NO137338B - L} DEVICE FOR A LID FOR A PRINTER - Google Patents

L} DEVICE FOR A LID FOR A PRINTER Download PDF

Info

Publication number
NO137338B
NO137338B NO1940/73A NO194073A NO137338B NO 137338 B NO137338 B NO 137338B NO 1940/73 A NO1940/73 A NO 1940/73A NO 194073 A NO194073 A NO 194073A NO 137338 B NO137338 B NO 137338B
Authority
NO
Norway
Prior art keywords
gel
fissile material
fissile
converted
elements
Prior art date
Application number
NO1940/73A
Other languages
Norwegian (no)
Other versions
NO137338C (en
Inventor
Erik Boerje Johnsson
Original Assignee
Atomenergi Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atomenergi Ab filed Critical Atomenergi Ab
Publication of NO137338B publication Critical patent/NO137338B/en
Publication of NO137338C publication Critical patent/NO137338C/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J13/00Covers or similar closure members for pressure vessels in general
    • F16J13/02Detachable closure members; Means for tightening closures
    • F16J13/08Detachable closure members; Means for tightening closures attached by one or more members actuated to project behind a part or parts of the frame
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/06Sealing-plugs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/08Bolts
    • Y10T292/1043Swinging
    • Y10T292/1075Operating means
    • Y10T292/1082Motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/20Clamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T292/00Closure fasteners
    • Y10T292/20Clamps
    • Y10T292/205Ring
    • Y10T292/212With expanding or contracting means

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Casings For Electric Apparatus (AREA)
  • Common Mechanisms (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)

Description

Fremgangsmåte til fremstilling av elementer av spaltbart materiale eller utgangsmateriale som kan overføres i spaltbart materiale for kjernereaktorer. Method for producing elements of fissile material or starting material that can be transferred into fissile material for nuclear reactors.

Oppfinnelsen vedrører en fremgangsmåte til fremstilling av elementer av spaltbart materiale eller utgangsmateriale som The invention relates to a method for producing elements of fissile material or starting material which

etter nøytronbestråling kan overføres i after neutron irradiation can be transferred i

spaltbart materiale for kjernereaktorer og fissile material for nuclear reactors and

spaltningselementer eller elementer som cleavage elements or elements which

kan omdannes til spaltbart materiale frem-stilt ifølge denne fremgangsmåte. can be converted into fissile material produced according to this method.

For spaltstoffelementene anvendes som For the fissile elements used as

bekjent spaltbart materiale eventuelt sammen med utgangsmateriale (avlsmateria-le), som i reaktoren kan omdannes til spaltbare stoffer enten som metaller eller deres known fissile material possibly together with starting material (breeding material), which in the reactor can be converted into fissile substances either as metals or their

legeringer med forskjellige andre metaller alloys with various other metals

eller som forbindelser, som f. eks. oksyder, or as compounds, such as oxides,

silicider, nitrider eller karbider. Dette kan silicides, nitrides or carbides. This can

f. eks. foregå ved at de forannevnte materialer sammensintres med keramiske stoffer. De kan imidlertid også anvendes som e.g. takes place by combining the aforementioned materials with ceramic substances. However, they can also be used as

flytende legeringer og sogar oppløst eller liquid alloys and sogar dissolved or

suspendert. suspended.

De fleste av disse spaltbare materialer Most of these fissionable materials

eller utgangsmaterialer som omdannes til or starting materials that are converted into

spaltbare materialer omgis for fasthold-ning av de ved virkningen dannede spaltbare materialer eller produkter som kan fissile materials are surrounded to retain the fissile materials or products formed by the impact which can

omdannes til spaltbare produkter av et are converted into fissionable products of a

tykt hylster som består av et metall, som thick casing consisting of a metal, which

f. eks. aluminium, rustfritt stål, niob, zir-konlegeringer og liknende. e.g. aluminium, stainless steel, niobium, zir-con alloys and the like.

Da fremstillingen av de fleste typer av Then the manufacture of most types of

elementer av spaltbart materiale krever en elements of fissile material require a

meget dyr fremgangsmåte og de økono-miske resultater av energileverende kjernereaktorer betinges for en vesentlig del av very expensive method and the economic results of energy-supplying nuclear reactors are conditioned for a significant part by

spaltstoffsyklusens omkostninger, er det av fission cycle costs, it is off

betydning å nedsette fremstillingsomkost-ninger for elementer av spaltbart materiale til et minstemål. importance of reducing manufacturing costs for elements of fissile material to a minimum.

Oppfinnelsen har til hensikt å tilveie-bringe en fremgangsmåte til fremstilling av elementer av spaltbart materiale eller utgangsmaterialer som i reaktoren kan omdannes i spaltbart materiale, idet fremgangsmåten er enkel og forholdsvis billig og byr på mulighet for en særlig formgiv-ning av elementene av spaltbart materiale eller utgangsstoffene som kan omdannes til spaltbart materiale, idet de således fremstilte elementer kan tåle høye temperaturer og kan gi korrosjonsmotstand og har en høy termisk støtfasthet. The invention aims to provide a method for producing elements of fissile material or starting materials that can be converted into fissile material in the reactor, as the method is simple and relatively cheap and offers the possibility of a special design of the elements of fissile material or the starting materials that can be converted into fissile material, as the elements produced in this way can withstand high temperatures and can provide corrosion resistance and have a high thermal shock resistance.

Fremgangsmåten ifølge oppfinnelsen er karakterisert ved at det spaltbare materiale eller utgangsmaterialet som kan omdannes i reaktoren til spaltbart materiale eller også en kombinasjon av disse stoffer blandes med en del av et jordalkalifluorid, idet den fremkomne blanding utformes under trykk til et legeme og dette legeme tørkes mellom 50° C og 400° C. The method according to the invention is characterized in that the fissile material or the starting material that can be converted in the reactor into fissile material or a combination of these substances is mixed with a part of an alkaline earth fluoride, the resulting mixture being formed under pressure into a body and this body is dried between 50° C and 400° C.

Ved denne fremgangsmåte blandes de spaltbare materialer og utgangsstoffene som i reaktoren kan omdannes til spaltbart materiale, som U233, U235, U23l), Pu<2>", Th232 og U2-'18 enten i form av metallene som sådan eller i form av forbindelser som oksyder, nitrider, karbider eller silicider altså med en gel av et jordalkalifluorid som BeF2, CaF2 eller MgF2, idet gelens mengde velges således at det fremstilte elements nøytronfysikalske egenskaper influeres lite av det angjeldende fluorids forholdsvis lille nøytroninnfangning. Av den fremstilte blanding fremstilles legemene ved hjelp av sammenpressing i en matrise eller ved hjelp av ekstrusjon. Etter tørkningen av disse legemer ved 50° til 400° C, hvorved legemenes dimensjoner praktisk talt ikke forandrer seg, kan de benyttes direkte som spaltbare elementer eller elementer som kan omdannes til spaltbare elementer i bestemte typer reaktorer, som f. eks. ved de som mode-reres og avkjøles med en organisk væske. Legemene kan imidlertid også utstyres med et hylster. In this method, the fissile materials and starting materials that can be converted into fissile material in the reactor, such as U233, U235, U23l), Pu<2>", Th232 and U2-'18 are mixed either in the form of the metals as such or in the form of compounds as oxides, nitrides, carbides or silicides, i.e. with a gel of an alkaline earth fluoride such as BeF2, CaF2 or MgF2, the amount of the gel being chosen so that the neutron physical properties of the produced element are little influenced by the fluoride in question's relatively small neutron capture. From the prepared mixture, the bodies are produced by by means of compression in a matrix or by means of extrusion. After the drying of these bodies at 50° to 400° C, whereby the dimensions of the bodies practically do not change, they can be used directly as fissile elements or elements that can be converted into fissile elements in certain types of reactors, such as those that are moderated and cooled with an organic liquid However, the bodies can also be designated bulled with a holster.

Fremstilling av gelene foregår fortrinnsvis ved hjelp av en geldannelsesbe-fordrende elektrolytt, som praktisk talt ikke influerer på de nøytronfysikalske egenskaper av de spaltbare elementer eller elementene som kan omdannes i spaltbare elementer. Production of the gels preferably takes place with the aid of a gel formation-promoting electrolyte, which practically does not influence the neutron physical properties of the fissile elements or the elements that can be converted into fissile elements.

For dette formål er salter egnet som ved legemets tørkning eller ved ytterligere varmebehandling blir flyktige, f. eks. NH.NO,, eller NH,C1, men også salter som ved legemets tørkning eller ved en ytterligere varmebehandling spalter seg kjemisk, idet de tilbakeblivende rester i legemet ikke influerer ugunstig på de nøytro-nefysikalske egenskaper. For de sistnevnte salter velges fortrinnsvis salter av spaltbart materiale eller av utgangsstoffer som kan omdannes i spaltbart materiale, som kjemisk spalter seg ved lavere temperaturer som uranylnitrat og thoriumnitrat, således at det etter deres spaltning fåes en økning av innholdet av spaltstoffer eller stoffer som kan omdannes til spaltstoffer. For this purpose, salts which become volatile when the body is dried or during further heat treatment are suitable, e.g. NH.NO,, or NH,C1, but also salts which break down chemically when the body is dried or during further heat treatment, as the remaining residues in the body do not adversely influence the neutron-physical properties. For the latter salts, salts of fissile material or of starting materials that can be converted into fissile material, which chemically split at lower temperatures, such as uranyl nitrate and thorium nitrate, are preferably chosen, so that after their splitting, there is an increase in the content of fissile substances or substances that can be converted to fissile materials.

Ved et riktig valg av råstoffer som anvendes til blanding av gelen og spaltstof-fene og stoffene som kan omdannes til spaltstoffer kan tettheten av den sammen-pressede eller ekstruderte masse økes til mer enn 70 % av den røntgenografiske tetthet av hovedbestanddelen. By a correct choice of raw materials used for mixing the gel and the fissile substances and the substances that can be converted into fissile substances, the density of the compressed or extruded mass can be increased to more than 70% of the X-ray density of the main component.

Denne tetthet er riktignok lavere enn den som er oppnåelig ved sintrede legemer av spaltbart materiale, men særlig ved anvendelse av anriket spaltbart materiale er dette av kjernefysiske grunner ikke be-tenkelig, da vesentlige fordeler er frem-herskende, som f. eks. den meget lille skrumpning ved fremstillingen, hvorved en eventuell etterbehandling nedsettes til et minimum, men dessuten legemenes opp-nådde porøsitet særlig kommer deres ter-miske støtfasthet til gode. This density is admittedly lower than that which is achievable with sintered bodies of fissile material, but especially when using enriched fissile material this is not a concern for nuclear reasons, as significant advantages are predominant, such as e.g. the very small shrinkage during production, whereby any post-treatment is reduced to a minimum, but also the achieved porosity of the bodies in particular benefits their thermal impact resistance.

Ved eksperimenter har det videre vist seg at de fremstilte elementers korrosjons-bestandighet under vann av et høyt trykk og ved en temperatur på 250° C er meget tilfredsstillende. Legemene kan videre tåle en temperatur på minst 1100° C i løpet av lengere tid. Experiments have also shown that the corrosion resistance of the produced elements under water of high pressure and at a temperature of 250° C is very satisfactory. The bodies can also withstand a temperature of at least 1100° C over a longer period of time.

Vanligvis fremstilles først en gel av et jordalkalifluorid eller en blanding av jord-alkalifluorider ved at 100 vektsdeler av fin fluoridutfelling som er tørket ved en temperatur mellom 20 og 150° C blandes med 5 til 100 vektdeler destillert vann og 10 til 100 vektdeler av et tørt geldannende salt, idet saltet kan være et ammoniumsalt eller et annet flyktig salt eller et salt som kjemisk spalter seg ved oppvarmning, av thorium, uran, plutonium eller andre trans-uraner. De stoffene som blandes sammen blandes godt og knas videre eller rives, idet gelen oppstår med den ønskede kon-sistens. Generally, a gel of an alkaline earth fluoride or a mixture of alkaline earth fluorides is first prepared by mixing 100 parts by weight of fine fluoride precipitate which has been dried at a temperature between 20 and 150°C with 5 to 100 parts by weight of distilled water and 10 to 100 parts by weight of a dry gel-forming salt, the salt being an ammonium salt or another volatile salt or a salt which chemically splits when heated, of thorium, uranium, plutonium or other trans-uraniums. The substances that are mixed together are mixed well and further crushed or grated, as the gel is produced with the desired consistency.

Denne gel blandes med en til 25 ganger gelvekten av pulver av det valgte spaltbare materiale eller utgangsstoff som kan omdannes til spaltbart materiale. Blandingen kan derpå presses i en form under et trykk på 100 til 10 000 kg/cm- for å danne et legeme eller formes ved ekstrusjon til dan-nelse av et rør, en stav, en tynn plate eller en annen ønsket form. This gel is mixed with one to 25 times the gel weight of powder of the selected fissile material or starting material that can be converted into fissile material. The mixture can then be pressed into a mold under a pressure of 100 to 10,000 kg/cm- to form a body or formed by extrusion to form a tube, rod, thin plate or other desired shape.

De fremkomne legemer tørkes deretter først i vakuum, i luft eller i en annen egnet atmosfære, avhengig av oksygenbestandig-het og den valgte sammensetning av det The resulting bodies are then first dried in vacuum, in air or in another suitable atmosphere, depending on oxygen resistance and the selected composition of the

spaltbare materiale ved en temperatur fra fissile material at a temperature from

50° C til 400° C. Avhengig av det valgte geldannende salts type, kan det hvis nød-vendig, videre oppvarmes enten i luft, i vakuum eller i en inert atmosfære til temperaturer hvor det geldannende salt spalter seg kjemisk eller blir flyktig. 50° C to 400° C. Depending on the type of gel-forming salt chosen, it can, if necessary, be further heated either in air, in a vacuum or in an inert atmosphere to temperatures where the gel-forming salt decomposes chemically or becomes volatile.

Eksempel 1: Example 1:

a) Fremstilling av magnesium fluorid. Det ble anvendt for dette 1 mol MgCOs og 2 mol HF. 20 ml HF av 50 % ble fortyn-net med 20 ml vann i et plastkar. Til opp-løsningen ble under omrøring og avkjøling satt teskjevis MgCO.j på noen gram, inntil det ikke mere fant sted noen synlig reak-sjon. Derpå ble det igjen tilsatt 20 ml HF og igjen ble MgCO,, tilsatt skjevis til av-slutning av reaksjonen. På liknende måte -ble denne prosess gjentatt. Til slutt ble det foreskrevet et lite overskudd MgCCX, og dråpevis ble HF tilsatt inntil pH-verdien var mellom 3 og 4. Bunnfallet ble atskilt fra væsken ved hjelp av centrifugering og tør-ket ved 60° C. a) Production of magnesium fluoride. 1 mol MgCOs and 2 mol HF were used for this. 20 ml of 50% HF was diluted with 20 ml of water in a plastic vessel. To the solution, while stirring and cooling, teaspoonfuls of MgCO.j were added to a few grams, until no visible reaction took place. Then 20 ml of HF was again added and MgCO 2 was again added spoonwise to end the reaction. In a similar way - this process was repeated. Finally, a small excess of MgCCX was prescribed, and HF was added dropwise until the pH value was between 3 and 4. The precipitate was separated from the liquid by centrifugation and dried at 60°C.

b) Fremstilling av gelen. b) Preparation of the gel.

10 g av det fremstilte MgF, ble i en 10 g of the produced MgF, was in a

: morter overhelt med 3 g vann og det hele ble godt revet. Deretter ble det tilsatt 5 g : mortar and pestle with 3 g of water and the whole thing was well grated. Then 5 g were added

tørr NH4C1 og den hele masse ble i løpet av 15 minutter omhyggelig revet. Ved denne bearbeidelse oppsto en helt gjennomsiktig, ufarget gel. c) Fremstilling av elementet av spaltbart materiale. dry NH4C1 and the entire mass was carefully shredded in the course of 15 minutes. This treatment resulted in a completely transparent, colorless gel. c) Production of the element from fissile material.

200 mg av gelen ble blandet i en morter med 3 g uraniumdioksydpulver. I en matrise med en diameter på 4 mm ble en mengde av denne blanding komprimert under et trykk på 8000 kg/cm<2>. Det således fremstilte legeme ble oppvarmet i vakuum noen timer på 150° C til 200° C, hvorved NH,C1 fordampet og det dannet seg et hårdt ikke sprøtt legeme. Dette legeme hadde ifølge analyse en tetthet på 7,8, dvs. omtrent 72 % av tettheten av U02. Legemet besto til ca. 97 % av U02. 200 mg of the gel was mixed in a mortar with 3 g of uranium dioxide powder. In a die with a diameter of 4 mm, a quantity of this mixture was compressed under a pressure of 8000 kg/cm<2>. The body thus produced was heated in vacuum for a few hours at 150° C to 200° C, whereby the NH,C1 evaporated and a hard, non-brittle body was formed. According to analysis, this body had a density of 7.8, i.e. approximately 72% of the density of U02. The body consisted of approx. 97% of U02.

Ved oppvarmning av et slikt legeme i noen timer i vakuum ved en temperatur på 1000° C til 1200° C viste det seg, at det opptrådte en viss grad av skrumpning, idet tettheten øket til 8,12. When such a body was heated for a few hours in a vacuum at a temperature of 1000° C to 1200° C, it turned out that a certain degree of shrinkage occurred, as the density increased to 8.12.

Eksempel 2: Example 2:

a) Fremstilling av magnesiumklorid ifølge eksempel 1. a) Production of magnesium chloride according to example 1.

b) Fremstilling av gelen: b) Preparation of the gel:

10 g MgF2 ble revet med 3 g vann og 3,5 g utanylnitrat til en gjennomsiktig, gul gel. c) Fremstilling av elementet av spaltbart materiale. 3 g av gelen ble blandet med 20 g U02, som var blitt siktet gjennom en sikt med masker på 0,175 mm. Det ble av blandingen presset tabletter i en matrise med en diameter på 18,0 mm under trykk på 1800 resp. 3600 kg/cm2. 10 g of MgF2 was triturated with 3 g of water and 3.5 g of uthanyl nitrate to a transparent, yellow gel. c) Production of the element from fissile material. 3 g of the gel was mixed with 20 g of UO 2 , which had been sieved through a 0.175 mm mesh sieve. The mixture was pressed into tablets in a matrix with a diameter of 18.0 mm under a pressure of 1800 resp. 3600 kg/cm2.

Disse tabletter ble tørket i en hydrogen These tablets were dried in a hydrogen

atmosfære ved 150° C. atmosphere at 150° C.

For undersøkelse av skrumpningen ble For examination of the shrinkage was

tablettene derpå oppvarmet i en halv time på 900° C også i en hydrogen atmosfære. the tablets are then heated for half an hour at 900° C also in a hydrogen atmosphere.

Diametrene og tetthetene etter glød-ningen sees av følgende tabell: The diameters and densities after annealing can be seen from the following table:

Eksempel 3: Example 3:

a) Fremstilling av magnesiumfluorid iføl-ge eksempel 1. b) Fremstilling av gelen ifølge eksempel 1. c) Fremstilling av elementet av spaltbart materiale, ifølge eksempel 1, idet det a) Production of magnesium fluoride according to example 1. b) Production of the gel according to example 1. c) Production of the element of fissile material, according to example 1, as

dessuten ble tilsatt foruten 3 g uran-iumdioksyd også 3, 9 mg plutoniumdi-oksyd. moreover, in addition to 3 g of uranium dioxide, 3.9 mg of plutonium dioxide was also added.

De fremstilte legemer var bestandige overfor en lang oppvarmning til 1000° C. The manufactured bodies were resistant to a long heating to 1000°C.

Eksempel 4: Example 4:

a) Fremstilling av kalsium fluor id. a) Production of calcium fluoride id.

Dette foregikk på samme måte som This took place in the same way as

fremstilling av magnesiumfluorid ifølge production of magnesium fluoride according to

eksempel 1, idet 1 mol MgCO.? ble erstattet med 1 mol CaCO,,. example 1, where 1 mol of MgCO.? was replaced with 1 mol of CaCO,,.

b) Fremstilling av gelen. b) Preparation of the gel.

Også dette foregikk ifølge eksempel 1. c) Fremstilling av elementet av spaltbart materiale. This also took place according to example 1. c) Production of the element from fissile material.

Også denne prosess var tilsvarende prosessen ifølge eksempel 1. Et legeme som var presset i form av en tablett, som etter tørkning hadde en diameter på 20,93 mm og en tykkelse på 5,2 mm ble etter hver-andre oppvarmet i en nitrogenatmosfære på 500° C, 750° C, 875° C og 1000° C. Etter hver av disse behandlinger var dimensjonene slik det fremgår av følgende tabell: This process was also similar to the process according to example 1. A body that had been pressed in the form of a tablet, which after drying had a diameter of 20.93 mm and a thickness of 5.2 mm was heated one after the other in a nitrogen atmosphere at 500° C, 750° C, 875° C and 1000° C. After each of these treatments, the dimensions were as shown in the following table:

Disse tabletter ble deretter i løpet av These tablets were then during

fire dager oppvarmet i en autoklav på 250° four days heated in an autoclave at 250°

C som var fylt med kokt, destillert vann. C which was filled with boiled, distilled water.

Etter avslutningen hadde det ytre praktisk After the conclusion, it had the appearance of practicality

talt ikke forandret seg og dimensjonene spoken did not change and the dimensions

viste seg å være de samme som før be-handlingen. turned out to be the same as before the treatment.

Eksempel 5: Example 5:

Det ble i dette tilfelle anvendt gelen In this case, the gel was used

av BeF2, hvis anvendelse var den samme of BeF2, whose application was the same

som i foregående eksempler med hensyn as in previous examples with respect

til CaF2 og MgF2 under betingelse av at to CaF2 and MgF2 under the condition that

BeF0 på grunn av toksisiteten ikke ble helt BeF0 due to the toxicity was not completely

tørket, således at for fremstillingen av gelen ble det anvendt 10 g omtrent tørr BeF2dried, so that 10 g of approximately dry BeF2 was used for the preparation of the gel

med 3 g vann og 5 g NH4C1. Etter rivning with 3 g of water and 5 g of NH4C1. After demolition

oppsto en fargeløs gel. a colorless gel was formed.

Claims (5)

1. Fremgangsmåte til fremstilling av1. Method for the production of elementer av spaltbart materiale eller utgangsmateriale som i reaktoren omdannes i spaltbart materiale for kjernereaktorer,karakterisert ved at det spaltbare materiale eller utgangsmaterialet som kan omdannes til spaltbart materiale eller en kombinasjon av disse stoffer blandes med en gel av et jordalkalifluorid, idet den fremkomne blanding utformes under trykk til et legeme og dette legeme tørkes ved 50° C til 400° C. elements of fissile material or starting material that in the reactor are converted into fissile material for nuclear reactors, characterized in that the fissile material or starting material that can be converted into fissile material or a combination of these substances is mixed with a gel of an alkaline earth fluoride, as the the resulting mixture is formed under pressure into a body and this body is dried at 50° C to 400° C. 2. Fremgangsmåte ifølge påstand 1, karakterisert ved at det anvendes en gel som inneholder en geldannende be-fordrende elektrolytt, som er praktisk talt uten ugunstig virkning på legemets nøy-tronfysikalske egenskaper. 2. Method according to claim 1, characterized in that a gel is used which contains a gel-forming promoting electrolyte, which has practically no adverse effect on the neutron physical properties of the body. 3. Fremgangsmåte ifølge påstand 1, karakterisert ved at det anvendes en gel som inneholder et salt som ved tørkning og ved derpå eventuell nødvendig oppvarmning av legemet i det vesentligste fordamper. 3. Method according to claim 1, characterized in that a gel is used which contains a salt which essentially evaporates upon drying and upon subsequent necessary heating of the body. 4. Fremgangsmåte ifølge påstand 1 eller 2, karakterisert ved at det anvendes en gel som inneholder et salt, som ved tørkning og ved en eventuell derpå nødvendig oppvarmning av legemet spal-tes kjemisk. 4. Method according to claim 1 or 2, characterized in that a gel containing a salt is used, which is chemically decomposed upon drying and upon any subsequent necessary heating of the body. 5. Fremgangsmåte ifølge påstandene 1, 2 eller 4, karakterisert ved at det anvendes en gel som inneholder et salt av det spaltbare material eller utgangsmaterialet som kan omdannes i spaltbart stoff.5. Method according to claims 1, 2 or 4, characterized in that a gel is used which contains a salt of the fissile material or the starting material that can be converted into fissile material.
NO1940/73A 1972-05-26 1973-05-10 L} DEVICE FOR A LID FOR A PRINTER. NO137338C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE06988/72A SE363389B (en) 1972-05-26 1972-05-26

Publications (2)

Publication Number Publication Date
NO137338B true NO137338B (en) 1977-10-31
NO137338C NO137338C (en) 1978-02-08

Family

ID=20270090

Family Applications (1)

Application Number Title Priority Date Filing Date
NO1940/73A NO137338C (en) 1972-05-26 1973-05-10 L} DEVICE FOR A LID FOR A PRINTER.

Country Status (7)

Country Link
US (1) US3856338A (en)
JP (1) JPS49108620A (en)
DE (1) DE2325187A1 (en)
FR (1) FR2187075A5 (en)
GB (1) GB1435731A (en)
NO (1) NO137338C (en)
SE (1) SE363389B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2269774B1 (en) * 1974-05-02 1978-01-20 Commissariat Energie Atomique
US5186333A (en) * 1991-07-18 1993-02-16 Rotex, Inc. Top cover clamp for screening machine
US5290076A (en) * 1992-03-23 1994-03-01 Abb Vetco Gray Inc. Quick activating pressure vessel closure
DE19830667C2 (en) * 1998-07-09 2002-10-31 Daimler Chrysler Ag Device for determining the opening and closing times of a gas exchange valve
US8158102B2 (en) 2003-10-30 2012-04-17 Deka Products Limited Partnership System, device, and method for mixing a substance with a liquid
US7662139B2 (en) 2003-10-30 2010-02-16 Deka Products Limited Partnership Pump cassette with spiking assembly
US20050095141A1 (en) 2003-10-30 2005-05-05 Deka Products Limited Partnership System and method for pumping fluid using a pump cassette
DE102007032559B4 (en) * 2007-07-12 2010-09-09 Multitest Elektronische Systeme Gmbh Closure mechanism for pressure test chambers for testing electronic components, in particular IC's
AU2016334242B2 (en) 2015-10-09 2020-09-24 Deka Products Limited Partnership Fluid pumping and bioreactor system
US11299705B2 (en) 2016-11-07 2022-04-12 Deka Products Limited Partnership System and method for creating tissue
CN114381566B (en) * 2022-02-14 2024-05-03 新兴河北工程技术有限公司 Pressure adds magnesium be built by contract clamping device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2274319A (en) * 1938-12-03 1942-02-24 Albert E Jurs Hatch construction
US2834504A (en) * 1953-11-20 1958-05-13 Annicq Joseph Pressure vessel locking mechanism
US2734824A (en) * 1954-10-18 1956-02-14 Pressure vessels
US2776854A (en) * 1954-11-15 1957-01-08 Fletcher Aviat Corp Automatic clamping device
US2786704A (en) * 1955-04-25 1957-03-26 Combustion Eng Closure securing means for pressure vessels
US3353859A (en) * 1965-03-23 1967-11-21 Preload Co Open end structure having a positively engaged closure

Also Published As

Publication number Publication date
DE2325187A1 (en) 1973-12-06
GB1435731A (en) 1976-05-12
JPS49108620A (en) 1974-10-16
NO137338C (en) 1978-02-08
SE363389B (en) 1974-01-14
FR2187075A5 (en) 1974-01-11
US3856338A (en) 1974-12-24

Similar Documents

Publication Publication Date Title
NO137338B (en) L} DEVICE FOR A LID FOR A PRINTER
EP0239843B1 (en) Sintered nuclear-fuel body, and method of manufacturing it
GB809280A (en) Fuel elements for nuclear reactors
US4512939A (en) Method for manufacturing oxidic sintered nuclear fuel bodies
US4383944A (en) Method for producing molded bodies containing highly active radioactive wastes from glass granules embedded in a metallic matrix
SE7904201L (en) PREPARATION OF CURRENCY PELLETS
NO141894B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF PHARMACOLOGICALLY ACTIVE PYRIDOBENZODIAZEPINONES
JPS53134876A (en) Production of hydrophilic composite construction
RU2001103640A (en) PRIMARY TARGET EDUCATION TARGET
US3087879A (en) Control rod
US3063793A (en) Production of high density sintered uranium oxide
US3230278A (en) Method of manufacture of uranium dioxide having a high density
Chubb et al. Fission gas swelling of refractory nuclear fuels
GB2020641A (en) Nuclear fuel pellets containing niobium pentoxide
Yajima et al. The Behavior of Fission Products Captured in Graphite Powder by Nuclear Recoil. V. Effect of Fission Fragment Damage on the Diffusion of the Fission Product Xenon
EP0855083B1 (en) Modified, rim effect-delaying nuclear fuel
JPS6479691A (en) Manufacture of mox fuel
GB937330A (en) Preparation of uo for nuclear reactor fuel pellets
GB1373896A (en) Preparation of 238pu 160-2
SU395511A1 (en) METHOD OF OBTAINING AN ALLOY PLATINUM - PALLADIUM
GB877370A (en) Improvements relating to a method of manufacturing plates having high neutron capture cross-section characteristics and improvements in nuclear reactor control rods including such plates
Birzhevoy Investigation of the Swelling of an Irradiated Zirconium-Boron Alloy
US3668285A (en) Warm-pressing method of making stacked fuel plates
GB1320266A (en) Sintering process
SU309063A1 (en) METAL-KERAL1ICHESKIY ALLOY ON THE TUNGSTEN BASIS