NO135060B - - Google Patents
Download PDFInfo
- Publication number
- NO135060B NO135060B NO750123A NO750123A NO135060B NO 135060 B NO135060 B NO 135060B NO 750123 A NO750123 A NO 750123A NO 750123 A NO750123 A NO 750123A NO 135060 B NO135060 B NO 135060B
- Authority
- NO
- Norway
- Prior art keywords
- glass
- boron
- fluorine
- weight
- viscosity
- Prior art date
Links
- 239000011521 glass Substances 0.000 claims description 54
- 239000000203 mixture Substances 0.000 claims description 38
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000003365 glass fiber Substances 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 12
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 12
- 229910052796 boron Inorganic materials 0.000 description 12
- 239000000835 fiber Substances 0.000 description 12
- 229910052731 fluorine Inorganic materials 0.000 description 12
- 239000011737 fluorine Substances 0.000 description 12
- 230000004907 flux Effects 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 238000007380 fibre production Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 5
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 5
- 229910001947 lithium oxide Inorganic materials 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 239000006060 molten glass Substances 0.000 description 4
- NOTVAPJNGZMVSD-UHFFFAOYSA-N potassium monoxide Inorganic materials [K]O[K] NOTVAPJNGZMVSD-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 229910018068 Li 2 O Inorganic materials 0.000 description 3
- 238000004031 devitrification Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- -1 Al 2 O-j Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- LIQLLTGUOSHGKY-UHFFFAOYSA-N [B].[F] Chemical compound [B].[F] LIQLLTGUOSHGKY-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910021540 colemanite Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Description
Pibrerbare glass-sammensetninger omfatter idag bor-og fluorholdige forbindelser som flussmidler, hvilke reduserer viskositeten i satsen spesielt under de tidlige trinn av smeltingen. Etter at man har erkjent bor og fluor som potensielt forurensende stoffer har problemet vært å fremstille en glass-sammensetning som (1) har de nødvendige fysikalske egenskaper for fiber-dannelse, (2) som er akseptable for industrien og (3) som ikke omfatter fluor og bor. Friable glass compositions today include boron- and fluorine-containing compounds as fluxes, which reduce the viscosity of the batch, especially during the early stages of melting. Having recognized boron and fluorine as potentially polluting substances, the problem has been to produce a glass composition which (1) has the necessary physical properties for fiber formation, (2) which is acceptable to industry and (3) which does not include fluorine and boron.
Por eksempel har E-glass, som er den mest vanlige glass-sammensetning som idag benyttes for fremstilling av tekstilfibre fra 9-H vekt-% og kan inneholde fluor som flussmiddel. Spesifikasjonene for E-glassfibre krever også at prosentandelen Por, for example, has E-glass, which is the most common glass composition used today for the production of textile fibers from 9-H weight-% and can contain fluorine as a flux. The specifications for E-glass fibers also require that the percentage
av alkalimetalloksyder, nemlig Na^ O, KgO og Ll^ O, er mindre enn 1 vekt-%, beregnet som Na20. Det er derfor viktig å holde al-kalimetalloksydnivået for glass-sammensetningene på 1% eller mindre når det utvikles nye glass-sammensetninger som kan benyttes istedenfor E-glass. Sammensetningen for E-glass er beskrevet i US-patent nr. 2.334.961. of alkali metal oxides, namely Na^O, KgO and Ll^O, is less than 1% by weight, calculated as Na2O. It is therefore important to keep the alkali metal oxide level for the glass compositions at 1% or less when developing new glass compositions that can be used instead of E-glass. The composition for E-glass is described in US patent no. 2,334,961.
Bor benyttes vanligvis i satssammensetningen som kolemanit, vannfri borsyre eller borsyre mens fluor tilsettes som CaF2 elier natriumsilikofluorid (Na2SiFg). Smeltingen av glassråstoffet i gassoppvarmede ovner, f.eks. for danning av smeltet glass, hvorfra fibrene kan trekkes og dannes, omfatter oppvarmingen av satsen og det smeltede glass til temperaturer på over 1204°C. Vanlige benyttede tekstilfibre smeltes i området 13l6-1510°C. Ved disse smeltingstemperaturer har I^O-^ og Fg heller forskjellige forbindelser av bor og fluor en tendens til å fordampe ut av det smeltede glass, og gassene kan trekkes opp gjennom avtrekkene og slippes ut til atmosfæren som omgir fab-rikken . Boron is usually used in the batch composition as colemanite, anhydrous boric acid or boric acid, while fluorine is added as CaF2 or sodium silicofluoride (Na2SiFg). The melting of the glass raw material in gas-heated furnaces, e.g. for forming molten glass, from which the fibers can be drawn and formed, involves heating the batch and the molten glass to temperatures in excess of 1204°C. Commonly used textile fibers are melted in the range 13l6-1510°C. At these melting temperatures, I^O-^ and Fg rather different compounds of boron and fluorine tend to evaporate out of the molten glass, and the gases can be drawn up through the fumes and released into the atmosphere surrounding the factory.
Den resulterende luft- og mulige vannforurensning kan reduseres eller elimineres på flere måter. Vannvasking eller filtrering av utslippsgassene kan ofte rense utslippsluften. Bruken av elektriske ovner istedenfor gassfyrte ovner vil vesent-lig eliminere tapet av flyktige flussmidler (f.eks. bor og fluor) som vanligvis forbindes med gassfyrte ovner ved temperaturer over 1204°C. Disse rensingstiltak er imidlertid ofte kostbare og kan unngås hvis forurensningskilden kan fjernes fra klaffsammenset-ningene. Noe som imidlertid kompliserer dette er det faktum at man ved å fjerne bor og fluor fjerner to vanligvis benyttede flussmidler i fibrerbare glass-sammensetninger. Det har vist seg å være vanskelig å oppnå akseptable smeltehastigheter, smeltings-og driftstemperaturer, likvidus og viskositet i fravær av bor og fluor. The resulting air and possible water pollution can be reduced or eliminated in several ways. Water washing or filtering the exhaust gases can often clean the exhaust air. The use of electric furnaces instead of gas-fired furnaces will substantially eliminate the loss of volatile fluxes (eg boron and fluorine) usually associated with gas-fired furnaces at temperatures above 1204°C. However, these cleaning measures are often expensive and can be avoided if the source of contamination can be removed from the valve assemblies. Something that complicates this, however, is the fact that by removing boron and fluorine, you remove two commonly used fluxes in fibrable glass compositions. It has proven difficult to achieve acceptable melting rates, melting and operating temperatures, liquidus and viscosity in the absence of boron and fluorine.
Et akseptabelt driftsområdet i en kommersiell tek-stilglassmater er mellom 1232 og 1371°C. En glass-sammensetning som oppfører seg godt i denne omgivelse bør helst ha en likvidustemperatur på omtrent 1204°C eller mindre og en viskositet på An acceptable operating range in a commercial tek style glass feeder is between 1232 and 1371°C. A glass composition that behaves well in this environment should preferably have a liquidus temperature of about 1204°C or less and a viscosity of
log 2,5 poises ved 13l6°C eller mindre. log 2.5 poise at 13l6°C or less.
Fiberfremstillingstemperaturen er helst omkring 55°C over likvidustemperaturen for å unngå devitrifisering (krystallvekst) i glasset når fibrene dannes. Fordi devitrifisering forårsaker uregelmessigheter eller kjerner i glasset som 'hemmer eller som kan stoppe fiberfremstillingen, bør likvidustemperaturen for et.kommersielt tekstilglass helst være mindre enn omkring 1204°C. Glassets viskositet er også en nøkkel for effektiv og økonomisk fiberfremstilling. Glassviskositeter på log 2,5 poises ved 1343°C eller mer krever så høye temperaturer for å smelte glasset, for å gi det flyteegenskaper og gjøre det formbart til fibre at de metalliske bøssinger eller matere kan bli ubrukbare eller må erstattes eller repareres hyppigere enn bøss-inger som kommer i kontakt med mindre viskøse glasstyper. The fiber production temperature is preferably around 55°C above the liquidus temperature to avoid devitrification (crystal growth) in the glass when the fibers are formed. Because devitrification causes irregularities or nuclei in the glass that inhibit or may stop fiber production, the liquidus temperature of a commercial textile glass should ideally be less than about 1204°C. The viscosity of the glass is also a key to efficient and economical fiber production. Glass viscosities of log 2.5 poise at 1343°C or more require such high temperatures to melt the glass, to give it flow properties and to make it formable into fibers that the metallic bushings or feeders may become unusable or require replacement or repair more frequently than bushings -ings that come into contact with less viscous types of glass.
Med disse problemer for øye er det ifølge oppfinnelsen utviklet bor- og fluorfrie fibrerbare glass-sammensetninger og fremgangsmåter for fiberfremstilling fra disse. With these problems in mind, according to the invention, boron- and fluorine-free fibrable glass compositions and methods for fiber production from these have been developed.
Glass-sammensetningene ifølge oppfinnelsen er bor-og fluorfrie og har følgende områder for bestanddelene: The glass compositions according to the invention are boron- and fluorine-free and have the following ranges for the components:
Glass-sammensetningene ifølge oppfinnelsen omfatter sammensetninger der litiumoksyd (li20) er det primære flussmiddel og der litiumoksyd og titanoksyd (Ti02) benyttes i kombinasjon istedenfor bor og fluor som flussmidler. Den foretrukkede sammensetning omfatter 0,3-2,5 vekt-% Li20 og 2- 5% Ti02 der den totale vektandel av Li20 og Ti02 er 3,5-6,5$• The glass compositions according to the invention include compositions in which lithium oxide (li20) is the primary flux and in which lithium oxide and titanium oxide (Ti02) are used in combination instead of boron and fluorine as fluxes. The preferred composition comprises 0.3-2.5% by weight Li20 and 2-5% Ti02 where the total weight proportion of Li20 and Ti02 is 3.5-6.5$•
I den grad de ifølge oppfinnelsen angitte glass-sammensetninger inneholder ytterligere oksyder ut over de seks ovenfor angitte oksyder Si02, Al20-j, CaO, LigO, Ti02 og MgO er det kun snakk om tifeldige forurensninger. To the extent that the glass compositions according to the invention contain additional oxides in addition to the six oxides SiO 2 , Al 2 O-j , CaO, LigO, TiO 2 and MgO mentioned above, we are only talking about two-fold impurities.
Det er oppdaget at Li20 og Ti02 i kombinasjon har en samvirkning på de foretrukkede glass-sammensetninger. It has been discovered that Li 2 O and Ti 0 2 in combination have a synergistic effect on the preferred glass compositions.
Alle glass-sammensetningene som er beskrevet neden-for er bor- og fluorfrie og har en viskositet på log 2,5 poises ved en temperatur på omkring 1343°C eller mindre og en likvidustemperatur på omkring 1204°C eller mindre. Glass-sammensetningene som faller innenfor det ovenfor angitte område kan trekkes til fine, kontinuerlige fibre med en diameter på omkring 3>7 x 10 ^ til 14 ' x 10~<3> mm. All of the glass compositions described below are boron and fluorine free and have a viscosity of log 2.5 poise at a temperature of about 1343°C or less and a liquidus temperature of about 1204°C or less. The glass compositions falling within the range indicated above can be drawn into fine, continuous fibers having a diameter of about 3>7 x 10^ to 14' x 10~<3> mm.
Den foretrukkede sammensetning innenfor det ovenfor angitte område er som følger, der glass-sammensetningen har en viskositet på 2,5 poises ved en temperatur på 1343°C eller mindre, og en likvidustemperatur på 1024°C eller mindre.. The preferred composition within the above range is as follows, where the glass composition has a viscosity of 2.5 poise at a temperature of 1343°C or less, and a liquidus temperature of 1024°C or less.
Den totale vektprosentandel av Ll^ O og TiC^ i det ovenfor angitte ligger på fra 3,5-6,5$. The total weight percentage of Ll^O and TiC^ in the above is from 3.5-6.5$.
Spesielle sammensetninger innenfor de ovenfor angitte områder er beskrevet i den følgende tabell, eksemplene 1-16. Special compositions within the above stated ranges are described in the following table, examples 1-16.
Viskositetsbestemmelsene i eksemplene ovenfor ble oppnådd ved bruk av den apparatur og fremgangsmåte som er beskrevet i US-patent nr. 3-056.283 og i en artikkel i "The Jour-nal of the American Ceramic Society", vol. 42, nr. 11 november 1959, sidene 537-541. Artikkelen har titlen "Improved Apparatus . for Rapid Measurement of Viscosity of"Glass at High Temperatures" og er skrevet av Ralph L. Tiede. Andre bestemmelser for spesifikk viskositet ,som heri er angitt er også målt ved den apparatur og The viscosity determinations in the above examples were obtained using the apparatus and method described in US Patent No. 3-056,283 and in an article in "The Journal of the American Ceramic Society", Vol. 42, No. 11 November 1959, pages 537-541. The article is entitled "Improved Apparatus . for Rapid Measurement of Viscosity of "Glass at High Temperatures" and is written by Ralph L. Tiede. Other determinations of specific viscosity, which are given herein, have also been measured by the apparatus and
fremgangsmåte som er beskrevet i artikkelen av Tiede. method described in the article by Tiede.
Glass-sammensetningene ifølge oppfinnelsen, av hvilke noen er beskrevet i den ovenfor angitte tabell, har helst en likvidustemperatur på 1204°C eller mindre og en viskositet på log poises 2,5 (dvs. 10 ' poises) ved 1343 C eller mindre. Glassene er egnet for fiberfremstilling og til direkte erstatning av E-glass og tilsvarende glasstyper for tekstilglassfiber-fremstilling som inneholder bor og fluor, og det er således mulig å fremstille bor- og fluorfrie glasstyper. The glass compositions according to the invention, some of which are described in the table above, preferably have a liquidus temperature of 1204°C or less and a viscosity of log poise 2.5 (ie 10' poise) at 1343°C or less. The glasses are suitable for fiber production and for direct replacement of E-glass and similar types of glass for textile glass fiber production that contain boron and fluorine, and it is thus possible to produce boron- and fluorine-free glass types.
Konsentrasjonen av MgO i glass-sammensetningen er helst mindre enn 4 vekt-?. Konsentrasjoner for MgO på over 4% øker likvidustemperaturen over den foretrukkede grense for fibrering. MgO kan tilsettes til glass-sammensetningen sammen med råstoffene og er kjent å ha en virkning på smeltetemperaturen for E-glass og tilsettes f.eks. til E-glass for å regulere devitrifi-seringen av diopsider (Ca0Mg02Si02). Det er nå oppdaget at 1,5-4,5 vekt-% MgO reduserer og regulerer likvidustemperaturen til innenfor fibreringsområdet og reduserer slik som beskrevet ovenfor den mengde Ti02 som er nødvendig i sammensetningen, noé som forbedrer fibrenes farge. The concentration of MgO in the glass composition is preferably less than 4% by weight. Concentrations of MgO in excess of 4% increase the liquidus temperature above the preferred limit for fiberisation. MgO can be added to the glass composition together with the raw materials and is known to have an effect on the melting temperature of E-glass and is added e.g. to E-glass to regulate the devitrification of diopsides (Ca0Mg02Si02). It has now been discovered that 1.5-4.5% by weight MgO reduces and regulates the liquidus temperature to within the fiberization range and, as described above, reduces the amount of TiO 2 required in the composition, which improves the color of the fibers.
Litiumoksyd, Li20, og titaniumoksyd, Ti02, benyttes i kombinasjon i glass-sammensetningene som er angitt i tabellen som flussmidler istedenfor bor og fluor. Samvirkningen av Li20 og Ti02 med henblikk på å senke viskositeten for glass-sam-' mensetningen uten ugunstig å påvirke likvidus er et viktig trinn ved fremstilling av fibrerbare glass-sammensetninger som er fri Lithium oxide, Li20, and titanium oxide, Ti02, are used in combination in the glass compositions indicated in the table as fluxes instead of boron and fluorine. The interaction of Li 2 O and TiO 2 in order to lower the viscosity of the glass composition without adversely affecting liquidus is an important step in the production of fibrable glass compositions which are free
for potensielle forurensende stoffer slik som bor og fluor. MgO kan også tilsettes til denne glass-sammensetning for å redusere likvidustemperaturen hvis dette er nødvendig til innenfor fibref-ingsområdet. for potential pollutants such as boron and fluoride. MgO can also be added to this glass composition to reduce the liquidus temperature if this is necessary to within the fiber refrigerating range.
Litiumoksyd er kun et av de tre vanligvis benyttede alkalimetalloksyder (Li20, K20 og Na20) som kan benyttes i mengder på opp til 4 vekt-% for å regulere viskositeten uten ugunstig å påvirke likvidus. I den foretrukkede glass-sammensetning som er angitt i tabellen er området for Li20 0,5-2,5 vekt-%. Konsentrasjoner for litiumoksyd på over 2,5 vekt-% kan i kombinasjon med Ti02 forårsake en hevning av likvidustemperaturen til uønskede nivåer. Titaniumoksyd bør benyttes i disse glass-sammensetninger i mengder på 5 vekt-% eller mindre. Når det benyttes i mengder på over 5%, kan likvidustemperaturen stige til over den foretrukkede grense for fibrering. Lithium oxide is only one of the three commonly used alkali metal oxides (Li20, K20 and Na20) which can be used in amounts of up to 4% by weight to regulate viscosity without adversely affecting liquidus. In the preferred glass composition indicated in the table, the range for Li 2 O is 0.5-2.5% by weight. Concentrations for lithium oxide of more than 2.5% by weight can, in combination with Ti02, cause a rise in the liquidus temperature to undesirable levels. Titanium oxide should be used in these glass compositions in amounts of 5% by weight or less. When used in amounts above 5%, the liquidus temperature may rise above the preferred limit for fiberization.
Alkalimetalloksydene, Na20 og K20, kan benyttes enkeltvis eller sammen for'å regulere viskositeten. I hvert til-felle bør summen av Na20 og K20 ikke overskride omkring 2,5 vekt-% der den totale mengde alkalimetalloksyd kan overskride 1% og helst ikke være mer enn 1 vekt-%. Mengder av Na20 og K20 på over 2,5 vekt-% forårsaker en uønsket stigning av likvidustemperaturen, noe som oppveier fordelene som disse oksyder har med henblikk på The alkali metal oxides, Na2O and K2O, can be used individually or together to regulate the viscosity. In each case, the sum of Na 2 O and K 2 O should not exceed about 2.5% by weight, where the total amount of alkali metal oxide may exceed 1% and preferably not more than 1% by weight. Amounts of Na 2 O and K 2 O in excess of 2.5% by weight cause an undesirable rise in the liquidus temperature, which offsets the advantages these oxides have in terms of
å holde' viskositeten innenfor det ønskede område. to keep the viscosity within the desired range.
I eksemplene 1-5,.9 og 16 i tabellen ble Na20 tilsatt som satsmateriale. I de andre eksemplene i tabellen ble Na20 ikke tilsatt med hensikt, men kom inn i glass-sammensetningen som en urenhet i et av satsmaterialene. K20 kom i alle eksemplene i tabellen inn som en urenhet. Glass-sammensetninger uten K20 eller Na20 faller også utenfor rammen av oppfinnelsen. In examples 1-5, 9 and 16 in the table, Na 2 O was added as a batch material. In the other examples in the table, Na2O was not added on purpose, but entered the glass composition as an impurity in one of the batch materials. In all the examples in the table, K20 entered as an impurity. Glass compositions without K20 or Na20 also fall outside the scope of the invention.
Visse oksyder fra gruppen BaO, CaO, MgO og MnO er fordelaktige additiver for glass-sammensetningen ifølge tabellen. SrO burde på samme måte være fordelaktig. Denne gruppe av oksyder understøtter regulering av likvidus uten ugunstig å påvirke viskositeten. De beste-resultater er oppnådd der oksydene benyttes kollektivt i mengder på 27 vekt-%, og de beste resultater oppnås generelt når MgO og CaO benyttes, individuelt eller i kombinasjon. MnO benyttes fordelaktig i mengder på 0,5% eller mindre. Når MnO benyttes i mengder på over 0,5%, kan denne forårsake en brunaktig eller purpurfarge i glass-sammensetningen og fibrene. Certain oxides from the group BaO, CaO, MgO and MnO are advantageous additives for the glass composition according to the table. SrO should similarly be beneficial. This group of oxides supports regulation of liquidus without adversely affecting viscosity. The best results are obtained where the oxides are used collectively in amounts of 27% by weight, and the best results are generally obtained when MgO and CaO are used, individually or in combination. MnO is advantageously used in amounts of 0.5% or less. When MnO is used in amounts above 0.5%, this can cause a brownish or purplish color in the glass composition and fibers.
Fe20j kan komme inn i alle glass-sammensetningene ifiølge oppfinnelsen som en urenhet i satsråstof f ene eller det kan tilsettes med hensikt i mengder på opptil 1 vekt-%. Fe^ O-^ kan imidlertid misfarge glasset og fibrene som trekkes fra glasset slik som beskrevet ovenfor, og mengden bør derfor holdes så lav som mulig når det' er nødvendig med klare glassfibre for visse sluttanvendelser, spesielt der Ti02 er tilstede. Forskjellige andre urenheter kan også være tilstede i glass-sammensetningene i mengder på omkring 0,3 vekt-% eller mindre uten ugunstig å påvirke glassene eller fibrene. Disse urenheter omfatter også krom-oksyd, Cr20^, og oksyder av vanadium og fosfater. Disse stoffer kan komme inn i glasset som en råstoffurenhet eller kan være pro-dukter som dannes ved den kjemiske reaksjon av det smeltede glass med ovnsbestanddeler. Oksyder av svovel kan også være tilstede i spormengder, enten fra satsurenheter eller fra eventuelle tilset-ninger av sulfater som additiver. Fe20j can enter all the glass compositions according to the invention as an impurity in the batch raw material or it can be added intentionally in amounts of up to 1% by weight. However, Fe^O-^ can discolor the glass and the fibers drawn from the glass as described above, and the amount should therefore be kept as low as possible when clear glass fibers are required for certain end uses, especially where TiO 2 is present. Various other impurities may also be present in the glass compositions in amounts of about 0.3% by weight or less without adversely affecting the glasses or fibers. These impurities also include chromium oxide, Cr20^, and oxides of vanadium and phosphates. These substances can enter the glass as a raw material impurity or can be products formed by the chemical reaction of the molten glass with furnace components. Oxides of sulfur can also be present in trace amounts, either from saturated acid units or from possible additions of sulphates as additives.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO750123A NO135060C (en) | 1972-04-28 | 1975-01-16 |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24844472A | 1972-04-28 | 1972-04-28 | |
US24836072A | 1972-04-28 | 1972-04-28 | |
US28819372A | 1972-09-11 | 1972-09-11 | |
NO1755/73A NO133269C (en) | 1972-04-28 | 1973-04-27 | |
NO750123A NO135060C (en) | 1972-04-28 | 1975-01-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
NO750123L NO750123L (en) | 1973-10-30 |
NO135060B true NO135060B (en) | 1976-10-25 |
NO135060C NO135060C (en) | 1977-02-02 |
Family
ID=27400121
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO1755/73A NO133269C (en) | 1972-04-28 | 1973-04-27 | |
NO750123A NO135060C (en) | 1972-04-28 | 1975-01-16 | |
NO75752092A NO135629C (en) | 1972-04-28 | 1975-06-12 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO1755/73A NO133269C (en) | 1972-04-28 | 1973-04-27 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO75752092A NO135629C (en) | 1972-04-28 | 1975-06-12 |
Country Status (18)
Country | Link |
---|---|
JP (1) | JPS577089B2 (en) |
AR (1) | AR198215A1 (en) |
BE (1) | BE798819A (en) |
CA (1) | CA975386A (en) |
CH (1) | CH602503A5 (en) |
DD (1) | DD107005A5 (en) |
DE (1) | DE2320720C2 (en) |
ES (1) | ES414161A1 (en) |
FI (3) | FI56517C (en) |
FR (1) | FR2182184B1 (en) |
GB (1) | GB1391384A (en) |
IL (1) | IL42018A (en) |
IN (1) | IN139472B (en) |
IT (1) | IT986640B (en) |
NL (1) | NL180655C (en) |
NO (3) | NO133269C (en) |
PL (1) | PL87767B1 (en) |
SE (2) | SE386156C (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2407538B2 (en) * | 1974-02-16 | 1976-04-01 | Jenaer Glaswerk Schott & Gen., 6500 Mainz | GLASSES BASED ON SIO TIEF 2 - ZNO AS A REINFORCEMENT AGENT IN CONCRETE AND FOR INSTALLATION IN LIGHTWEIGHT CONCRETE |
JPS524519A (en) * | 1975-06-30 | 1977-01-13 | Fuji Fibre Glass Co Ltd | Composite of alkaliiproof glass |
JP2587708Y2 (en) * | 1990-11-15 | 1998-12-24 | セイコーインスツルメンツ株式会社 | Small motor |
WO1996039362A1 (en) * | 1995-06-06 | 1996-12-12 | Owens Corning | Boron-free glass fibers |
CA2375719C (en) * | 1999-05-28 | 2007-01-09 | Ppg Industries Ohio, Inc. | Glass fiber composition |
US6962886B2 (en) * | 1999-05-28 | 2005-11-08 | Ppg Industries Ohio, Inc. | Glass Fiber forming compositions |
FR2800730B1 (en) * | 1999-11-04 | 2001-12-07 | Vetrotex France Sa | GLASS YARNS CAPABLE OF REINFORCING ORGANIC AND / OR INORGANIC MATERIALS, PROCESS FOR PRODUCING GLASS YARNS, COMPOSITION USED |
MXPA03001996A (en) | 2000-09-06 | 2004-08-12 | Ppg Ind Ohio Inc | Glass fiber forming compositions. |
DE10161791A1 (en) | 2001-12-07 | 2003-06-26 | Dbw Fiber Neuhaus Gmbh | Continuous glass fiber with improved thermal resistance |
CN101514080B (en) * | 2004-05-13 | 2011-02-02 | 旭玻璃纤维股份有限公司 | Glass fiber for reinforcing polycarbonate resin and polycarbonate resin molded product |
BRPI0518202B1 (en) * | 2004-11-01 | 2017-05-30 | The Morgan Crucible Company Plc | refractory earth alkaline metal silicate fibers |
US7875566B2 (en) | 2004-11-01 | 2011-01-25 | The Morgan Crucible Company Plc | Modification of alkaline earth silicate fibres |
KR100676167B1 (en) | 2006-01-25 | 2007-02-01 | 주식회사 케이씨씨 | A biodegradable ceramic fiber composition for a heat insulating material |
FR2910462B1 (en) * | 2006-12-22 | 2010-04-23 | Saint Gobain Vetrotex | GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS |
WO2008156090A1 (en) | 2007-06-18 | 2008-12-24 | Nippon Sheet Glass Company, Limited | Glass composition |
DE102008037955B3 (en) | 2008-08-14 | 2010-04-15 | Bürger, Gerhard | High temperature and chemically resistant glass with improved UV light transmission and its use |
CN101503279B (en) * | 2009-03-02 | 2012-04-11 | 巨石集团有限公司 | Novel glass fibre composition |
CN101597140B (en) * | 2009-07-02 | 2011-01-05 | 重庆国际复合材料有限公司 | High-strength high-modulus glass fiber |
EP2354104A1 (en) | 2010-02-05 | 2011-08-10 | 3B | Glass fibre composition and composite material reinforced therewith |
EP2354106A1 (en) | 2010-02-05 | 2011-08-10 | 3B | Glass fibre composition and composite material reinforced therewith |
EP2354105A1 (en) | 2010-02-05 | 2011-08-10 | 3B | Glass fibre composition and composite material reinforced therewith |
CN102173594B (en) * | 2011-02-14 | 2012-05-23 | 重庆国际复合材料有限公司 | Boron-free fluorine-free glass fiber composition |
US20140357143A1 (en) * | 2011-12-06 | 2014-12-04 | Nitto Boseki Co., Ltd. | Glass fabric and glass fiber sheet material using same |
US9499432B2 (en) | 2012-04-18 | 2016-11-22 | 3B-Fibreglass Sprl | Glass fibre composition and composite material reinforced therewith |
RS57931B1 (en) * | 2013-02-18 | 2019-01-31 | As Valmieras Stikla Skiedra | Temperature-resistant aluminosilicate glass fibers and method for the production thereof and use thereof |
CN103145341B (en) * | 2013-03-22 | 2016-06-08 | 内江华原电子材料有限公司 | A kind of floride-free boron-free and alkali-free glass fiber and preparation method thereof |
CN103332866B (en) * | 2013-07-19 | 2016-07-06 | 重庆国际复合材料有限公司 | A kind of glass fibre |
KR20210101269A (en) | 2018-12-12 | 2021-08-18 | 코닝 인코포레이티드 | Ion-exchangeable lithium-containing aluminosilicate glass |
EP4249445A4 (en) * | 2021-06-29 | 2024-06-19 | Nitto Boseki Co., Ltd. | Glass composition for glass fibers, glass fiber, and glass fiber-reinforced resin molded product |
CN118495821A (en) * | 2024-07-19 | 2024-08-16 | 淄博卓意玻纤材料有限公司 | Compression-resistant high-strength high-modulus glass fiber, production method and system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1356354A (en) * | 1963-02-12 | 1964-03-27 | Compositions of glass and fiberglass or other articles formed therewith | |
DE1496662A1 (en) * | 1964-06-12 | 1969-07-03 | Sued Chemie Ag | High melting point fiberglass |
GB1200732A (en) * | 1966-07-11 | 1970-07-29 | Nat Res Dev | Improvements in or relating to glass fibres and compositions containing glass fibres |
GB1209244A (en) * | 1967-04-05 | 1970-10-21 | Owens Corning Fiberglass Corp | Glass composition |
-
1973
- 1973-04-12 CA CA168,591A patent/CA975386A/en not_active Expired
- 1973-04-12 IL IL42018A patent/IL42018A/en unknown
- 1973-04-18 GB GB1878173A patent/GB1391384A/en not_active Expired
- 1973-04-19 NL NLAANVRAGE7305629,A patent/NL180655C/en not_active IP Right Cessation
- 1973-04-25 JP JP7347184A patent/JPS577089B2/ja not_active Expired
- 1973-04-25 DE DE2320720A patent/DE2320720C2/en not_active Expired
- 1973-04-26 AR AR247721A patent/AR198215A1/en active
- 1973-04-27 FR FR7315364A patent/FR2182184B1/fr not_active Expired
- 1973-04-27 BE BE130497A patent/BE798819A/en not_active IP Right Cessation
- 1973-04-27 NO NO1755/73A patent/NO133269C/no unknown
- 1973-04-27 ES ES414161A patent/ES414161A1/en not_active Expired
- 1973-04-27 IT IT23525/73A patent/IT986640B/en active
- 1973-04-27 SE SE7306004A patent/SE386156C/en unknown
- 1973-04-27 FI FI1365/73A patent/FI56517C/en active
- 1973-04-27 CH CH602673A patent/CH602503A5/xx not_active IP Right Cessation
- 1973-04-28 DD DD170516A patent/DD107005A5/xx unknown
- 1973-04-28 PL PL1973162206A patent/PL87767B1/en unknown
- 1973-04-30 IN IN1008/CAL/73A patent/IN139472B/en unknown
-
1975
- 1975-01-16 NO NO750123A patent/NO135060C/no unknown
- 1975-06-12 NO NO75752092A patent/NO135629C/no unknown
- 1975-11-27 SE SE7513371A patent/SE410730B/en not_active IP Right Cessation
-
1977
- 1977-06-14 FI FI771877A patent/FI56518C/en not_active IP Right Cessation
- 1977-06-14 FI FI771878A patent/FI56519C/en not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO135060B (en) | ||
US4026715A (en) | Glass compositions, fibers and methods of making same | |
US3876481A (en) | Glass compositions, fibers and methods of making same | |
US6686304B1 (en) | Glass fiber composition | |
US3847626A (en) | Glass compositions, fibers and methods of making same | |
US3847627A (en) | Glass compositions, fibers and methods of making same | |
US6391810B1 (en) | Lead- and barium-free crystal glass | |
US3652303A (en) | Heat absorbing blue soda-lime-silica glass | |
US4199364A (en) | Glass composition | |
US2877124A (en) | Glass composition | |
US3095311A (en) | Glass compositions | |
US6794322B2 (en) | Low-boron glass fibers and glass compositions for making the same | |
US5908794A (en) | Glass composition for a substrate | |
US4298389A (en) | High transmission glasses for solar applications | |
US2571074A (en) | Glass composition | |
CA2375719C (en) | Glass fiber composition | |
MX336956B (en) | Method of manufacturing high strength glass fibers in a direct melt operation and products formed there from. | |
US20180257975A1 (en) | Borosilicate glass for pharmaceutical container, glass tube for pharmaceutical container, and manufacturing method for pharmaceutical container | |
IE49317B1 (en) | Fibre transformable glass | |
CN85104675B (en) | Novel fiber glass composition | |
NO178493B (en) | Process for making a glass intended for conversion into continuous or staple fibers | |
CA2315332A1 (en) | Li2o-a1203-si02 crystallized glass and crystallizable glass therefor | |
KR980001880A (en) | Water-enhanced sulfate refining process to reduce toxic emissions from glass melting furnaces | |
CN101423329B (en) | Low boron and fluorine glass formula | |
KR19990037407A (en) | Aluminoborosilicate glass containing alkaline earth metal for electric bulb and method of using the same |