NO139165B - HIGH DENSITY CERAMIC CARBIDE ARTICLE AND METHOD OF MANUFACTURE - Google Patents
HIGH DENSITY CERAMIC CARBIDE ARTICLE AND METHOD OF MANUFACTURE Download PDFInfo
- Publication number
- NO139165B NO139165B NO742222A NO742222A NO139165B NO 139165 B NO139165 B NO 139165B NO 742222 A NO742222 A NO 742222A NO 742222 A NO742222 A NO 742222A NO 139165 B NO139165 B NO 139165B
- Authority
- NO
- Norway
- Prior art keywords
- zinc
- titanium
- alloy
- copper
- hydrogen
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000010942 ceramic carbide Substances 0.000 title 1
- 239000010936 titanium Substances 0.000 claims description 41
- 239000011701 zinc Substances 0.000 claims description 41
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 40
- 229910052725 zinc Inorganic materials 0.000 claims description 40
- 229910045601 alloy Inorganic materials 0.000 claims description 37
- 239000000956 alloy Substances 0.000 claims description 37
- 229910052719 titanium Inorganic materials 0.000 claims description 36
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 33
- 239000010949 copper Substances 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 17
- 239000001257 hydrogen Substances 0.000 claims description 17
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 15
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 11
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 7
- 229910021529 ammonia Inorganic materials 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 150000001879 copper Chemical class 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 9
- 238000000137 annealing Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000007792 addition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910017945 Cu—Ti Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- MECMQNITHCOSAF-UHFFFAOYSA-N manganese titanium Chemical compound [Ti].[Mn] MECMQNITHCOSAF-UHFFFAOYSA-N 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000008207 working material Substances 0.000 description 2
- 229910018575 Al—Ti Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- -1 titanium hydride Chemical compound 0.000 description 1
- 229910000048 titanium hydride Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/575—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Description
Sinkknalegeringer og fremgangsmåte til deres fremstilling. Zinc alloy and process for their production.
Som bekjent er en av de viktigste teknologiske egenskaper ved en legering dens forhold i fast tilstand ved værelsetempera-tur under bøying, falsing, trykking og strek-king. As you know, one of the most important technological properties of an alloy is its solid state at room temperature during bending, folding, pressing and stretching.
Heksagonalt krystalliserende metaller som sink viser med hensyn til dette en sterk avhengighet av formningsretningen og er ømfindtlig overfor temperaturpåkjennin-ger under fremstillingen eller ved forarbei-delsen. Som følge av det sistnevnte opptrer rekrystallisasjon og med denne en nedset-ting av formningsevnen. Det har ikke manglet på forsøk på å influere på dette forhold ved legeringstilsetninger. Her virker blandingskrystalldannere, som små Mg-tilsetninger, riktignok kornforfinende, imidlertid samtidig også herdende således at lé-geringens formbarhet avtar. Primært krystalliserende tilsetninger som jern (som hårdsinkkrystaller) eller mangan virker kornforfinende, men nedsetter imidlertid bøyeligheten ved utformning til større korngrensekrystallitter. Aluminiumholdige legeringer blir på grunn av deres tendens til interkrystallinsk korrosjon på finsink begrenset som basis og deres teknologiske egenskaper faller betraktelig etter varme-påkjenninger. In this regard, hexagonally crystallizing metals such as zinc show a strong dependence on the direction of formation and are sensitive to temperature stresses during production or during processing. As a result of the latter, recrystallization occurs and with this a reduction in the forming ability. There has been no lack of attempts to influence this relationship by alloying additions. Here, mixed crystal formers, such as small Mg additions, have a grain-refining effect, but at the same time also harden them, so that the malleability of the alloy decreases. Primarily crystallising additions such as iron (as hard zinc crystals) or manganese have a grain-refining effect, but however reduce the flexibility when forming into larger grain boundary crystallites. Due to their tendency to intercrystalline corrosion on fine zinc, aluminium-containing alloys are limited as a base and their technological properties drop considerably after heat stress.
Fra aluminiumforskningen er det kjent at man med meget små tilsetninger av titan til aluminium oppnår en finkornet strukturoppbygning. De primært utskilte Al-Ti-krystaller virker ved krystallisasjo-nen som kimdannere. I sink er slike virk-ninger ikke oppnålig i samme grad. Legeringer med eutektiske Ti-innhold fra 0,2 til 0,4 %Ti er på ingen måte finkornet nok til å bibringe en høy plastisitet i knamate-rialet. Oppløsningen av det høytsmeltende titan i sink under vakuum eller edelgass byr dessuten på vanskeligheter. Kobber-titan eller mangan-titan i form av lavt smelten-de forlegeringer lar seg lett oppløse i sink. Ved undersøkelser over innvirkning av kobber-titan-, mangan-titan-, eller ternære Cu-Mn-Ti-forlegeringer på knadd sinkrå-stoffs egenskaper ble det nu gjort over-raskende iakttagelser. It is known from aluminum research that with very small additions of titanium to aluminium, a fine-grained structure is achieved. The primarily separated Al-Ti crystals act as nucleation during crystallization. In zinc, such effects are not achievable to the same extent. Alloys with eutectic Ti contents from 0.2 to 0.4% Ti are by no means fine-grained enough to impart a high plasticity in the grinding material. The dissolution of the high-melting titanium in zinc under vacuum or noble gas also presents difficulties. Copper-titanium or manganese-titanium in the form of low-melting prealloys can be easily dissolved in zinc. During investigations into the influence of copper-titanium, manganese-titanium or ternary Cu-Mn-Ti prealloys on the properties of wrought zinc raw material, surprising observations were now made.
Titan har som bekjent i fast tilstand en høy oppløsningsevne for nitrogen og hydrogen, en egenskap som spesielt van-skeliggjør dets fremstilling og forarbeid-barhet. Titan med i blandingskrystall opp-løst nitrogen og/eller hydrogen er sprøtt og bare vanskelig forarbeidbart. As is well known, titanium in its solid state has a high solubility for nitrogen and hydrogen, a property that makes its manufacture and processability particularly difficult. Titanium with nitrogen and/or hydrogen dissolved in the mixed crystal is brittle and only difficult to process.
Smeltes rent titanmetall med en ren-hetsgrad som tilsvarer en brinellhardhet på 60—80 kg pr. mm- i vakuum til en Cu-Ti-forlegering og denne settes til sinken, så oppnår man allerede ved Cu-innhold på 0,5—1 % og Ti-innhold på 0,1—0,4 % en forholdsvis finkornet fordeling av titanider. Det ble også fastslått at slike legeringers sigefasthet øket spesielt når man har gjen-nomført en oppvarmning av arbeidsstoffet til 150—200° C. Ved økende Ti-innhold avtar imidlertid forarbeidbarheten (sammenlign U.S. patent nr. 2 472 402 hvor det prin-sipielt er kjent en sinkknalegering bestående av 0,5 til 1,5 % kobber, 0,12 til 0,5 % titan og resten sink). Pure titanium metal is melted with a degree of purity that corresponds to a Brinell hardness of 60-80 kg per mm- in a vacuum to a Cu-Ti prealloy and this is added to the zinc, then already with a Cu content of 0.5-1% and a Ti content of 0.1-0.4%, a relatively fine-grained distribution of titanides. It was also determined that the creep strength of such alloys increased especially when the work material was heated to 150-200° C. However, with increasing Ti content, the processability decreases (compare U.S. patent no. 2,472,402 where it is in principle known a zinc alloy consisting of 0.5 to 1.5% copper, 0.12 to 0.5% titanium and the rest zinc).
Slike legeringers formbarhet som kna-material oppnår følgelig ennu ikke ekstremt høye verdier når samtidig rekrystallisa-sjonstendensen forskyves til høyere enn for sink typiske temperaturer. The malleability of such alloys as a kna material consequently does not yet reach extremely high values when, at the same time, the recrystallization tendency is shifted to temperatures higher than typical for zinc.
Oppfinnelsens gjenstand er derimot en sinkknalegering av 0,1—2,5 % kobber, 0,05 til 1 % titan hvorav eventuelt inntil 50 % kan være erstattet av zirkonium og/eller hafnium, eventuelt dessuten 0,05 %—1,5 % mangan og resten finsink og/eller hyttesink, idet det nye består i at titanet har et innhold av 1—67 atom-% hydrogen og/eller nitrogen og/eller oksygen, fortrinnsvis bare hydrogen. Denne legeringen utmerker seg slik det ble funnet ved en vesentlig bedret formbarhet og er spesielt egnet som valse-materiale. The object of the invention, on the other hand, is a zinc alloy of 0.1-2.5% copper, 0.05 to 1% titanium, of which possibly up to 50% can be replaced by zirconium and/or hafnium, possibly also 0.05%-1.5% manganese and the rest fine zinc and/or cottage zinc, the new being that the titanium has a content of 1-67 atomic % hydrogen and/or nitrogen and/or oxygen, preferably only hydrogen. This alloy is distinguished, as it was found, by a significantly improved formability and is particularly suitable as a rolling material.
Som allerede nevnt er det gjennom U.S.A.-patent nr. 2 472 402 i og for seg kjent en sinkknalegering med de nevnte innhold av kobber og titan. Denne legering har imidlertid intet innhold av hydrogen, nitrogen og/eller oksygen da det handelsvan-lige titan som anvendes til fremstilling av de kjente legeringer er fri for disse gasser eller i det minste inneholder så lite av disse at det ikke oppnåes en sammensetning iføl-ge oppfinnelsen. Således fremgår det nem-lig av tidsskriftet «Metall» 6 (1952) side 251 tabell 3 entydig at det i handelsvanlig ti-tansvamp, som vanligvis kommer til anvendelse, inneholdes ikke hydrogen og det tillates heller ikke som det fremgår av side 250 høyre spalte siste avsnitt linje 1 og 2 (sammenlign i denne forbindelse Øgså tidsskriftet «Berg und Hiittenmånnische Mo-natshefte» 101 (1956) hefte 12, side 287, høyre spalte første avsnitt, ifølge hvilket det i blikk av teknisk ren titan er tillatt et maksimalt hydrogeninnhold på ca. 0,012 vektsprosent hvilket omtrent tilsvarer 0,5 atom-%). As already mentioned, through U.S. Patent No. 2,472,402, a zinc alloy with the aforementioned contents of copper and titanium is known per se. However, this alloy has no content of hydrogen, nitrogen and/or oxygen, as the commercially available titanium used for the production of the known alloys is free of these gases or at least contains so little of them that a composition according to give the invention. For example, it is clear from the journal "Metall" 6 (1952) page 251 table 3 that the commercially available titanium sponge, which is usually used, does not contain hydrogen and it is not allowed either, as can be seen from page 250 right column last paragraph lines 1 and 2 (compare in this connection also the journal "Berg und Hiittenmånnische Mo-natshefte" 101 (1956) issue 12, page 287, right column first paragraph, according to which a maximum hydrogen content is allowed in sheets of technically pure titanium of approximately 0.012 weight percent, which roughly corresponds to 0.5 atomic %).
I mange tilfeller er det fordelaktig når man erstatter kobberet i legeringen ifølge oppfinnelsen inntil 50 % av dets mengde med mangan. Det er også mulig å nedsette titaninnholdet inntil ca. 50 % av den ovenfor angitte mengde og i stedenfor å an-vende zirkonium og/eller hafnium i legeringen. In many cases it is advantageous to replace the copper in the alloy according to the invention up to 50% of its quantity with manganese. It is also possible to reduce the titanium content to approx. 50% of the amount specified above and instead of using zirconium and/or hafnium in the alloy.
En hensiktsmessig fremgangsmåte til ytterligere økning av plastisiteten av legeringen ifølge oppfinnelsen består i at de etter en koldforming som er foretatt ved ca. 20—100° C før deres anvendelse glødes ved temperaturer mellom ca. 100 og 350° C. A suitable method for further increasing the plasticity of the alloy according to the invention consists in that after a cold forming which has been carried out at approx. 20—100° C before their use is annealed at temperatures between approx. 100 and 350° C.
For fremstilling av legeringen ifølge oppfinnelsen foreligger det forskjellige muligheter. Således kan man f. eks. av flytende kobber ved innføring av fast titan smelte en forlegering som gassbehandles med de ovennevnte gasser, spesielt med hydrogen eller ammoniakk, og hvori sinksmelten innføres. Det flytende kobber kan også behandles med de nevnte gasser, spesielt med hydrogen eller ammoniakk, og deretter innføres titan i kobbersmelten hvorpå den således dannede forlegeringen innføres i sinksmelten. Herved kan man også gå frem således at titanet før innfø-ringen i kobbersmelten behandles med gass. Forlegeringens smeltepunkt kan man nedsette ved en sinktilsetning, idet det også er mulig å tilsette sinken etter gassbehandlin-gen. There are various possibilities for producing the alloy according to the invention. Thus, one can e.g. of liquid copper by introducing solid titanium melt a pre-alloy which is gas-treated with the above-mentioned gases, especially with hydrogen or ammonia, and into which the zinc melt is introduced. The liquid copper can also be treated with the aforementioned gases, in particular with hydrogen or ammonia, and then titanium is introduced into the copper melt, after which the prealloy thus formed is introduced into the zinc melt. In this way, one can also proceed in such a way that the titanium is treated with gas before being introduced into the copper melt. The melting point of the prealloy can be lowered by adding zinc, as it is also possible to add the zinc after the gas treatment.
Legeringene ifølge oppfinnelsen utmerker seg ved spesielle egenskaper spesielt med hensyn til formbarhet, bøyeevne, utmatningsstyrke og brettbarhet og dessuten ved et gunstig dyptrekningsf orhold. The alloys according to the invention are distinguished by special properties, especially with regard to formability, bending capacity, yield strength and foldability and also by a favorable deep drawing ratio.
Først ble det undersøkt sinklegeringer på basis av finsink og hyttesink, altså en sinktype (hyttesink) som tidligere ble an-sett som uegnet for slike legeringer da det ved Pb-innhold over 0,1 % opptrådte interkrystallinsk korrosjon. Videre ble det un-dersøkt legeringer med 0,1—2 % Cu, 0,05— 1 % Ti, resp. ternære legeringer med ytterligere innhold fra 0,05 til 1,5 % Mn. Legeringene ble støpt til blokker som ble for-valset varme ved 250° C og ved ca. 20—100° C, fortrinnsvis 50—80° C, forarbeidet til 0,6 mm tykke blikk. Bøyeforholdet av slike blikk ble sammenlignet i utmatningstil-stand og etter en to timers glødning ved 200° C. Etter en slik glødning er finsink eller også hyttesink som formbart arbeids-materiale i og for seg allerede uegnet. Som karakteriserende målestokk for egenskapene velges her bøyningstallene, d.v.s. an-tall frem- og tilbake-bøyninger inntil brudd. Resultatene refererer seg til en legering med ca. 0,6 % Cu og ca. 0,1 % Ti. First, zinc alloys based on fine zinc and cottage zinc were investigated, i.e. a type of zinc (cottage zinc) which was previously considered unsuitable for such alloys as intercrystalline corrosion occurred at a Pb content above 0.1%. Furthermore, alloys with 0.1-2% Cu, 0.05-1% Ti, resp. ternary alloys with additional content from 0.05 to 1.5% Mn. The alloys were cast into blocks which were pre-rolled hot at 250° C and at approx. 20-100° C, preferably 50-80° C, processed into 0.6 mm thick sheets. The bending ratio of such sheets was compared in the discharge state and after a two-hour annealing at 200° C. After such an annealing, fine zinc or cottage zinc is already unsuitable as a malleable working material in and of itself. As a characterizing scale for the properties, the bending numbers are chosen here, i.e. number of back-and-forth bends until breaking. The results refer to an alloy with approx. 0.6% Cu and approx. 0.1% Ti.
Eksempel 1: Example 1:
Kobber og titan ble sammensmeltet i vakuum eller i ren argon. Fordelaktig vel-ger man da Ti-innholdene i nærheten av eutektikumet, d.v.s. 20—30 % Ti. Forlege-ringenes smeltepunkt kan man også senke ved tilsetning av sink. De stivnede forlegeringer ble da oppløst i flytende sink. Copper and titanium were fused in vacuum or in pure argon. Advantageously, the Ti contents are then chosen close to the eutectic, i.e. 20-30% Tue. The melting point of the pre-alloys can also be lowered by adding zinc. The solidified prealloys were then dissolved in liquid zinc.
Den titanholdige krystalltype er for-delt middels fint i strukturen, ofte nåle-formet; i det glødede arbeidsstoff opptrer flere ganger rekrystalliserte sinkkrystal-ler. The titanium-containing crystal type is distributed medium-fine in structure, often needle-shaped; recrystallized zinc crystals appear several times in the annealed workpiece.
Eksempel 2: Example 2:
Flytende kobber ble smeltet sammen med titan til en forlegering, og a) utsatt for hydrogengass, b) utsatt for ammoniakk. Liquid copper was fused with titanium to form a prealloy, and a) exposed to hydrogen gas, b) exposed to ammonia.
For de i det følgende nevnte resultater viser det seg som uten betydning om det flytende kobber utsettes for hydrogengass resp. ammoniakkgass og titanet innbringes i den mettede smelte, eller om smeiten og titan atskilt utsettes for gass. I alle tilfelle forelå hydrogen resp. hydrogen-nitrogen bundet til titan. For the results mentioned below, it turns out to be irrelevant whether the liquid copper is exposed to hydrogen gas or ammonia gas and the titanium are introduced into the saturated melt, or if the melt and titanium are separately exposed to gas. In all cases, hydrogen or hydrogen-nitrogen bonded to titanium.
Den titanholdige krystalltype fremkom kuleformet og er meget finfordelt. Den for-andrer ikke sin ytre habitus ved glødebe-handling. Det inntrer ingen rekrystallise-ring og ved glødning øker bøyeligheten sterkt. The titanium-containing crystal type appeared spherical and is very finely divided. It does not change its external habitus during annealing treatment. No recrystallization occurs and upon annealing the flexibility increases greatly.
Overensstemmende med analytiske resultater viser det seg at her er ikke de rent metalliske komponenter titan resp. de dannede metalltitanider virksomme, men av-gjørende er innholdet av hydrogen og/eller nitrogen resp. oksygen som ligger i det angitte området. Consistent with analytical results, it turns out that here the purely metallic components are not titanium or the formed metal titanides are effective, but the decisive factor is the content of hydrogen and/or nitrogen resp. oxygen located in the specified range.
For finstrukturen er således ikke metall-titanidene av innflytelse, men deres deres evne til å oppløse hydrogen og nitrogen i blandingskrystallen. For the fine structure, the metal titanides are thus not influential, but their ability to dissolve hydrogen and nitrogen in the mixed crystal.
At plastisiteten øker tross en for sinklegeringer høy glødebehandling som ble ut-videt fra 100° C til 300—350° C taler likeledes for virkningen av de nevnte elemen-ter, som er bundet til titan eller oppløst deri, hvis temperaturavhengige oppløsning og utskillelse likeledes influerer på arbeids-material-egenskapene likesom en eventuell reduserende virkning av titanhydridet på oksydiske korngrensestoffer ikke er uteluk-ket. That the plasticity increases despite an annealing treatment that is high for zinc alloys, which was extended from 100° C to 300-350° C, also speaks for the effect of the aforementioned elements, which are bound to titanium or dissolved therein, whose temperature-dependent dissolution and excretion likewise influences the working material properties, just as a possible reducing effect of the titanium hydride on oxidic grain boundary substances is not ruled out.
I blyholdige sinklegeringer, altså slike på hyttesinkbasis, fører den dråpeformede blyutskillelse ved stivning som bekjent til en ikke regulerbar blyfordeling i strukturen, hvorfor knaarbeidsstoffet på hyttesinkbasis alltid viser en dårligere formbarhet enn slike på finsinkbasis. Etter den i forsøk 2 angitte fremgangsmåte kommer man også med hyttesink til en meget bedre plastisitet. In lead-containing zinc alloys, i.e. those on a zinc base, the droplet-shaped separation of lead during solidification leads, as is well known, to an uncontrollable distribution of lead in the structure, which is why the kneading material on a zinc base always shows a poorer formability than those on a fine zinc basis. Following the procedure indicated in experiment 2, you also get a much better plasticity with cabin zinc.
Eksempel 3: Example 3:
Forlegeringene fremstilles som angitt i eksempel 2, legeringene viser deretter føl-gende bøyetall for 0,6 mm blikk etter en glødning ved 300° C i to timer: The pre-alloys are produced as indicated in example 2, the alloys then show the following bending values for 0.6 mm tin after annealing at 300° C for two hours:
Dampprøve etter 10 dagers dampbe-handling viste ingen interkrystallinsk korrosjon og ingen senkning av egenskapene. Steam test after 10 days of steam treatment showed no intercrystalline corrosion and no lowering of the properties.
Eksempel 4: Example 4:
Følgende eksempel gir i tabellform sammenligningsverdier av utmatningsstyrke av finsink og forskjellige legeringer. The following example gives, in tabular form, comparative values of the yield strength of fine zinc and different alloys.
Undersøkelsene av utmatningsstyrke foregikk på 0,6 mm båndstrimler parallelt i valseretningen med en strimmellengde på 600 mm. Strimlene som var innspent i bak-ker ble over en hevarm belastet i forholdet 1 : 10, utvidelsesavlesningen er på den lan-ge hevarm mulig inntil 200 mm, d.v.s. inntil 3,3 %. The investigations of yield strength took place on 0.6 mm strip strips parallel to the rolling direction with a strip length of 600 mm. The strips which were clamped in trays were loaded over a lifting arm in the ratio 1:10, the expansion reading is possible on the long lifting arm up to 200 mm, i.e. up to 3.3%.
Sammenligningsmessig ble det under-søkt: Finsink, finsink med 1 % Cu (ZnCul), finsink med 0,15 % Ti (ZnTi 15), en kom-pleks Zn-Cu-Ti-legering (STZ) av følgende sammensetning: Comparatively, the following were examined: Fine zinc, fine zinc with 1% Cu (ZnCul), fine zinc with 0.15% Ti (ZnTi 15), a complex Zn-Cu-Ti alloy (STZ) of the following composition:
og den samme legering i foredlet tilstand and the same alloy in a refined state
(STZ verg.) (STZ ver.)
Heri inneholdt titanet som var tilstede This contained the titanium that was present
i legeringen (betegnet med STZ) i henhold til oppfinnelsen omtrent 5 atomprosent hydrogen eller ca. 20 atom-% nitrogen, el- in the alloy (designated STZ) according to the invention approximately 5 atomic percent hydrogen or approx. 20 atomic % nitrogen, el-
ler en tilsvarende mengde oksygen oppløst i blandingskrystallen eller som forbindelse med titan. ler a corresponding amount of oxygen dissolved in the mixed crystal or as a compound with titanium.
Utmatningsstyrke av finsinkbånd av forskjellige legeringer parallelt til valseretningen i dager/1 % utvidelse: Yield strength of fine zinc strips of different alloys parallel to the rolling direction in days/1% expansion:
Tabellen viser spesielt at ved oppfinnelsens legering ZnTi med Cu, Mn er det mulig en påkjenning på 8 kg/mm<2> ved en sigehastighet på 1 %/år, (350 dager). Her-• ved er maksimale muligheter av foredlede kvaliteter ennu ikke utnyttet. For sigefast-hetskrav tilsvarende en utvidelse på 1 % pr. år, fremkommer således som belastnings-grense i kg/mm-: The table shows in particular that with the invention's alloy ZnTi with Cu, Mn, a stress of 8 kg/mm<2> is possible at a seepage rate of 1%/year, (350 days). Here-• the maximum possibilities of refined qualities have not yet been exploited. For creep strength requirements corresponding to an expansion of 1% per year, thus appears as load limit in kg/mm-:
STZ-legeringens belastbarhet tilsvarer The load capacity of the STZ alloy is equivalent
60 % av proporsjonalitetsgrensen, mens legeringer av typen Zn Cul med samme pro-porsjonalitetsgrense og fasthet bare tillater en belastning på 20 % av den nevnte verdi. 60% of the proportionality limit, while alloys of the type Zn Cul with the same proportionality limit and strength only allow a load of 20% of the mentioned value.
Hertil kommer at titanholdige sinkvalse-legeringer i praktiske langtidsforsøk dess- In addition, titanium-containing zinc-rolled alloys in practical long-term tests des-
uten forholder seg gunstigere, titanfrie ugunstigere enn på forhånd beregnet. without is more favorable, titanium-free less favorable than previously calculated.
Av interesse ved en sinklegering ifølge oppfinnelsen er også utvidelsesforholdet. Således oppnås ved en legering av den ovenfor under betegnelsen STZ angitte sammensetning allerede før brudd en ut- The expansion ratio is also of interest with a zinc alloy according to the invention. Thus, with an alloy of the composition specified above under the designation STZ, already before fracture an out-
videlse på 120 %, mens utvidelsen i umid- expansion of 120%, while the expansion in the
delbar nærhet av revnestedet øker inntil 200 %. divisible proximity of the crack site increases up to 200%.
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37891873A | 1973-07-13 | 1973-07-13 |
Publications (3)
Publication Number | Publication Date |
---|---|
NO742222L NO742222L (en) | 1975-02-10 |
NO139165B true NO139165B (en) | 1978-10-09 |
NO139165C NO139165C (en) | 1979-01-17 |
Family
ID=23495073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO742222A NO139165C (en) | 1973-07-13 | 1974-06-19 | HIGH DENSITY CERAMIC CARBIDE ARTICLE AND METHOD OF MANUFACTURE |
Country Status (7)
Country | Link |
---|---|
JP (1) | JPS5034608A (en) |
CA (1) | CA1071242A (en) |
FR (1) | FR2236811B1 (en) |
GB (1) | GB1473911A (en) |
IT (1) | IT1017131B (en) |
NL (1) | NL7409390A (en) |
NO (1) | NO139165C (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2316643A1 (en) * | 1975-07-02 | 1977-01-28 | Ceraver | Silicon carbide based material for watch cases - contains boron carbide |
JPS53101009A (en) * | 1977-02-16 | 1978-09-04 | Kyoto Ceramic | Method of obtaining sintered silicon carbide of high density from polycarbosilane |
JPS53101010A (en) * | 1977-02-16 | 1978-09-04 | Kyoto Ceramic | Method of obtaining sintered silicon carbide of high density from polycarbosilane |
JPS606908B2 (en) * | 1977-08-04 | 1985-02-21 | 日本坩堝株式会社 | Method for producing active silicon carbide powder containing boron component |
JPS55116667A (en) * | 1979-02-28 | 1980-09-08 | Asahi Glass Co Ltd | Silicon carbide sintered body |
JPS57180101A (en) * | 1981-04-30 | 1982-11-06 | Hitachi Ltd | High temperature thermistor |
JPS57196769A (en) * | 1981-05-26 | 1982-12-02 | Ibigawa Electric Ind Co Ltd | Manufacture of silicon carbide sintered body |
JPS57196768A (en) * | 1981-05-26 | 1982-12-02 | Ibigawa Electric Ind Co Ltd | Manufacture of high strength silicon carbide sintered body |
JPS59203715A (en) * | 1983-04-30 | 1984-11-17 | Toshiba Corp | Manufacture of composite ceramic powder |
JPS59223266A (en) * | 1983-05-27 | 1984-12-15 | イビデン株式会社 | Manufacture of non-oxide ceramic sintered body |
JPS62241874A (en) * | 1986-04-14 | 1987-10-22 | 東芝セラミツクス株式会社 | Immersion protective pipe for molten metal |
JPH0829986B2 (en) * | 1986-06-05 | 1996-03-27 | 株式会社ブリヂストン | Method for producing cubic silicon carbide sintered body |
JPS6414175A (en) * | 1987-07-08 | 1989-01-18 | Toshiba Corp | Production of silicon carbide ceramic |
CN108164265A (en) * | 2018-01-05 | 2018-06-15 | 莱芜亚赛陶瓷技术有限公司 | A kind of big thickness silicon carbide bullet-proof ceramic and preparation method thereof |
-
1974
- 1974-04-29 CA CA198,393A patent/CA1071242A/en not_active Expired
- 1974-05-02 GB GB1932874A patent/GB1473911A/en not_active Expired
- 1974-06-19 NO NO742222A patent/NO139165C/en unknown
- 1974-07-11 FR FR7424090A patent/FR2236811B1/fr not_active Expired
- 1974-07-11 NL NL7409390A patent/NL7409390A/en not_active Application Discontinuation
- 1974-07-12 IT IT25127/74A patent/IT1017131B/en active
- 1974-07-12 JP JP49079252A patent/JPS5034608A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JPS5034608A (en) | 1975-04-03 |
CA1071242A (en) | 1980-02-05 |
IT1017131B (en) | 1977-07-20 |
GB1473911A (en) | 1977-05-18 |
FR2236811A1 (en) | 1975-02-07 |
NO742222L (en) | 1975-02-10 |
NL7409390A (en) | 1975-01-15 |
FR2236811B1 (en) | 1978-03-31 |
NO139165C (en) | 1979-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101124235B1 (en) | Aluminium alloy and aluminium alloy casting | |
US4388270A (en) | Rhenium-bearing copper-nickel-tin alloys | |
EP0079755B1 (en) | Copper base spinodal alloy strip and process for its preparation | |
NO139165B (en) | HIGH DENSITY CERAMIC CARBIDE ARTICLE AND METHOD OF MANUFACTURE | |
JP6685222B2 (en) | Aluminum alloy composites with improved high temperature mechanical properties | |
JP5729081B2 (en) | Magnesium alloy | |
US3475166A (en) | Aluminum base alloy | |
US20110014084A1 (en) | High strength, creep resistant zinc alloy | |
JP2002348625A (en) | Aluminum alloy sheet with superior warm formability, and manufacturing method therefor | |
US3759758A (en) | High strength aluminum casting alloy | |
US2943960A (en) | Process for making wrought coppertitanium alloys | |
KR101499096B1 (en) | Aluminum alloy and manufacturing method thereof | |
EP2865773B1 (en) | Aluminium casting alloy | |
US3269825A (en) | Method of producing homogeneous alloys containing refractory metals | |
JPS5853703B2 (en) | Molybdenum material with excellent hot workability | |
JP5522692B2 (en) | High strength copper alloy forging | |
US3471286A (en) | Aluminium base alloy | |
RU2604148C1 (en) | Gold-based alloy, hardened with intermetallides containing iron, (versions) | |
CN114086046B (en) | Mg-Sn-Sr-Zr-Sc alloy with room-temperature and high-temperature high-strength deformation and preparation process thereof | |
Daswa et al. | The solution heat treatment of rheo-high pressure die cast Al-Mg-Si-(Cu) 6xxx series alloys | |
JP6805583B2 (en) | Manufacturing method of precipitation type heat resistant Ni-based alloy | |
US3370945A (en) | Magnesium-base alloy | |
EP2487272A1 (en) | Ni3(si, ti) intermetallic compound to which ta is added | |
CN109468484B (en) | Method for realizing high-temperature titanium alloy composite reinforcement by adding zirconium nitride | |
EP3951000B1 (en) | Zinc alloy and manufacturing method thereof |