NO137570B - PROCEDURES FOR CONTROLLING A CHARGING CURRENT TO AN ACCUMULATOR, AND APPARATUS FOR CARRYING OUT PROCEDURES - Google Patents
PROCEDURES FOR CONTROLLING A CHARGING CURRENT TO AN ACCUMULATOR, AND APPARATUS FOR CARRYING OUT PROCEDURES Download PDFInfo
- Publication number
- NO137570B NO137570B NO742541A NO742541A NO137570B NO 137570 B NO137570 B NO 137570B NO 742541 A NO742541 A NO 742541A NO 742541 A NO742541 A NO 742541A NO 137570 B NO137570 B NO 137570B
- Authority
- NO
- Norway
- Prior art keywords
- accumulator
- gas
- voltage
- charging current
- charging
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 11
- 230000004069 differentiation Effects 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/569—Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
- H02J7/00714—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
- H02J7/00718—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to charge current gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Fremgangsmåte for styring av en ladestrøm. til en akkumulator, samt apparat for utførelse av fremgangsmåten.Procedure for controlling a charging current. to an accumulator, as well as an apparatus for performing the procedure.
Description
Oppfinnelsen angår en fremgangsmåte for styring av en ladestrøm til en akkumulator, særlig en gasstett akkumulator, The invention relates to a method for controlling a charging current for an accumulator, in particular a gas-tight accumulator,
i avhengighet av en begynnende gassutvikling ved akkumulatorens elektroder, ved måling og registrering av en styrestørrelse som er avhengig av de fluktuasjoner i akkumulatorens motstand som skyldes gassutviklingen, og i avhengighet av denne styrestørrelse styring av ladestrømmens størrelse. depending on an incipient gas development at the accumulator's electrodes, by measuring and recording a control variable which is dependent on the fluctuations in the accumulator's resistance caused by the gas development, and depending on this control variable control of the size of the charging current.
For å oppnå lang levetid for en akkumulator er det av stor betydning at ladestrømmen holdes på et nivå hvor den elektrolytiske gassutvikling som fremkommer under akkumulatorens oppladning, holdes på et så lavt nivå som mulig. Dette gjøres vanligvis ved på en eller annen måte å detéktere den økning i akkumulatorens klemmespenning som fremkommer som følge av den motstandsøkning som skyldes at overgangen "elektrode-elektrolytt" endres til en overgangs "elektrode-gass-elektrolytt". Denne økning i akkumulatorens klemmespenning kan tydeliggjøres på forskjellig In order to achieve a long service life for an accumulator, it is of great importance that the charging current is kept at a level where the electrolytic gas evolution that occurs during the accumulator's charging is kept at as low a level as possible. This is usually done by somehow detecting the increase in the accumulator's terminal voltage resulting from the increase in resistance due to the "electrode-electrolyte" transition changing to an "electrode-gas-electrolyte" transition. This increase in the accumulator's terminal voltage can be explained in different ways
måte. Således har man ifølge dansk utlegningsskrift nr. 131 408 overlagret ladestrømmen, som enten er en pulserende strøm eller manner. Thus, according to Danish explanatory document no. 131 408, the charging current has been superimposed, which is either a pulsating current or
en likestrøm, med en liten vekselstrøm. Ved å detektere på en økning av vekslestrømmen vil tidspunktet for den begynnende gassutvikling fremgå tydeligere enn dersom man detekterte på hele lade-strømmen. I visse tilfeller, som f.eks. ved oppladning av en gasstett akkumulator, er denne økning imidlertid ikke særlig mar-kant. Dette er meget uheldig, da nettopp gasstette akkumulatorer ikke tåler noen nevneverdig gassutvikling under oppladningen, da dette fører til en økning av akkumulatorens indre trykk og dermed til en forkortelse av dens levetid, og iblant til og med til en øyeblikkelig ødeleggelse. a direct current, with a small alternating current. By detecting an increase in the alternating current, the time of the beginning gas development will appear more clearly than if one detected the entire charge current. In certain cases, such as however, when charging a gas-tight accumulator, this increase is not very significant. This is very unfortunate, as precisely gas-tight accumulators cannot withstand any significant gas evolution during charging, as this leads to an increase in the accumulator's internal pressure and thus to a shortening of its lifetime, and sometimes even to immediate destruction.
Formålet med oppfinnelsen er å tilveiebringe en fremgangsmåte av den innledningsvis angitte art, som mer sikkert og tydelig enn de hittil kjente fremgangsmåter muliggjør en detek-tering av begynnende gassutvikling som følge av for stor ladestrøm, selv ved oppladning av en gasstett akkumulator. The purpose of the invention is to provide a method of the kind indicated at the outset, which more reliably and clearly than the previously known methods enables the detection of incipient gas evolution as a result of excessive charging current, even when charging a gas-tight accumulator.
Dette oppnås ifølge oppfinnelsen ved at de ved akkumulatorens oppladning i akkumulatorens elektrolytt-elektrodeovergang forekommende motstandsf-luktuasjoner, som skyldes dannelse og frigjørelse av enkelte gassbobler fra elektrodenes overflater, bestemmes ved en dobbel tidsdifferensiering av akkumulatorens klemmespenning, og at den differensierte spenning likerettes og filtreres for frembringelse av en likespenning som er et mål for gassutviklingsintensiteten, og hvis størrelse utgjør styrestiirrel-sen. På denne måte er det muliggjort å benytte de motstandsfluktuasjoner som skyldes dannelse og frigjørelse av enkelte gassbobler, til styring av ladestrømmens størrelse. Derved kan gassutviklingen selv i gasstette akkumulatorer holdes på et minimum. Nettopp det a detektere på dannelse og frigjørelse av de enkelte gassbobler gir et meget veldefinert tidspunkt for en begynnende gassutvikling under en akkumulators oppladning. According to the invention, this is achieved by the fact that the resistance fluctuations occurring during charging of the accumulator in the accumulator's electrolyte-electrode transition, which are due to the formation and release of individual gas bubbles from the surfaces of the electrodes, are determined by a double time differentiation of the accumulator's terminal voltage, and that the differentiated voltage is rectified and filtered for generation of a direct voltage which is a measure of the gas development intensity, and whose magnitude constitutes the control direction. In this way, it is possible to use the resistance fluctuations caused by the formation and release of individual gas bubbles to control the size of the charging current. As a result, gas evolution can be kept to a minimum, even in gas-tight accumulators. Precisely detecting the formation and release of the individual gas bubbles provides a very well-defined time for the beginning of gas development during the charging of an accumulator.
Oppfinnelsen angår videre et apparat for utførelse The invention further relates to an apparatus for execution
av fremgangsmåten ifølge oppfinnelsen, for styring av en ladestrøm til en akkumulator, særlig en gasstett akkumulator, i avhengighet av en begynnende gassutvikling ved akkumulatorens elektroder, og som omfatter en måle- og registreringsinnretning for å måle og registrere en styrestørrelse som avhenger av de fluktuasjoner i akkumulatorens of the method according to the invention, for controlling a charging current to an accumulator, in particular a gas-tight accumulator, in dependence on a beginning gas evolution at the accumulator's electrodes, and which comprises a measuring and recording device for measuring and recording a control quantity which depends on the fluctuations in of the accumulator
motstand som skriver seg fra gassutviklingen, og et ladeaggregat som i avhengighet av denne styrestørrelse enten kan avbryte ladestrømmen eller suksessivt redusere denne, slik at det opprettholdes et lavt konstant nivå for gassutviklingen ved den fortsatte oppladning av akkumulatoren. resistance that arises from the gas evolution, and a charging unit which, depending on this control value, can either interrupt the charging current or successively reduce it, so that a low constant level of gas evolution is maintained during the continued charging of the accumulator.
En enkel og sikkert virkende utførelse av dette apparat er kjennetegnet ved at måle- og registreringsinnretningen omfatter et første og et andre differensieringsorgan som kan frembringe . den andre tidsderiverte av akkumulatorens klemmespenning, en likeretter og et filter som er koplet i serie og som mates fra det andre (det siste) differensieringsorgan med den differensierte spenning, og som herav frembringer en likespenning som er et mål for gassbobleutviklingsintensiteten på elektrodenes overflater, og som utgjør styrestørrelsen. A simple and safe-working design of this device is characterized by the fact that the measuring and recording device comprises a first and a second differentiating means which can produce . the second time derivative of the accumulator's terminal voltage, a rectifier and a filter which are connected in series and which are fed from the second (last) differentiator with the differentiated voltage, and which from this produces a direct voltage which is a measure of the intensity of gas bubble development on the surfaces of the electrodes, and which make up the board size.
Oppfinnelsen skal beskrives nærmere i det følgende under henvisning til tegningen som viser ett blokkdiagram ifølge oppfinnelsen. The invention will be described in more detail below with reference to the drawing which shows a block diagram according to the invention.
En akkumulator B og et ladeaggregat5 er forbundet An accumulator B and a charging unit 5 are connected
med et apparat ifølge oppfinnelsen som kan registrere en begynnende gassutvikling i akkumulatoren B under oppladningen. Dette apparat omfatter en seriekopling av et første differensieringsorgan 1 og et andre differensieringsorgan 2, en likeretter 3, et filter 4 with an apparatus according to the invention which can register an incipient gas evolution in the accumulator B during charging. This apparatus comprises a series connection of a first differentiation means 1 and a second differentiation means 2, a rectifier 3, a filter 4
og en nivåavfølende sammenlikner 6 som styrer ladeaggregatet 5. and a level-sensing comparator 6 which controls the charging unit 5.
Virkemåten er følgende: Den andre tidsderiverte av akkumulatorens polspenning frembringes av de to kaskadekoplede differensieringsorganer 1 og 2. Det første differensieringsorgan 1 differensierer akkumulatorens B klemmespenning med hensyn på tiden, og det andre differensieringsorgan 2 differensierer den av differensieringsorganet 1 frembrakte tidsderiverte. Den således frembrakte andre tidsderiverte av klemmespermingen, som oppviser en spenning med positive og negative komponenter, likerettes i likeretteren 3 og filtreres i filteret 4. Den på filterets.4 ut-gang fremkomne likespenning er et mål på intensiteten av gassutvikling i akkumulatoren, og denne likespennings nivåavføles av sammenlikneren 6.. Den aktuelle likespenning vil da under opplad-ningsforløpet vokse i takt med gassutviklingen i akkumulatoren. The way it works is as follows: The second time derivative of the accumulator's pole voltage is produced by the two cascaded differentiating means 1 and 2. The first differentiating means 1 differentiates the terminal voltage of the accumulator B with respect to time, and the second differentiating means 2 differentiates the time derivative produced by the differentiating means 1. The thus produced second time derivative of the clamping, which exhibits a voltage with positive and negative components, is rectified in the rectifier 3 and filtered in the filter 4. The DC voltage produced at the output of the filter 4 is a measure of the intensity of gas evolution in the accumulator, and this The direct voltage level is sensed by the comparator 6. The relevant direct voltage will then, during the charging process, grow in step with the development of gas in the accumulator.
Man har minst to muligheter til å styre oppladningen av akkumulatoren ved hjelp av apparatet ifølge oppfinnelsen. There are at least two options for controlling the charging of the accumulator using the device according to the invention.
For det første kan man avbryte ladestrømmen full-stendig når intensiteten av gassutviklingen når et visst nivå, Firstly, the charging current can be stopped completely when the intensity of the gas evolution reaches a certain level,
dvs. ved oppnåelse av en bestemt verdi av likespenningen. Man an-vender her en forholdsvis stor ladestrøm, og akkumulatoren er helt oppladet når den nevnte intensitet og dermed likespenningsverdi oppnås. Ladestrømmen I fra ladeaggregatet 5 reduseres deretter direkte til null ved at ladeaggregatet automatisk styres av sammenlikneren 6 i avhengighet av om den av filteret 4 avgitte spenning har et forutbestemt nivå svarende til full oppladning av akkumulatoren. i.e. when a certain value of the DC voltage is reached. A relatively large charging current is used here, and the accumulator is fully charged when the aforementioned intensity and thus DC voltage value is achieved. The charging current I from the charging unit 5 is then reduced directly to zero by the charging unit being automatically controlled by the comparator 6 depending on whether the voltage emitted by the filter 4 has a predetermined level corresponding to full charging of the accumulator.
For det andre kan man ved et visst lavere gassutvik-lingsnivå enn ovennevnte suksessivt redusere ladestrømmen ved hjelp av den til et annet og lavere nivå innstilte sammenlikner 6. Gassut-♦ viklingsnivået i akkumulatoren holdes da på en lav konstant verdi. Secondly, at a certain lower gas development level than the above, the charging current can be successively reduced using the comparator 6 set to a different and lower level. The gas development level in the accumulator is then kept at a low constant value.
Claims (2)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7309890A SE373702B (en) | 1973-07-13 | 1973-07-13 | KIT FOR INDICATION OF GAS DEVELOPMENT AT ELECTRONS SPEC. BEGINNING THERE IN AN ACCUMULATOR UNDER THEIR CHARGE AND DEVICE FOR EXERCISING THE KIT |
Publications (3)
Publication Number | Publication Date |
---|---|
NO742541L NO742541L (en) | 1975-02-10 |
NO137570B true NO137570B (en) | 1977-12-05 |
NO137570C NO137570C (en) | 1978-03-21 |
Family
ID=20318061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO742541A NO137570C (en) | 1973-07-13 | 1974-07-12 | PROCEDURE FOR CONTROLLING A CHARGING CURRENT TO AN ACCUMULATOR, AND APPARATUS FOR CARRYING OUT THE PROCEDURE |
Country Status (9)
Country | Link |
---|---|
JP (1) | JPS5039999A (en) |
CA (1) | CA1002113A (en) |
DE (1) | DE2432866C3 (en) |
DK (1) | DK136046B (en) |
FI (1) | FI212974A (en) |
FR (1) | FR2241883B1 (en) |
GB (1) | GB1420586A (en) |
NO (1) | NO137570C (en) |
SE (1) | SE373702B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU674126A1 (en) * | 1977-09-15 | 1979-07-15 | Предприятие П/Я В-2410 | Method of charging unsealed storage battery |
US4746852A (en) * | 1984-10-29 | 1988-05-24 | Christie Electric Corp. | Controller for battery charger |
GB2167617A (en) * | 1984-11-27 | 1986-05-29 | Electronic Research Ass Limite | Battery charger |
FR2591822A1 (en) * | 1985-12-12 | 1987-06-19 | Jullian Michel | Method and ultra-fast charging devices for nickel-cadmium accumulators |
JP2007053058A (en) * | 2005-08-19 | 2007-03-01 | Toyota Motor Corp | Internal pressure estimating device for secondary battery, and charge control device for secondary battery provided with the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2137038B1 (en) * | 1971-05-12 | 1974-03-22 | Comp Generale Electricite |
-
1973
- 1973-07-13 SE SE7309890A patent/SE373702B/en unknown
-
1974
- 1974-07-08 GB GB3008574A patent/GB1420586A/en not_active Expired
- 1974-07-09 DE DE2432866A patent/DE2432866C3/en not_active Expired
- 1974-07-11 FI FI2129/74A patent/FI212974A/fi unknown
- 1974-07-12 CA CA204,649A patent/CA1002113A/en not_active Expired
- 1974-07-12 DK DK377274AA patent/DK136046B/en not_active IP Right Cessation
- 1974-07-12 NO NO742541A patent/NO137570C/en unknown
- 1974-07-13 JP JP49080699A patent/JPS5039999A/ja active Pending
- 1974-07-15 FR FR7424545A patent/FR2241883B1/fr not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DK377274A (en) | 1975-03-10 |
DK136046B (en) | 1977-08-01 |
FI212974A (en) | 1975-01-14 |
DE2432866B2 (en) | 1977-12-29 |
FR2241883A1 (en) | 1975-03-21 |
JPS5039999A (en) | 1975-04-12 |
DE2432866A1 (en) | 1975-01-30 |
CA1002113A (en) | 1976-12-21 |
DK136046C (en) | 1978-01-02 |
NO742541L (en) | 1975-02-10 |
DE2432866C3 (en) | 1978-09-07 |
NO137570C (en) | 1978-03-21 |
SE373702B (en) | 1975-02-10 |
FR2241883B1 (en) | 1978-03-24 |
GB1420586A (en) | 1976-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3267546A1 (en) | Device of monitoring reactive power compensation system, and method thereof | |
CN106655321B (en) | Electrolytic capacitor leakage current/insulation measurement instrument charge and discharge device and method | |
TW201351839A (en) | Detectors and methods for equalizing charge and battery management system | |
CN105005001A (en) | Method for rapidly detecting remaining use times of battery | |
JPS58182726A (en) | Method and apparatus for automatically setting optimum operation point of dc power source | |
CN109001645B (en) | Elevator battery detection method, device, equipment and storage medium | |
CN103364729A (en) | Detection method of battery | |
RU2020112992A (en) | SUPER CAPACITOR VOLTAGE CONTROL | |
NO137570B (en) | PROCEDURES FOR CONTROLLING A CHARGING CURRENT TO AN ACCUMULATOR, AND APPARATUS FOR CARRYING OUT PROCEDURES | |
CN109737754A (en) | Mineral hot furnace automatic operation system | |
US5289102A (en) | Battery charger having charging completion indicator | |
CN203745616U (en) | Maintenance-free lead-acid storage battery nondestructive testing instrument | |
CN100592099C (en) | Apparatus and method for charging battery cells | |
JP2015154661A (en) | Different type battery sharing charging device and method | |
CN110346676A (en) | Battery group is detached from DC bus determination method | |
US4020360A (en) | Inverter control system | |
CN107104477A (en) | A kind of battery charge intelligence control system and method | |
CN104516389B (en) | A kind of chemical conversion production line VFE voltage control system | |
CN110673667B (en) | Intelligent temperature control method and device for vehicle charging connecting device | |
CN204706920U (en) | The full programmatic method intelligent charging machine of microcomputer | |
CN110994709B (en) | Battery charging capacity control method and controller | |
CN110466382A (en) | A kind of AC charging method and device with Voltage Drop defencive function | |
CN118549741B (en) | Governing system suitable for energy storage dc-to-ac converter | |
JPH07239735A (en) | Battery controller | |
SU617491A1 (en) | Method of monitoring aluminium electrolyzer operational condition |