfibre ble fremstilt ved å oppløse følgende bestanddeler i 115 ml av en løsning av handelsvanlig zirconiumacetat (22 vekt% Zr02): Krystallinsk yttriumklorid fremstilt fra 3,2 g rent yttriumoksyd 50 g zirconiumoksyklorid (ZrOCl2 • 81^0) A solution suitable for the production of zirconium oxide fibers was prepared by dissolving the following ingredients in 115 ml of a solution of commercial zirconium acetate (22% by weight Zr02): Crystalline yttrium chloride prepared from 3.2 g of pure yttrium oxide 50 g of zirconium oxychloride (ZrOCl2 • 81^0)

3,0 g middels molekylvekt polyvinylalkohol 3.0 g medium molecular weight polyvinyl alcohol

Løsningen ble fortynnet med 4 ml vann og ga da en viskositet som var egnet for blåsespinning. Etter filtrering ble denne ekstrudert gjennom et 200 mikron hull inn i en luftstråle med høy hastighet og ga fibre med gjennomsnittlig diameter 2 mikron. The solution was diluted with 4 ml of water and then gave a viscosity suitable for blow spinning. After filtration, this was extruded through a 200 micron hole into a high velocity air jet and produced fibers with an average diameter of 2 microns.

Fibrene ble oppsamlet som en matte på en metallduk og ble etter tørking ved 200°C brent ved 1000°C slik at man fikk et mykt, hvitt og fleksibelt produkt. The fibers were collected as a mat on a metal cloth and, after drying at 200°C, were burned at 1000°C so that a soft, white and flexible product was obtained.

Eksempel 23 Example 23

Zirconiumoksydfibre som inneholdt kobolt ble fremstilt fra et kloridfritt system som følger: Zirconia fibers containing cobalt were prepared from a chloride-free system as follows:

13 g kobolt nitratheksahydrat 13 g cobalt nitrate hexahydrate

125 m 1 vekt% løsning av polyetylenoksyd (molekylvekt 300.OOO) 240 g zirconiumacetatløsning (22 vekt% Zr02) 125 m 1% by weight solution of polyethylene oxide (molecular weight 300.OOO) 240 g zirconium acetate solution (22% by weight Zr02)

3,7 g av oksyder av sjeldne jordarter (60 vekt% v2°3) oppløst i 50 ml 30 % HNO^ og inndampet til tørrhet. 3.7 g of rare earth oxides (60% by weight v2°3) dissolved in 50 ml of 30% HNO^ and evaporated to dryness.

De ovennevnte komponenter ble blandet sammen og ga en homogen løsning og ble inndampet til viskositet 1,3 poise ved 20°C i en roterende inndamper. The above components were mixed together to give a homogeneous solution and evaporated to a viscosity of 1.3 poise at 20°C in a rotary evaporator.

Rosa fibre ble fremstilt ved ekstrudering av væsken inn i en luftstråle av høy hastighet. Disse ble tørket ved 200°C i 1 time og fikk da lilla farge og ble så brent ved 800°C i 15 minutter, hvorved man fikk grå, fleksible fibre. Pink fibers were produced by extruding the liquid into a high velocity air jet. These were dried at 200°C for 1 hour and then acquired a purple color and were then burned at 800°C for 15 minutes, whereby grey, flexible fibers were obtained.

En porsjon av fibrene ble redusert ved 650°C i en strøm av hydrogen/nitrogen og ga sorte, fleksible fibre som inneholdt koboltmetall. A portion of the fibers was reduced at 650°C in a stream of hydrogen/nitrogen to give black, flexible fibers containing cobalt metal.

Eksempel 24 Example 24

Zirconiumoksydfibre som kobberoksyd ble fremstilt som følger: Zirconium oxide fibers as copper oxide were prepared as follows:

40 ml 1 vekt% polyetylenoksydløsning 40 ml of 1% by weight polyethylene oxide solution

240 g zirconiumacetatløsning (22 vekt% Zr02) 240 g zirconium acetate solution (22 wt% Zr02)

9 g kobber (II)-nitratheksahydrat 9 g of copper (II) nitrate hexahydrate

3,2 g av oksyder av sjeldne jordarter (70 vekt% yttriumoksyd-kvalitet) (oppløst i minst mulig saltpetersyre og inndampet til tørrhet) 3.2 g of rare earth oxides (70% by weight yttrium oxide grade) (dissolved in as little nitric acid as possible and evaporated to dryness)

Ovennevnte komponenter ble blandet sammen for dannelse av en løsning, og denne ble inndampet til viskositet 3,7 poise ved bruk av en roterende vakuum-inndamper. Løsningen ble filtrert og ekstrudert som en stråle inn i en luftstrøm med høy hastighet. The above components were mixed together to form a solution and this was evaporated to a viscosity of 3.7 poise using a rotary vacuum evaporator. The solution was filtered and extruded as a jet into a high velocity air stream.

De blekgrønne fibre som dannet seg, ble oppsamlet på The pale green fibers that formed were collected on

en metallduk og brent i 15 minutter ved 800°C. Produktene var sterke og fleksible. a metal sheet and fired for 15 minutes at 800°C. The products were strong and flexible.

Eksempel 25 Example 25

Zirconiumoksydfibre som inneholdt 10 % aluminiumoksyd Zirconium oxide fibers containing 10% alumina

og 3 % kobolt, ble fremstilt fra: and 3% cobalt, was prepared from:

100 g 50 vekt% løsning av ZrOCl2.8H20 100 g 50% by weight solution of ZrOCl2.8H20

115 ml zirconiumacetatløsning (22 vekt% Zr02) 115 ml zirconium acetate solution (22 wt% Zr02)

27,4 g aluminiumoksykloridløsning (26 vekt% A^O^) 27.4 g aluminum oxychloride solution (26% by weight A^O^)

125 ml 1 vekt% polyvinylalkohol-løsning av høy molekylvekt 6,4 g koboltklorid-heksahydrat. 125 ml 1% by weight polyvinyl alcohol solution of high molecular weight 6.4 g cobalt chloride hexahydrate.

Løsningen ble inndampet til viskositet 1,4 poise, målt The solution was evaporated to viscosity 1.4 poise, measured

ved 20°C, og væsken ble sprøytet som en stråle fra et 200 mikron hull inn i en luftstrøm med høy hastighet, og fibre med gjennomsnittlig diameter 2 mikron ble oppsamlet på en duk. at 20°C, and the liquid was sprayed as a jet from a 200 micron hole into a high velocity air stream, and fibers with an average diameter of 2 microns were collected on a cloth.

De blå fibre ble tørket ved 200°C, ved hvilken temperatur The blue fibers were dried at 200°C, at which temperature

de gikk over til grønt, og de ble deretter brent direkte ved 800°C they turned green and they were then fired directly at 800°C

og ga da et produkt som var purpur-gråaktig farget. and then gave a product that was purplish-gray in color.

En porsjon av fibrene ble igjen brent ved lOOO°C i 1 time A portion of the fibers was again fired at 100°C for 1 hour

og ga da klare blå, fleksible, myke fibre i form av, en matte med styrke omtrent som for silkepapir. ■ and then gave clear blue, flexible, soft fibers in the form of, a mat with strength about that of tissue paper. ■

Eksempel 26 Example 26

Det ble laget en løsning bestående av: A solution was created consisting of:

100 g 50 vekt% ZrOCl2.8H20 100 g 50% by weight ZrOCl2.8H20

115 ml zirconiumacetat (22 vekt% Zr02). løsning 62 ml 1 vekt% løsning av polyetylenoksyd 115 ml of zirconium acetate (22 wt% ZrO 2 ). solution 62 ml 1% by weight solution of polyethylene oxide

6,7 g NiCl2.6H20 6.7 g of NiCl2.6H2O

27,4 g aluminiumoksykloridløsning (9,3 vekt% Al). 27.4 g of aluminum oxychloride solution (9.3 wt% Al).

Blandingen ble filtrert, og tilnærmet 150 ml av vannet The mixture was filtered, and approximately 150 ml of the water

ble fjernet på en roterende inndamper slik at man fikk en løsning med viskositet 3 poise. was removed on a rotary evaporator so that a solution with a viscosity of 3 poise was obtained.

Det ble laget fibre ved å sende inn en stråle av løsningen gjennom et 300 mikron hull inn i en luftstrøm med høy hastighet. Fibers were made by sending a jet of the solution through a 300 micron hole into a high velocity air stream.

Fibrene ble oppsamlet på en duk,- tørket: ved 200°C og The fibers were collected on a cloth, dried: at 200°C and

brent ved 800°C i 1 time. : . r fired at 800°C for 1 hour. : . r

Fibrene var farget off-white, var fleksible méd: mykt The fibers were colored off-white, were flexible méd: soft

grep og silkeaktig glans. grip and silky shine.

En porsjon av fibrene ble redusert i hydrogen ved 650°C og ga et sort produkt uten særlig tap av styrke. A portion of the fibers was reduced in hydrogen at 650°C and gave a black product without much loss of strength.

Eksempel 27 Example 27

Zirconiumoksydfibre som inneholdt platina, for bruk som oksydasjonskatalysator, ble fremstilt fra: Zirconium oxide fibers containing platinum, for use as an oxidation catalyst, were prepared from:

200 g zirconiumoksykloridløsning (50 vekt% Zr0Cl2.8H20) 200 g zirconium oxychloride solution (50% by weight Zr0Cl2.8H20)

230 ml zirconiumacetatløsning (22 vekt% Zr02) 230 ml zirconium acetate solution (22 wt% Zr02)

250 ml 1 vekt% polyvinylalkohol-løsning 250 ml 1% by weight polyvinyl alcohol solution

6,7 g av oksyder av sjeldne jordarter (60 vekt% Y20~ kvalitet) 6.7 g of rare earth oxides (60% by weight Y20~ quality)

oppløst i 16 ml konsentrert HC1 dissolved in 16 ml of concentrated HC1

0,29 g klorplatinasyrehydrat. 0.29 g of chloroplatinic acid hydrate.

Løsningen ble inndampet til viskositet 4 poise, målt ved 20°C, og ble blåst til fibre ved å sprøyte løsningen inn i en luftstrøm av høy hastighet. The solution was evaporated to viscosity 4 poise, measured at 20°C, and blown into fibers by spraying the solution into a high velocity air stream.

Fibrene ble tørket ved 100°C og brent i 1 time ved 800°C. De var hvite, sterke <p>g fleksible. The fibers were dried at 100°C and fired for 1 hour at 800°C. They were white, strong and flexible.

Eksempel 28 Example 28

Det ble fremstilt fibre med følgende sammensetning: Fibers with the following composition were produced:

575 g airconiumacetatløsning (22 vekt% Zr02) 575 g airconium acetate solution (22 wt% Zr02)

253 ml 1 vékt% polyetylenoksydløsning 253 ml 1% by weight polyethylene oxide solution

14.7 g av klorider av sjeldne jordarter (60 vekt% yttriumoksyd-kvalitet) 14.7 g of rare earth chlorides (60% by weight yttrium oxide quality)

18.8 g Co(N03)2.6<H>2<0>. 18.8 g of Co(N03)2.6<H>2<0>.

Løsningen ble inndampet til viskositet 6 poise og blåst til fibre med gjennomsnittlig diameter 3 mikron. Disse ble tørket i 1/2 time ved 200°C og brent ved 800°C i 1 time og ga da myke, fleksible fibre. The solution was evaporated to a viscosity of 6 poise and blown into fibers with an average diameter of 3 microns. These were dried for 1/2 hour at 200°C and fired at 800°C for 1 hour, yielding soft, flexible fibres.

Eksempel 29 Det ble laget en løsning med følgende sammensetning: 250 g zirconiumacetatløsning (22 vekt% Zr02) Example 29 A solution was made with the following composition: 250 g of zirconium acetate solution (22% by weight Zr02)

31 g aluminiumoksyklorid (10 vekt% Al) 31 g aluminum oxychloride (10 wt% Al)

110 ml 1 vekt% løsning av polyetylenokyd 110 ml 1% by weight solution of polyethylene oxide

28 ml kalsiumkloridløsning (10 vekt% CaO). 28 ml calcium chloride solution (10% by weight CaO).

Løsningen ble inndampet på roterende inndamper til viskositet 10 poise ved 20°C og laget til fibre ved sprøyting inn i en luftstrøm med høy hastighet og ga da fibre med gjennom-snittlig diameter 3 mikron. j Fibrene ble tørket ved 200°C i 1/2 time og brent ved 1000°C i 1 time. Fibrene var hvite, myke og fleksible. Røntgen-analyse viste at zirconiumoksydet var i den kubiske fase. The solution was evaporated on a rotary evaporator to a viscosity of 10 poise at 20°C and made into fibers by spraying into a high velocity air stream to give fibers with an average diameter of 3 microns. j The fibers were dried at 200°C for 1/2 hour and fired at 1000°C for 1 hour. The fibers were white, soft and flexible. X-ray analysis showed that the zirconium oxide was in the cubic phase.

Eksempel 30 Example 30

Det ble laget fibre med følgende sammensetning: Fibers with the following composition were made:

250 g zirconiumacetatløsning (22 vekt% Zr02) 250 g zirconium acetate solution (22 wt% Zr02)

28 ml kalsiumkloridløsning (10 vekt% CaO) 28 ml calcium chloride solution (10% by weight CaO)

110 ml polyetylenoksydløsning (1 vekt%) 110 ml polyethylene oxide solution (1% by weight)

32 g aluminiumoksykloridløsning (10 vekt% Al) 32 g aluminum oxychloride solution (10 wt% Al)

7 g koboltnitrathydrat. 7 g cobalt nitrate hydrate.

Løsningen ble inndampet på roterende inndamper til viskositet 20 poise ved 20°C og fikk henstå i 24 timer. Da hadde det dannet seg en meget fin suspensjon i løsningen, hvis viskositet hadde nådd 50 poise. The solution was evaporated on a rotary evaporator to a viscosity of 20 poise at 20°C and allowed to stand for 24 hours. A very fine suspension had then formed in the solution, the viscosity of which had reached 50 poise.

Løsningen ble laget til fibre ved ekstrudering ved et trykk på 0,7 kg/cm 2gjennom et 250 mikron hull inn i luftstrømmer av høy hastighet som konvergerte fra to spalter som hver dannet en vinkel på 30° med væskestrålen. The solution was made into fibers by extrusion at a pressure of 0.7 kg/cm 2 through a 250 micron hole into high velocity air streams converging from two slits each forming an angle of 30° with the liquid jet.

Fibrene som hadde en gjennomsnittlig diameter på 3 mikron, ble oppsamlet på en metallduk, tørket ved 200°C og kalsinert ved 800°C i 30 minutter, fulgt av 30 minutter ved 1000°C. Produktene var himmelblå, sterke og fleksible. The fibers having an average diameter of 3 microns were collected on a metal cloth, dried at 200°C and calcined at 800°C for 30 minutes, followed by 30 minutes at 1000°C. The products were sky blue, strong and flexible.

Eksempel 31 Example 31

Fibre som inneholdt vismut- og molybdenoksyder, ble fremstilt av følgende: Fibers containing bismuth and molybdenum oxides were prepared from the following:

3,1 g vismut-nitrat 3.1 g bismuth nitrate

2,4 g ammonium-molybdat 2.4 g of ammonium molybdate

100 g zirconiumoksykloridløsning (20 vekt% Zr02) 100 g zirconium oxychloride solution (20% by weight Zr02)

115 ml zirconiumacetatløsning (22 vekt% Zr02) 115 ml zirconium acetate solution (22 wt% Zr02)

125 ml polyvinylalkohol-løsning (1 vekt%) 125 ml polyvinyl alcohol solution (1% by weight)

30 g aluminiumoksykloridløsning (10 vekt% Al) 30 g aluminum oxychloride solution (10 wt% Al)

5 ml konsentrert hydroklorsyre. 5 ml of concentrated hydrochloric acid.

Den homogene løsning ble inndampet til viskositet The homogeneous solution was evaporated to viscosity

6 poise (20°C) og det ble dannet fibre ved innsprøyting av løs- . 6 poise (20°C) and fibers were formed by injecting loose- .

ningen gjennom et 300 mikron hull inn i en konvergerende luft-strøm av høy hastighet. Fibrene ble tørket ved 200°C og brent i 10 minutter ved 800°C, slik at man fikk et blekgult produkt med gjennomsnittlig diameter 6 mikron. ning through a 300 micron hole into a converging air stream of high velocity. The fibers were dried at 200°C and fired for 10 minutes at 800°C, so that a pale yellow product with an average diameter of 6 microns was obtained.

Eksempel 32 Example 32

Det ble laget en løsning ved å blande 47 vektdeler aluminiumklorfosfathydrat med 53 vektdeler av en 1 vekt% vandig A solution was made by mixing 47 parts by weight of aluminum chlorophosphate hydrate with 53 parts by weight of a 1% by weight aqueous

i in

løsning av polyétylenoksyd med molekylvekt 300.000. Løsningen hadde følgende sammensetning: solution of polyethylene oxide with a molecular weight of 300,000. The solution had the following composition:

Blandingen var svakt blakket og ga etter filtrering The mixture was slightly cloudy and yielded to filtration

en klar løsning med viskositet 9,4 poise ved 20°C. Løsningen ble sprøytet gjennom ni triangulære hull, hver med høyde 0,254 mm og grunnlinje 0,508 mm, inn i en luftstrøm med høy hastighet som var mettet med vann ved 0,4 kg/cm2 og 16°C. Fibre med 3 til 4 mikron i diameter ble fremstilt, og disse ga etter brenning 1 time ved 200°C og 2 timer ved 500°C en stabil, luftig matte. a clear solution of viscosity 9.4 poise at 20°C. The solution was injected through nine triangular holes, each with a height of 0.254 mm and a baseline of 0.508 mm, into a high velocity air stream saturated with water at 0.4 kg/cm 2 and 16°C. Fibers of 3 to 4 microns in diameter were produced, and after firing for 1 hour at 200°C and 2 hours at 500°C, these gave a stable, airy mat.

Luftstrømmen ble projisert fra to spalter som hver var 0,127 til 0,203 mm ganger 25,4 mm, 1,02 mm fra hverandre, innr gående i en vinkel på 60° og anordnet på hver side av hullrekken. Luftstrømningshastigheten var 70 1/25,4 mm under atmosfære be-tingelser . The air flow was projected from two slits each 0.127 to 0.203 mm by 25.4 mm, 1.02 mm apart, entering at an angle of 60° and located on either side of the array of holes. The air flow rate was 70 1/25.4 mm under atmospheric conditions.

Eksempel 33 Example 33

Det ble laget en løsning ved å blande 45 vektdeler aluminiumklorfosfathydrat og 55 vektdeler av den 2 vekt% poly-etylenoksydløsning. Filtrering var unødvendig og løsningens viskositet viste seg å være 1,6 poise ved 20°C. A solution was made by mixing 45 parts by weight of aluminum chlorophosphate hydrate and 55 parts by weight of the 2% by weight polyethylene oxide solution. Filtration was unnecessary and the viscosity of the solution was found to be 1.6 poise at 20°C.

Fibre som var 1 til 2 mikron i diameter og inneholdt noe korn ble dannet da løsningen ble sprøytet gjennom en 0,127 mm stråle inn i en tørr luftstrøm av høy hastighet. Fibers 1 to 2 microns in diameter and containing some grain were formed when the solution was sprayed through a 0.127 mm jet into a high velocity dry air stream.

Eksempel 34 Example 34

Aluminiumfibre som inneholdt borsyre ble laget med følgende sammensetning: Aluminum fibers containing boric acid were made with the following composition:

50 ml aluminiumoksykloridløsning (10 vekt% Al) 50 ml aluminum oxychloride solution (10 wt% Al)

86 ml borsyreløsning (2 vekt%) 86 ml boric acid solution (2% by weight)

0,6 g fosforsyre (100 %) 0.6 g phosphoric acid (100%)

13,4 ml kolloidal kiselsyre (33 vekt% Si02) 13.4 ml colloidal silicic acid (33% by weight SiO2)

8 dråper iseddik 8 drops of glacial acetic acid

5 ml polyakrylamidløsning (1 vekt%) . 5 ml polyacrylamide solution (1% by weight).

Løsningen ble filtrert gjennom et glass-mikrofiber-filter og deretter gjennom et fint mikronfilter. The solution was filtered through a glass microfiber filter and then through a fine micron filter.

Løsningen ble inndampet ved 40°C med en roterende vakuum-inndamper til man kunne trekke glassaktige fibre ut fra overflaten med en spatel. The solution was evaporated at 40°C with a rotary vacuum evaporator until vitreous fibers could be pulled from the surface with a spatula.

Løsningen ble avluftet ved at den sto under vakuum i The solution was deaerated by leaving it under vacuum

et lukket kar i 15 timer. a closed vessel for 15 hours.

Løsningen, som hadde en viskositet på 800 poise ved 25°C ved null skjærhastighet, ble ekstrudert gjennom en 100 mikron spinnedyse ved bruk av et trykk på 35 kg/cm 2 inn i luft med relativ fuktighet 60 %. Fibrene ble vunnet opp på en trommel med en hastighet av 60 m/min. The solution, which had a viscosity of 800 poise at 25°C at zero shear rate, was extruded through a 100 micron spin die using a pressure of 35 kg/cm 2 into 60% relative humidity air. The fibers were wound up on a drum at a speed of 60 m/min.

Fibrene ble fjernet fra trommelen, tørket ved 100°C og oppvarmet i en ovn til 700°C. De var klare og glassaktige med diameter 10 mikron. The fibers were removed from the drum, dried at 100°C and heated in an oven to 700°C. They were clear and glassy with a diameter of 10 microns.

Eksempel 35 Example 35

En sur katalysator for krakking ble fremstilt som følger: En prøve av zirconiumoksyklorid ble oppløst i 1:1 blanding av HC1 og vann og rekrystallisert for å redusere nivået av natrium-forurensninger. Krystallene ble gjenoppløst i vann og dialysert mot en 20 vekt% løsning av eddiksyre til pH-verdien var tilnærmet 2, hvorved kloridinnholdet ble redusert. An acid cracking catalyst was prepared as follows: A sample of zirconium oxychloride was dissolved in a 1:1 mixture of HCl and water and recrystallized to reduce the level of sodium impurities. The crystals were redissolved in water and dialyzed against a 20% by weight solution of acetic acid until the pH value was approximately 2, whereby the chloride content was reduced.

Tilstrekkelig polyetylenoksydløsning (molekylvekt 300.000) og aluminiumsulfatløsning ble tilsatt for å gi henholdsvis 1 vekt% polymer og 12 vekt% A^O^, basert på Zr02~innholddet i løsningen. Sufficient polyethylene oxide solution (molecular weight 300,000) and aluminum sulfate solution were added to give 1 wt.% polymer and 12 wt.% A₂O₂, respectively, based on the ZrO₂ content of the solution.

Løsningen ble inndampet til en viskositet av 10 poise og sprøytet gjennom en rekke hull med diameter 0,38 mm på konvergenspunktet for luftstrømmer av høy hastighet, som strømmet ut fra to spalter med innbyrdes vinkel 60°. The solution was evaporated to a viscosity of 10 poise and sprayed through a series of 0.38 mm diameter holes at the point of convergence of high-velocity air streams emerging from two 60° mutual slits.

Væskestrålene ble svekket og delvis tørket av luft-strømmene slik at man fikk i alt vesentlig kornfrie fibre med gjennomsnittlig diameter 3 mikron. Fibrene ble oppsamlet på en duk. The liquid jets were weakened and partially dried by the air currents so that essentially grain-free fibers with an average diameter of 3 microns were obtained. The fibers were collected on a cloth.

Fibrene ble tørket ved 200°C og kalsinert i 30 minutter ved 800° C og man fikk da hvite, myke, fleksible fibre. The fibers were dried at 200°C and calcined for 30 minutes at 800°C, and white, soft, flexible fibers were then obtained.

En 1 g prøve ble anbragt i et katalytisk reaktor-rør, og en strøm av kumendamp ble ført over katalysatoren ved 450°C og med en vekt pr. time romhastighet på 5 timer<->^. Analyse av produktet viste at kumen-krakking hadde funnet sted og at det var A 1 g sample was placed in a catalytic reactor tube, and a stream of cumene vapor was passed over the catalyst at 450°C and with a weight per hour space velocity in 5 hours<->^. Analysis of the product showed that cumene cracking had taken place and that it was

5 volum% benzen i produktet. 5 volume% benzene in the product.

Analyse av zirconiumoksydfibrene fastslo at det var Analysis of the zirconium oxide fibers determined that it was

12 vekt% aluminiumoksyd i fibrene. Nivået av natrium-forurensning var 0,1 vekt%. 12% by weight aluminum oxide in the fibres. The level of sodium contamination was 0.1% by weight.

Eksempel 36 Example 36

1,067 g av en fiber fremstilt som beskrevet i eksempel 24 ble skjøvet fast inn i et Pyrex reaktor-rør med 1,5 cm innvendig diameter. Nitrogen, sammen med etylen, oksygen og hydrogenklorid, kunne føres gjennom katalysatorsjiktet ved temperaturer opptil 350°C. Temperaturen i katalysatoren ble målt direkte ved hjelp av termoelement. 1.067 g of a fiber prepared as described in Example 24 was pushed firmly into a Pyrex reactor tube of 1.5 cm internal diameter. Nitrogen, together with ethylene, oxygen and hydrogen chloride, could be passed through the catalyst layer at temperatures up to 350°C. The temperature in the catalyst was measured directly using a thermocouple.

Katalysatoren ble innledningsvis behandlet i en strøm The catalyst was initially treated in a stream

av HC1 og nitrogen i 1 1/2 timer ved 300°C. Katalysatoren ble avkjølt til 200°C, og etylen og oksygen ble tilsatt til reaktor-innmatningen. Sammensetningen av gassen var: of HC1 and nitrogen for 1 1/2 hours at 300°C. The catalyst was cooled to 200°C, and ethylene and oxygen were added to the reactor feed. The composition of the gas was:

Etylen-strømningshastigheten var 1,25 x 10 mol/min. The ethylene flow rate was 1.25 x 10 mol/min.

Prøver av gassen som forlot reaktoren ble tatt for gasskromatografisk analyse med hensyn på etylen og klorholdige produkter. Samples of the gas leaving the reactor were taken for gas chromatographic analysis with regard to ethylene and chlorine-containing products.

Oksyklorering ble oppdaget ved 200°C, og hovedproduktet var 1,2-dikloretan. Etylklorid ble også påvist. Mengdene av hver bestanddel var små, tilsvarende omdannelser på henholdsvis 0,34 % og 0,11 % av etylenet. Oxychlorination was detected at 200°C, and the main product was 1,2-dichloroethane. Ethyl chloride was also detected. The amounts of each component were small, corresponding to conversions of 0.34% and 0.11% of the ethylene respectively.

Omdannelser defineres her som (antall mol av gitt forbindelse produsert pr. tidsenhet) x 100, delt på (antall mol etylen som passerer gjennom reaktoren pr. tidsenhet). Conversions are defined here as (number of moles of given compound produced per unit time) x 100, divided by (number of moles of ethylene passing through the reactor per unit time).

Ettersom temperaturen øket, nådde reaksjonens selektivi-tet overfor 1,2-dikloretan, det ønskede produkt, en fast verdi av ca. 90 %. (Selektiviteten er definert som (antall mol 1,2-dikloretan produsert pr. tidsenhet) x 100, delt på (totalt antall mol av alle forbindelser som er produsert pr. tidsenhet)). Ved 300°C og over ble vinylklorid påvist, mens det ved 350°C ble funnet små mengder av cis- og trans-dikloretylen. As the temperature increased, the selectivity of the reaction towards 1,2-dichloroethane, the desired product, reached a fixed value of approx. 90%. (The selectivity is defined as (number of moles of 1,2-dichloroethane produced per unit time) x 100, divided by (total number of moles of all compounds produced per unit time)). At 300°C and above vinyl chloride was detected, while at 350°C small amounts of cis- and trans-dichloroethylene were found.

Etylenomdannelser og reaksjonsselektiviteten er gjengitt i detalj i følgende tabell: Ethylene conversions and the reaction selectivity are detailed in the following table:

Eksempel 37 Example 37

1,47 g av en katalysator omfattende 0,3 vekt% platina 1.47 g of a catalyst comprising 0.3 wt% platinum

i zirconiumoksydfiber (fremstilt som beskrevet i eksempel 27) ble pakket inn i en silisiumoksydreaktor med innvendig diameter 2,5 cm og med en termoelement-lomme med diameter 0,8 cm in zirconium oxide fiber (prepared as described in Example 27) was packed into a silicon oxide reactor with an internal diameter of 2.5 cm and with a thermocouple pocket of diameter 0.8 cm

3 3

langs sin akse. Katalysatoren opptok et volum av 11 cm . along its axis. The catalyst occupied a volume of 11 cm.

En gassblanding inneholdende 1,27 volum% karbonmonoksyd og 1,32 volum% oksygen i nitrogen ble ført over katalysatoren med en romhastighet på 23.200 time \ Konsentrasjonene av karbonmonoksyd, karbondioksyd og oksygen i utgangsstrømmen fra reaktoren ble bestemt. Katalysatoren "antente" ved 300°C, og ved 460°C var det 97 % omdannelse av karbonmonoksyd til karbondioksyd . A gas mixture containing 1.27% by volume of carbon monoxide and 1.32% by volume of oxygen in nitrogen was passed over the catalyst at a space velocity of 23,200 hr. The concentrations of carbon monoxide, carbon dioxide and oxygen in the outlet stream from the reactor were determined. The catalyst "ignited" at 300°C, and at 460°C there was 97% conversion of carbon monoxide to carbon dioxide.

Under testbetingelsene blir ikke den ikke-katalyserte homogene oksydasjon av karbonmonoksyd til karbondioksyd ikke merkbar før temperaturene kommer over 830°C. Under the test conditions, the non-catalyzed homogeneous oxidation of carbon monoxide to carbon dioxide does not become noticeable until temperatures reach above 830°C.

Eksempel 38 Example 38

Katalytiske zirconiumoksydfibre med et innhold av 3 % kobolt og 1 % kobber ble laget av: Catalytic zirconia fibers with a content of 3% cobalt and 1% copper were made from:

115 ml zirconiumacetatløsning (22 % Zr02) 115 ml zirconium acetate solution (22% Zr02)

2,2 g 60 % yttriumoksyd-kvalitet av oksyder av sjeldne jordarter, 2.2 g 60% yttrium oxide grade of rare earth oxides,

oppløst i 5 ml konsentrert HNO^ og oppvarmet til tørrhet 65 ml 1 % løsning av polyetylenoksyd dissolved in 5 ml concentrated HNO^ and heated to dryness 65 ml 1% solution of polyethylene oxide

1,26 g Cu(N03)2.3H20 1.26 g Cu(NO 3 ) 2.3H 2 O

4,9 g Co(N03)2.6H20 4.9 g Co(NO 3 ) 2.6H 2 O

Løsningen ble filtrert for fjerning av partikler som var større enn 0,3 mikron og inndampet til viskositet 2,8 poise. The solution was filtered to remove particles larger than 0.3 microns and evaporated to a viscosity of 2.8 poise.

Løsningen ble anbragt i et kar med kileformet hode som hadde 250 mikron-hull i en rekke. På hver side av disse hull strømmet luft ut fra 250 mikron vide spalter parallelle med hullrekken og som konvergerte i en vinkel av 30° mot væskestrålene fra hullene. Det dannet seg fibre fra væsken som strømmet ut uten at det var brukt ekstra trykk, ved bruk av fortynnende luft i et trykk av 0,7 kg/cm , målt i reservoaret over luftspaltene. Den fortynnende luft ble ført gjennom en pakket, fuktende kolonne som inneholdt vann av 23°C. The solution was placed in a vessel with a wedge-shaped head having 250 micron holes in a row. On each side of these holes air flowed out from 250 micron wide slits parallel to the row of holes and which converged at an angle of 30° to the liquid jets from the holes. Fibers formed from the liquid that flowed out without any additional pressure being applied, using diluting air at a pressure of 0.7 kg/cm, measured in the reservoir above the air gaps. The diluting air was passed through a packed, humidifying column containing water of 23°C.

Fibrene ble oppsamlet på en duk i form av en matte, ca. The fibers were collected on a cloth in the form of a mat, approx.

1,2 m under spinneenheten. 1.2 m below the spinning unit.

Fibrene ble tørket ved 200°C og brent ved 800°C i 1/2 time. Noen av disse fibre ble redusert i en strøm av H2/N2The fibers were dried at 200°C and fired at 800°C for 1/2 hour. Some of these fibers were reduced in a stream of H2/N2

ved 650°C. Den gjennomsnittlige diameter var 3 mikron. at 650°C. The average diameter was 3 microns.

Eksempel 39 Example 39

Tetragonale zirconiumoksydfibre som inneholdt 2 vekt% aluminium i form av oksyd for å regulere kornstyrken av zirconiumoksydet, ble fremstilt som følger: Tetragonal zirconia fibers containing 2 wt% aluminum in oxide form to control the grain strength of the zirconia were prepared as follows:

100 g zirconiumoksykloridløsning (50 vekt% Zr0Clo.8H„0) 100 g zirconium oxychloride solution (50% by weight Zr0Clo.8H„0)

115 ml zirconiumacetatløsning (22 vekt% Zr02) 115 ml zirconium acetate solution (22 wt% Zr02)

125 ml polyvinylalkohol-løsning (1 vekt%) 125 ml polyvinyl alcohol solution (1% by weight)

8 g aluminiumoksykloridløsning (26 vekt% A^O^) 8 g aluminum oxychloride solution (26% by weight A^O^)

3 g yttriumoksyd 3 g of yttrium oxide

8 ml konsentrert hydroklorsyre 8 ml of concentrated hydrochloric acid

Løsningen ble inndampet til viskositet 2 poise, og fibre med gjennomsnittlig diameter 1 til 2 mikron ble oppsamlet ved bruk av en "blåse"-innretning. Fibrene ble tørket ved 100°C The solution was evaporated to a viscosity of 2 poise and fibers with an average diameter of 1 to 2 microns were collected using a "blow" device. The fibers were dried at 100°C

og deretter brent ved 1000°C i 2 timer. Røntgen-analyse viste at fibrene inneholdt tetragonalt zirconiumoksyd med krystalitt-størrelse anslått ved 265 Å. and then fired at 1000°C for 2 hours. X-ray analysis showed that the fibers contained tetragonal zirconium oxide with a crystallite size estimated at 265 Å.

En prøve av disse fibre ble oppvarmet til 1450°C i A sample of these fibers was heated to 1450°C i

15 minutter, hvoretter fibrene ble merkbart stivere, men var fremdeles sterke og fleksible. 15 minutes, after which the fibers became noticeably stiffer, but were still strong and flexible.

Eksempel 40 Example 40

Zirconiumoksydfibre som inneholdt 3 vekt% kobolt og 1 % mangan, med tilnærmet 7 % oksyder av sjeldne jordarter som fase-stabilisator, ble fremstilt av følgende: Zirconium oxide fibers containing 3% by weight cobalt and 1% manganese, with approximately 7% rare earth oxides as phase stabilizer, were prepared from the following:

250 g zirconiumacetatløsning (22 vekt% Zr02) 250 g zirconium acetate solution (22 wt% Zr02)

110 ml 1 vekt% løsning av polyetylenoksyd 110 ml 1% by weight solution of polyethylene oxide

9,5 g klorider av sjeldne jordarter (50 vekt% yttrium-kvalitet) 8,1 g kobolt-nitrathydrat 9.5 g rare earth chlorides (50% by weight yttrium grade) 8.1 g cobalt nitrate hydrate

1 g mangan(II)-kloridhydrat 1 g manganese(II) chloride hydrate

Løsningen ble inndampet til viskositet 10 poise og ekstrudert gjennom hull med diameter 0,38 mm ved bruk av 0,21 The solution was evaporated to a viscosity of 10 poise and extruded through 0.38 mm diameter holes using 0.21

kg/cm 2 absolutt trykk, inn i en luftstrøm av høy hastighet som strømmet ut fra konvergerende spalter i en vinkel av 30° til væskestrålene. Trykket av den uttynnende luft var 0,7 kg/cm . kg/cm 2 absolute pressure, into a high-velocity air stream which issued from converging slits at an angle of 30° to the liquid jets. The pressure of the thinning air was 0.7 kg/cm.

Fibrene ble tørket ved 200°C, brent ved 800°C i 1/2 The fibers were dried at 200°C, fired at 800°C for 1/2

time og redusert i en hydrogen/nitrogen-atmosfære ved 700°C hour and reduced in a hydrogen/nitrogen atmosphere at 700°C

slik at man fikk en scjrt fibermatte. Valsede matter av disse fibre ble fremstilt for katalytiske oksydasjonsreaksjoner. so that a scjrt fiber mat was obtained. Rolled mats of these fibers were prepared for catalytic oxidation reactions.

Eksempel 41 Example 41

0,76 g av en katalysator omfattende 3 vekt% kobolt, 0.76 g of a catalyst comprising 3% by weight of cobalt,

1 vekt% kobber, 7 vekt% oksyder av sjeldne jordarter i zirconium- 1 wt% copper, 7 wt% rare earth oxides in zirconium

oksydfiber (fremstilt som beskrevet i eksempel 38) ble pakket inn i en silisiumoksydreaktor med innvendig diameter 2,5 cm. oxide fiber (prepared as described in Example 38) was packed into a silicon oxide reactor with an internal diameter of 2.5 cm.

Langs aksen i røret gikk en termoelement-lomme av 0,8 cm diame- A thermocouple pocket of 0.8 cm diameter ran along the axis of the tube.

ter. Katalysatoren opptok et volum på 17 cm^. ter. The catalyst occupied a volume of 17 cm 2 .

En gassblanding omfattende 1,23 volum% karbonmonoksyd A gas mixture comprising 1.23 vol% carbon monoxide

og 1,34 volum% oksygen i nitrogen ble ført over katalysatoren med en romhastighet på 15 000 time<-1>. Katalysatoren "antente" ved 250°C, og ved 375°C var det en 75 % omdannelse av karbonmonoksyd til karbondioksyd. and 1.34 vol% oxygen in nitrogen was passed over the catalyst at a space velocity of 15,000 hr<-1>. The catalyst "ignited" at 250°C, and at 375°C there was a 75% conversion of carbon monoxide to carbon dioxide.

Claims (25)

1. Fremgangsmåte for fremstilling av uorganiske fibre som omfatter fiberdannelse ved blåsing av en blanding med viskositet større enn 1 poise og som omfatter et løsningsmiddel og en metall-1. Process for the production of inorganic fibers comprising fiber formation by blowing a mixture with a viscosity greater than 1 poise and comprising a solvent and a metal forbindelse utvalgt blant kloridene, sulfatene, acetatene, formiatene,hydroksydene og nitratene av aluminium, jern, zirconium, titan, beryllium, krom, magnesium, thorium, uran, yttrium, nikkel, vanadium, mangan, molybden, wolfram og kobolt, samt 0,1-10 vekt%, basert på samlet vekt av blandingen, av en organisk polymer som har molekylvekt i området 10^-10^, idet både metallforbindelsen og den organiske polymer er løselige i det nevnte løsningsmiddel, idet vektandelen av den organiske polymer er mindre enn 10% av vektandelen av metallforbindelsen, fjerning av minst en del av løs-ningsmidlet fra de produserte fibre og oppvarming av fibrene for spaltning av metallforbindelsen og/eller den organiske polymer,karakterisert ved at fiberdannelsen utføres ved ekstrudering av blandingen gjennom én eller flere åpninger inn i minst én gass-strøm som har en komponent med høy hastighet i ekstruderingsretningen til den ekstruderte blanding, idet det eventuelt anvendes en fiberdannende blanding som inneholder et katalysatormateriale eller en forløper for dette. compound selected from the chlorides, sulphates, acetates, formates, hydroxides and nitrates of aluminium, iron, zirconium, titanium, beryllium, chromium, magnesium, thorium, uranium, yttrium, nickel, vanadium, manganese, molybdenum, tungsten and cobalt, as well as 0, 1-10% by weight, based on the total weight of the mixture, of an organic polymer having a molecular weight in the range 10^-10^, both the metal compound and the organic polymer being soluble in the said solvent, the weight proportion of the organic polymer being smaller than 10% of the weight proportion of the metal compound, removal of at least part of the solvent from the produced fibers and heating of the fibers to split the metal compound and/or the organic polymer, characterized in that the fiber formation is carried out by extruding the mixture through one or more openings into at least one gas stream that has a high-velocity component in the extrusion direction of the extruded mixture, optionally using a fiber-forming mixture containing a catalyst material or a precursor thereof. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at det anvendes en vannløselig metallforbindelse. 2. Method as stated in claim 1, characterized in that a water-soluble metal compound is used. 3. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved.at det som løsnings-middel anvendes vann, som metallforbindelse et metallsalt eller et basisk metallsalt som gir en viskøs løsning eller sol i vann, og at det anvendes en vannløselig organisk polymer. 3. Method as specified in any of the preceding claims, characterized in that water is used as the solvent, and as the metal compound a metal salt or a basic metal salt which gives a viscous solution or sol in water, and that a water-soluble organic polymer is used. 4. Fremgangsmåte som angitt i krav 1, karakterisert ved at det som metallforbindelse anvendes et metallsalt som kan danne et ildfast oksyd. 4. Method as stated in claim 1, characterized in that a metal salt which can form a refractory oxide is used as the metal compound. 5. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at det som metallforbindelse anvendes aluminiumoksyklorid, basisk aluminiumacetat eller -formiat, zirconiumoksyklorid, basisk zirconiumacetat, basisk zirconiumnitrat eller basisk zirconiumformiat. 5. Method as stated in any of the preceding claims, characterized in that aluminum oxychloride, basic aluminum acetate or formate, zirconium oxychloride, basic zirconium acetate, basic zirconium nitrate or basic zirconium formate are used as metal compounds. 6. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at det som organisk polymer anvendes en rettkjedet polyhydroksylert polymer. 6. Method as stated in any of the preceding claims, characterized in that a straight-chain polyhydroxylated polymer is used as organic polymer. 7. Fremgangsmåte som angitt i hvilket som helst av kravene 1 til 5, karakterisert ved at det som organisk polymer anvendes polyvinylalkohol eller delvis hydrolysert polyvinylacetat. 7. Method as stated in any one of claims 1 to 5, characterized in that polyvinyl alcohol or partially hydrolyzed polyvinyl acetate is used as organic polymer. 8. Fremgangsmåte som angitt i hvilket som helst av kravene 1 til 5, karakterisert ved at det som organisk polymer anvendes polyetylenoksyd eller polyetylenglykol. 8. Method as stated in any one of claims 1 to 5, characterized in that polyethylene oxide or polyethylene glycol is used as organic polymer. 9. Fremgangsmåte som angitt i krav 7, karakterisert ved at det anvendes en polyvinylalkohol eller et delvis hydrolysert polyvinylacetat som har middels eller høy molekylvekt. 9. Method as stated in claim 7, characterized in that a polyvinyl alcohol or a partially hydrolyzed polyvinyl acetate is used which has a medium or high molecular weight. 10. Fremgangsmåte som angitt i krav 8, karakterisert ved at det anvendes et polyetylenoksyd med molekylvekt 10<4->10<6>. 10. Method as stated in claim 8, characterized in that a polyethylene oxide with a molecular weight of 10<4->10<6> is used. 11. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at den fiberdannende blanding anvendes med en viskositet i området 1-100 poise. 11. Method as stated in any of the preceding claims, characterized in that the fiber-forming mixture is used with a viscosity in the range 1-100 poise. 12. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at det anvendes en åpning med minst én dimensjon på 50-500 mikron. 12. Method as stated in any of the preceding claims, characterized in that an opening with at least one dimension of 50-500 microns is used. 13. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at det som gass-strøm anvendes luft. 13. Method as stated in any of the preceding claims, characterized in that air is used as gas stream. 14. Fremgangsmåte som angitt i krav 13, karakterisert ved at det anvendes luft med omgivelsestemperatur. 14. Method as stated in claim 13, characterized in that air at ambient temperature is used. 15. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at to gass-strømmer konvergerer ved eller nær det punkt hvor blandingen ekstruderes fra åpningen.15. Method as stated in any of the preceding claims, characterized in that two gas streams converge at or near the point where the mixture is extruded from the opening. 16. Fremgangsmåte som angitt i krav 15, karakterisert ved at det anvendes en vinkel mellom de konvergerende gass-strømmer på fra 30 til 60°. 16. Method as stated in claim 15, characterized in that an angle between the converging gas streams of from 30 to 60° is used. 17. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at gassen som omfatter gass-strømmen er forhåndsblandet med damp av løsningsmidlet i den fiberdannende blanding. 17. Method as stated in any of the preceding claims, characterized in that the gas comprising the gas stream is pre-mixed with vapor of the solvent in the fiber-forming mixture. 18. Fremgangsmåte som angitt i krav 13 eller 14., karakterisert ved at det anvendes luft med relativ fuktighet over 80 %. 18. Method as specified in claim 13 or 14, characterized in that air with a relative humidity above 80% is used. 19. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at det anvendes en gass-strøm med hastighet 60-450 m/sek. 19. Method as stated in any of the preceding claims, characterized in that a gas flow with a speed of 60-450 m/sec is used. 20. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at uen fiberdannende blanding konsentreres* før f iberdannelsen. 20. Method as stated in any of the preceding claims, characterized in that a fiber-forming mixture is concentrated* before fiber formation. 21. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at den fiberdannende blanding avluftes før fiberdannelen. 21. Method as stated in any of the preceding claims, characterized in that the fiber-forming mixture is deaerated before the fiber formation. 22. Fremgangsmåte som angitt i hvilket som helst av de foregående krav, karakterisert ved at fibrene oppvarmes til en temperatur på 100-1000°C. 22. Method as stated in any of the preceding claims, characterized in that the fibers are heated to a temperature of 100-1000°C. 23. Fremgangsmåte som angitt i krav 22, karakterisert ved at en fiber som omfatter et ildfast oksyd sintres ved videre oppvarming. 23. Method as stated in claim 22, characterized in that a fiber comprising a refractory oxide is sintered by further heating. 24. Fremgangsmåte som angitt i krav 23, karakterisert ved at sintringen utføres ved en temperatur på fra 500 til 2000°C. 24. Method as stated in claim 23, characterized in that the sintering is carried out at a temperature of from 500 to 2000°C. 25. Fremgangsmåte som angitt i hvilket som helst av kravene 22 til 24, karakterisert ved at oppvarmingen utfø-res i suksessive trinn med økende temperatur.25. Method as stated in any one of claims 22 to 24, characterized in that the heating is carried out in successive steps with increasing temperature.
NO2142/71A 1970-06-19 1971-06-07 PROCEDURE FOR THE PRODUCTION OF INORGANIC FIBERS NO140895C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB2990970 1970-06-19
GB436971*[A GB1360197A (en) 1970-06-19 1971-02-10 Fibres

Publications (2)

Publication Number Publication Date
NO140895B true NO140895B (en) 1979-08-27
NO140895C NO140895C (en) 1979-12-05

Family

ID=26239075

Family Applications (1)

Application Number Title Priority Date Filing Date
NO2142/71A NO140895C (en) 1970-06-19 1971-06-07 PROCEDURE FOR THE PRODUCTION OF INORGANIC FIBERS

Country Status (13)

Country Link
AR (1) AR194926A1 (en)
AT (1) AT336767B (en)
BE (1) BE768446A (en)
CA (1) CA994510A (en)
CH (1) CH527281A (en)
DE (1) DE2130315C3 (en)
DK (1) DK144801C (en)
FR (1) FR2099253A5 (en)
IE (1) IE35325B1 (en)
IL (1) IL37050A (en)
NL (1) NL172175C (en)
NO (1) NO140895C (en)
SE (1) SE387375B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1417791A (en) * 1972-06-30 1975-12-17 Du Pont Fibres
GB1425934A (en) * 1972-03-15 1976-02-25 Ici Ltd Alumina
DE2325575A1 (en) * 1973-05-19 1974-11-28 Bayer Ag METHOD OF AFTER-TREATMENT OF INORGANIC FIBERS
JPS584096B2 (en) * 1976-07-23 1983-01-25 東芝モノフラツクス株式会社 Method for producing oxide polycrystalline fiber
EP0208506B1 (en) * 1985-07-02 1990-06-27 The Dow Chemical Company Magnesium aluminate fiber composition and process therefor
US4753904A (en) * 1986-08-20 1988-06-28 E. I. Du Pont De Nemours And Company Zirconia-modified alumina fiber
DE102008052169B4 (en) * 2007-10-27 2013-07-18 Bayerische Motoren Werke Aktiengesellschaft Process for the preparation of oxide ceramic fibers and use of fibers produced therefrom

Also Published As

Publication number Publication date
BE768446A (en) 1971-12-13
CA994510A (en) 1976-08-10
IE35325L (en) 1971-12-19
AT336767B (en) 1977-05-25
IE35325B1 (en) 1976-01-07
NO140895C (en) 1979-12-05
FR2099253A5 (en) 1972-03-10
DE2130315C3 (en) 1980-10-23
DE2130315B2 (en) 1980-02-07
DK144801B (en) 1982-06-07
AR194926A1 (en) 1973-08-30
IL37050A (en) 1974-07-31
SE387375B (en) 1976-09-06
IL37050A0 (en) 1971-08-25
DE2130315A1 (en) 1972-01-13
CH527281A (en) 1972-08-31
DK144801C (en) 1982-11-01
NL7108399A (en) 1971-12-21
NL172175C (en) 1983-07-18
ATA537471A (en) 1976-09-15
NL172175B (en) 1983-02-16

Similar Documents

Publication Publication Date Title
US3992498A (en) Refractory fiber preparation with use of high humidity atmosphere
US4320074A (en) Process for preparing shaped body of alumina
US3950478A (en) Process for producing alumina fiber
US4537873A (en) Catalyst for catalytic combustion
CN101239828B (en) Method for preparing zirconium oxide refractory fibre
US4094690A (en) Liquid composition
US3966790A (en) Compositions and methods for high temperature stable catalysts
US20050176580A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
NO141944B (en) PROCEDURE FOR THE PREPARATION OF A SHAPED, SOLID BODY OF AN INTIMATE MIXTURE OF AN ALUMINUM OR ZIRCONIUM OXIDE AND SILICON OXIDE, BY CONVERSION OF A LIQUID MIXTURE TO A SOLID BODY
US4937212A (en) Zirconium oxide fibers and process for their preparation
NO140895B (en) PROCEDURE FOR THE PRODUCTION OF INORGANIC FIBERS
JP3265534B2 (en) Exhaust gas purification catalyst
CN102658137B (en) Cerium-zirconium-palladium nanopowder catalyst and preparation and application thereof
JPH0230740B2 (en)
US4250131A (en) Refractory inorganic oxide fibers
US3951867A (en) Coprecipitated CeO2 --SnO2 catalyst supports
DE1964914C3 (en) Process for the production of refractory mineral fibers
JP4529293B2 (en) Method for manufacturing form transfer material
AU1468800A (en) Production of hydrogen-containing gas streams
FR2726774A1 (en) COMBUSTION CATALYST AND COMBUSTION METHOD USING SUCH A CATALYST
Morton et al. Fibres
US4520223A (en) Dehydrogenation process
JPH0435220B2 (en)
Morton et al. Zirconia fibres
KR102485055B1 (en) Porous metal nanotubes, preparing method thereof and gas detector using the same