NO134488B - - Google Patents

Download PDF

Info

Publication number
NO134488B
NO134488B NO1927/72A NO192772A NO134488B NO 134488 B NO134488 B NO 134488B NO 1927/72 A NO1927/72 A NO 1927/72A NO 192772 A NO192772 A NO 192772A NO 134488 B NO134488 B NO 134488B
Authority
NO
Norway
Prior art keywords
water
gas
oxygen
hypolimnion
housing
Prior art date
Application number
NO1927/72A
Other languages
Norwegian (no)
Other versions
NO134488C (en
Inventor
B L Verner
L B S Fors
Original Assignee
Atlas Copco Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE700271A external-priority patent/SE352874B/xx
Priority claimed from SE97272A external-priority patent/SE360846C/xx
Application filed by Atlas Copco Ab filed Critical Atlas Copco Ab
Publication of NO134488B publication Critical patent/NO134488B/no
Publication of NO134488C publication Critical patent/NO134488C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • C02F1/64Heavy metal compounds of iron or manganese
    • C02F1/645Devices for iron precipitation and treatment by air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • B01F23/23231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • B01F23/23231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit
    • B01F23/232311Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits being at least partially immersed in the liquid, e.g. in a closed circuit the conduits being vertical draft pipes with a lower intake end and an upper exit end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/3203Gas driven
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/26Activated sludge processes using pure oxygen or oxygen-rich gas
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • B01F35/32005Type of drive
    • B01F35/32015Flow driven
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

Foreliggende oppfinnelse vedgår en fremgangsmåte og apparat for restaurering av sjøer ved oxygen-anrikning av vannet i disse. Nærmere bestemt angår oppfinnelsen å løse problemene i for-bindelse med luftbehandling av vann i sjøer, hvis dyp overstiger 8-10 m, uten samtidig å forstyrre vannets termiske lagdeling. The present invention relates to a method and apparatus for restoring lakes by oxygen-enriching the water in them. More specifically, the invention concerns solving the problems in connection with air treatment of water in lakes, the depth of which exceeds 8-10 m, without at the same time disturbing the thermal stratification of the water.

I sommerperioden deles vannet i slike sjøer i to lag, et øvre varmere lag, epilimnion, og et undre kaldere lag, hypolimnion. Grenseskiktet mellom epilimnion- og hypolimnion-lagene ligger på During the summer period, the water in such lakes is divided into two layers, an upper warmer layer, epilimnion, and a lower colder layer, hypolimnion. The boundary layer between the epilimnion and hypolimnion layers lies on

en dybde av 8-10 m. Overflateskiktet har god kontakt med atmosfæren og kan derved ta opp en del oxygen. I dette øvre lag produserer planktonalger organiske substanser med oxygen som bi-produkt. Om næringsinnholdet i epilimnion av naturlige eller av mennesker forårsakede grunner er høyt, blir resultatet en høy prod-uksjon av organiske forbindelser. En stor del av dette synker ned i den kaldere hypolimnion, hvor bakterier bryter ned de organiske bestanddeler. Denne prosess muliggjøres kun imidlertid om det finnes oxygen i hypolimnion-vannet. a depth of 8-10 m. The surface layer has good contact with the atmosphere and can thereby absorb some oxygen. In this upper layer, planktonic algae produce organic substances with oxygen as a by-product. If the nutrient content of the epilimnion is high for natural or man-made reasons, the result is a high production of organic compounds. A large part of this sinks into the colder hypolimnion, where bacteria break down the organic components. However, this process is only possible if there is oxygen in the hypolimnion water.

Hvis det er utilstrekkelig oxygen for at denne organiske ned-brytning skal finne sted, vil næringssalter diffundere ut i vannet fra sjøens bunnsediment, under sommerens stagnasjonsperiode. Under den følgende vårsirkulasjon vil disse næringssalter fordeles i hele vannmassen og blir derved tilgjengelig for en videre organisk prod-uksjon. Denne kontinuerlige produksjonsøkning av organiske bestanddeler gjør oxygenbalansen progressivt verre og verre, og sjøen har ingen mulighet for å stoppe denne utvikling uten ekstern hjelp. If there is insufficient oxygen for this organic decomposition to take place, nutrient salts will diffuse into the water from the bottom sediment of the sea, during the summer stagnation period. During the following spring circulation, these nutrient salts will be distributed throughout the water mass and thereby become available for further organic production. This continuous production increase of organic components makes the oxygen balance progressively worse and worse, and the sea has no way of stopping this development without external help.

En metode for å hjelpe sjøen ut av denne situasjon er å til-føre oxygenet til vannet. Oxygen skal tilføres det nedre, oxygen-forbrukende og oxygenfattige lag, hypolimnion. Det er derved viktig at hypolimnionvannet ikke blandes med det oxygenholdige overflate-vann, hvilket ville resultere i en total oxygenmangel i sjøen. One method to help the sea out of this situation is to add oxygen to the water. Oxygen must be supplied to the lower, oxygen-consuming and oxygen-poor layer, the hypolimnion. It is therefore important that the hypolimnion water does not mix with the oxygen-containing surface water, which would result in a total lack of oxygen in the sea.

Ifølge en tidligere foretatt metode for oxygen-anrikning av en sjø transporteres hypolimnion-vannet opp til overflaten ved hjelp av en mammutpumpe, hvor det etter at det har vært i kontakt med atmosfæren og tatt opp en del oxygen, føres tilbake til det opprinnelige dyp. According to an earlier method for oxygen enrichment of a sea, the hypolimnion water is transported to the surface using a mammoth pump, where, after it has been in contact with the atmosphere and taken up some oxygen, it is brought back to the original depth.

Denne kjente metode har den ulempe at det kreves en meget voluminøs og uhåndterlig utrustning. Mammutpumpen må f.eks. i det minste være 10 m høy for å gå gjennom epilimnionskiktet. This known method has the disadvantage that very bulky and unwieldy equipment is required. The mammoth pump must e.g. at least be 10 m high to pass through the epilimnion layer.

En annen ulempe som er forbundet med denne metode, er at vannet bringes i kontakt med luften under atmosfæretrykk, hvilket medfører en relativt lav oxygenoppløselighet. Another disadvantage associated with this method is that the water is brought into contact with air under atmospheric pressure, which results in a relatively low oxygen solubility.

Ifølge foreliggende oppfinnelse løses disse problemer ved at luftbehandlingen av vannet finner sted i selve hypolimnion, hvilket "betyr at oxygenet tilføres vannet under det herskende trykk i hypolimnion. Om f.eks. oxygenet tilføres vannet på et dyp av 2 0 m, er oxygenoppløseligheten i vannet ca. 3 ganger større enn ved overflaten. Fremgangsmåten ifølge oppfinnelsen medfører ytterligere at en utrustning som er meget mindre enn de tidligere beskrevne mammutpumper, kan anvendes. According to the present invention, these problems are solved by the air treatment of the water taking place in the hypolimnion itself, which "means that the oxygen is supplied to the water under the prevailing pressure in the hypolimnion. If, for example, the oxygen is supplied to the water at a depth of 20 m, the oxygen solubility in the water approximately 3 times larger than at the surface.The method according to the invention further means that an equipment which is much smaller than the previously described mammoth pumps can be used.

Oppfinnelsen angår følgelig en fremgangsmåte ved oxygenanrikning av vann i sjøer eller lignende som er tilstrekkelig dype til at vannet under sommerhalvåret oppdeles i to termiske skikt, et øvre, varmere skikt epilimnion, og et undse, koldere skikt hypolimnion, hvilken fremgangsmåte er kjennetegnet ved at en gasspute dannet i hypolimnion opprettholdes av oxygenholdig gass, at oxygenholdig gass innføres i hypolimnion slik at en lokal strøm av vann og gass tilveiebringes ved mammutpumpevirkning, at den i vannet ikke oppløste gass skilles fra vannstrømmen ved at denne oppfanges av gassputen og av denne bringes til å fortsette i en nedadrettet bane, hvorefter det oxygenanrikede vann ledes ut i hypolimnion og oppfanget gass i gassputen kontinuerlig avtappes fra gassputen gjennom et rør til atmosfæren slik at vannets termiske lagdeling ikke forstyrres. The invention therefore relates to a method for oxygen enrichment of water in lakes or the like which are sufficiently deep for the water during the summer months to be divided into two thermal layers, an upper, warmer layer epilimnion, and a lower, colder layer hypolimnion, which method is characterized by a gas cushion formed in the hypolimnion is maintained by oxygen-containing gas, that oxygen-containing gas is introduced into the hypolimnion so that a local flow of water and gas is provided by mammoth pumping action, that the gas not dissolved in the water is separated from the water flow by this being captured by the gas cushion and caused by this to continue in a downward trajectory, after which the oxygen-enriched water is led out into the hypolimnion and trapped gas in the gas cushion is continuously drained from the gas cushion through a pipe to the atmosphere so that the thermal stratification of the water is not disturbed.

Fremgangsmåten og apparatet ifølge oppfinnelsen beskrives i detalj med henvisning til tegningene. Fig. 1 illustrerer den termiske lagdeling av vannet i en dyp sjø i sommerens stagnasjons - periode. Temperaturen i det øvre skikt, epilimnion, varierer fra ca. 20° C ved overflaten og til 4°C ved et dyp på IO rn, og det undre skikt et, hypolimnion, har en konstant temperatur fra lo meters nivå og nedover. Fig. 2 illustrerer skjematisk vannrestaureringsmetoden ifølge oppfinnelsen. Fig. 3 viser et vertikalsnitt gjennom et vannluftningsaggregat ifølge oppfinnelsen. Fig. 4 viser et hori-sontalsnitt tatt langs linjen IV-IV i fig. 3- Det vertikale snittet ifølge fig. 3 er tatt langs linjen III-III i fig. 4- The method and apparatus according to the invention are described in detail with reference to the drawings. Fig. 1 illustrates the thermal stratification of the water in a deep sea during the summer stagnation period. The temperature in the upper layer, the epilimnion, varies from approx. 20° C at the surface and to 4° C at a depth of 10 m, and the lower layer, the hypolimnion, has a constant temperature from the lo meter level downwards. Fig. 2 schematically illustrates the water restoration method according to the invention. Fig. 3 shows a vertical section through a water aeration unit according to the invention. Fig. 4 shows a horizontal section taken along the line IV-IV in fig. 3- The vertical section according to fig. 3 is taken along the line III-III in fig. 4-

Ifølge den metode som er vist i fig. 2, innføres luft i hypolimnion gjennom rørledningen 10. Denne ledning avslutter ved den undre enden av et vertikalt anordnet rør 11, som er åpent i begge ender. Luften som strømmer ut i vannet fra ledningen 10, stiger opp i form av bobler gjennom røret 11 og danner derved en mammut - pumpe. Den øvre enden av røret 11 er dekket med et kuppellignende hus 12, hvis oppgave er å oppfange de oppstigende luftbobler. I husets 12 øvre del dannes derved en luftpute 13» hvis størrelse kontrolleres ved hjelp av en trykkfølsom strupeventil 14. Over-skuddsluft avtappes til atmosfæren gjennom ventilen 14 og en rør-ledning 15. Vannet oxygen-anrikes ved at det kommer i kontakt dels med de oppstigende luftbobler i røret 11 og dels med luftputen 13 According to the method shown in fig. 2, air is introduced into the hypolimnion through the pipeline 10. This pipeline terminates at the lower end of a vertically arranged pipe 11, which is open at both ends. The air that flows out into the water from the line 10 rises in the form of bubbles through the pipe 11 and thereby forms a mammoth pump. The upper end of the tube 11 is covered with a dome-like housing 12, whose task is to catch the rising air bubbles. In the upper part of the housing 12, an air cushion 13" is thereby formed, the size of which is controlled by means of a pressure-sensitive throttle valve 14. Excess air is drained to the atmosphere through the valve 14 and a pipe line 15. The water is oxygen-enriched by it coming into contact partly with the rising air bubbles in the tube 11 and partly with the air cushion 13

i huset 12. in the house 12.

Denne nye fremgangsmåte innebærer at vannet strømmer inn i røret 11, stiger oppover med luftboblene, passerer luftputen 13 og forlater til slutt huset. Det er av betydning at luftboblene forhindres fra å forlate huset sammen med det utstrømmende vannet fordi fritt oppstigende luftbobler vil forårsake ikke ønskede opp-strømninger i vannet, hvilket vil forstyrre den termiske lagdeling i vannet. This new method means that the water flows into the pipe 11, rises upwards with the air bubbles, passes the air cushion 13 and finally leaves the house. It is important that the air bubbles are prevented from leaving the house together with the flowing water because freely rising air bubbles will cause unwanted updrafts in the water, which will disturb the thermal stratification in the water.

Under henvisning til fig. 3 og 4 skal i det følgende et apparat for oxygen-anrikning av vann ifølge oppfinnelsen beskrives. Apparatet innbefatter et hus 21 som består av en øvre del 22, en mellomdel 23 og en underdel 24. Huset 21 er sirkelsymmetrisk, hvorved den øvre del 22 og mellomdelen 23 har hhv. formen av en kjegle og en avkortet kjegle. Underdelen 24 er sylindrisk og forsynt med tre radielle utløpsåpninger 25a-c. Underdelen 24 er videre forsynt med en bunn 26, i hvilken er anordnet et sentralt, sirkulært hull, gjennom hvilket oppgår en i huset aksielt rettet blandingskanal 27. Blandingskanalen 27 munner ut i sin nedre ende et stykke under husets bunn 26 og med sin øvre ende inne i huset 21, i høyde med dets mellomdel 23. With reference to fig. 3 and 4, an apparatus for oxygen enrichment of water according to the invention will be described below. The device includes a housing 21 which consists of an upper part 22, a middle part 23 and a lower part 24. The housing 21 is circularly symmetrical, whereby the upper part 22 and the middle part 23 respectively have the shape of a cone and a truncated cone. The lower part 24 is cylindrical and provided with three radial outlet openings 25a-c. The lower part 24 is further provided with a bottom 26, in which is arranged a central, circular hole, through which an axially directed mixing channel 27 is formed in the housing. The mixing channel 27 opens out at its lower end a little below the housing bottom 26 and with its upper end inside the housing 21, at the height of its middle part 23.

I blandingskanalens 27 nedre ende er anbrakt et ringformig gassmunnstykke 28 (se fig. 4) som via en slange 29 er forbundet med en trykkluftkilde (ikke vist). At the lower end of the mixing channel 27 is placed an annular gas nozzle 28 (see fig. 4) which is connected via a hose 29 to a source of compressed air (not shown).

Blandingskanalen 27 er festet i tre symmetrisk anordnede støtter 30a-c på husets 21 underdel 24 og ligger an mot tre likeledes symmetrisk plasserte styreanordninger 31a-c på husets 21 innside. Blandingskanalens 27 festning i støttene 30a-c muliggjør en viss aksiell forflytning av blandingskanalen 27 i forhold til huset 21. Dette oppnås ved at langsgående festejern 32a-c er festet på blandingskanalen 27 og forsynt med et antall hull gjennom hvilke blandingskanalen 27, ved hjelp av skrufeste, kan fikseres relativt i forhold til støttene 30a-c. Dette arrangement gjør det mulig å variere størrelsen av den ringformede spalte som dannes mellom blandingskanalens 27 øvre kant og den koniske innervegg i huset 21. Derved kan hastigheten av den nedadrettede vannstrøm i huset til-passes bl.a. til mengden av tilført luft og luftboblenes hastighet i vannet, slik at i det minste en større andel av luften forblir i huset. The mixing channel 27 is fixed in three symmetrically arranged supports 30a-c on the lower part 24 of the housing 21 and rests against three likewise symmetrically placed control devices 31a-c on the inside of the housing 21. The fastening of the mixing channel 27 in the supports 30a-c enables a certain axial movement of the mixing channel 27 in relation to the housing 21. This is achieved by longitudinal fastening irons 32a-c being attached to the mixing channel 27 and provided with a number of holes through which the mixing channel 27, by means of screw fastening, can be fixed relative to the supports 30a-c. This arrangement makes it possible to vary the size of the annular gap that is formed between the upper edge of the mixing channel 27 and the conical inner wall of the housing 21. Thereby, the speed of the downward water flow in the housing can be adjusted, among other things. to the amount of added air and the speed of the air bubbles in the water, so that at least a larger proportion of the air remains in the house.

Husets 21 øvre del 22 har form av en luftoppsamlende klokke The upper part 22 of the housing 21 has the shape of an air-collecting bell

og er forsynt med et luftehull 33 som kommuniserer med atmosfæren via gassavtapningsrør 34 og en variabel strupeventil 35. and is provided with an air hole 33 which communicates with the atmosphere via gas drainage pipe 34 and a variable throttle valve 35.

Til vannutløpsåpningene 25a-c i husets 21 nedre del 24 er anordnet vanndistribusjonskanaler 39a-c som er forsynt med luftoppsamlingskammere 36a-c. Disse består hver og en av en rørseksjon som er forsynt med en klokkelignende utvidelse på oversiden. Disse luftoppsamlingskammere 36a-c.kommuniserer med atmosfæren gjennom rør 37a-c, som er forsynt med strømningskontrollventilene 38a-c. Vanndistribusjonskanalene 39a-c kan bestå av tynnveggede plast- For the water outlet openings 25a-c in the lower part 24 of the housing 21, water distribution channels 39a-c are provided which are provided with air collection chambers 36a-c. These each consist of a tube section which is fitted with a bell-like extension on the upper side. These air collection chambers 36a-c communicate with the atmosphere through pipes 37a-c, which are provided with the flow control valves 38a-c. The water distribution channels 39a-c can consist of thin-walled plastic

rør, hvilket er fordelaktig på grunn av at de er billige, lette og letthåndterlige. tubes, which is advantageous because they are cheap, light and easy to handle.

Apparatet innbefatter også en stabiliseringsanordning dels The device also includes a stabilization device in part

i form av flytelegemer 40 og 41 som er forbundet med husets 21 in the form of floating bodies 40 and 41 which are connected to the housing's 21

øvre del 22 og dels i form av radielt rettede armer 42a-c på upper part 22 and partly in the form of radially directed arms 42a-c on

huset 21, hvilke via linjene 43a-c er forbundet med forankrings- the house 21, which via the lines 43a-c are connected to anchoring

blokken 44, som hviler på sjøbunnen. block 44, which rests on the seabed.

Apparatet som er vist i fig. 3 og 4, innbefatter ytterligere en sikkerhetsanordning i form av ventilluker 45 i husets 21 øvre del 22. Disse er forbundet via linen 46 med en på sjøbunnen hvilende vekt 47. The apparatus shown in fig. 3 and 4, further includes a safety device in the form of valve hatches 45 in the upper part 22 of the housing 21. These are connected via the line 46 to a weight 47 resting on the seabed.

Apparatet ifølge oppfinnelsen manøvreres enklest fra en båt, pram, flåte eller lignende på hvilken avluftningsventilene og trykk-luftskilden er plassert. Manøvreringsplattformen bør dessuten omfatte en heiseanordning med hvilken apparatet kan løftes opp eller senkes ned. Da manøvreringsplattformen ikke utgjør noen del av oppfinnelsen, er denne ikke vist på tegningene og ikke beskrevet i detalj. The device according to the invention is most easily maneuvered from a boat, barge, raft or the like on which the venting valves and the compressed air source are placed. The maneuvering platform should also include a lifting device with which the device can be raised or lowered. As the maneuvering platform does not form any part of the invention, this is not shown in the drawings and not described in detail.

Det ovenfor beskrevne apparat fungerer på følgende måte: The apparatus described above works in the following way:

For oxygen-anrikning av vannet i en dyp sjø nedsenkes anord-ningen i vannets nedre temperaturskikt, hypolimnion, på et dyp som er større enn 8 - IO ro. Apparatets rette høydenivå erholdes ved at det nedsenkes slik at forankringsblokken 44 og vekten 47 hviler på sjøbunnen. Flytelegemene 40 og 41 er dimensjonert for å bære hovedvekten av apparatets vekt, bortsett fra forankringsblokken 44 og vekten 47, hvilket medfører at disse holder apparatet i en opp-rettet tilstand. Lengden av linene 43a-c og 46 er derved avpasset slik at rørets 47 nedre ende befinner seg 2 - 3 m over bunnen. Denne avstand bør ikke gjøres mindre, idet det oppstår en risiko for at bunnslammet suges opp. For oxygen-enrichment of the water in a deep sea, the device is immersed in the water's lower temperature layer, hypolimnion, at a depth greater than 8 - 10°C. The correct height level of the apparatus is obtained by lowering it so that the anchoring block 44 and the weight 47 rest on the seabed. The floating bodies 40 and 41 are dimensioned to carry the main weight of the weight of the apparatus, apart from the anchoring block 44 and the weight 47, which means that these keep the apparatus in an upright state. The length of the lines 43a-c and 46 is thereby adjusted so that the lower end of the pipe 47 is located 2 - 3 m above the bottom. This distance should not be reduced, as there is a risk of the bottom mud being sucked up.

Apparatet begynner å arbeide når munnstykket 28 via slangen 29 tilføres trykkluft fra trykkluftkilden. Luften som forlater munnstykket 28, stiger i form av bobler opp gjennom blandingskanalen 27-og drar på denne måte med seg det omliggende vann. På denne måte dannes en mammutpumpe som suger inn vann ved blandingskanalens 27 nedre ende og leverer det samme med en viss oppadrettet hastighet inn i huset 21 ved rørets øvre ende. The device starts working when the nozzle 28 via the hose 29 is supplied with compressed air from the compressed air source. The air that leaves the nozzle 28 rises in the form of bubbles up through the mixing channel 27 and in this way drags the surrounding water with it. In this way, a mammoth pump is formed which sucks in water at the lower end of the mixing channel 27 and delivers the same at a certain upward speed into the housing 21 at the upper end of the pipe.

Når luftboblene forlater blandingskanalen 27, fortsetter de opp og samles til en luftpute øverst opp i husets 21 øvre del 22. Vannet tvinges av mottrykket fra luftputen til å snu om og strømme nedover When the air bubbles leave the mixing channel 27, they continue up and collect into an air cushion at the top in the upper part 22 of the housing 21. The water is forced by the back pressure from the air cushion to turn around and flow downwards

i huset 21 på blandingskanalens 27 utside samt videre ut gjennom ut-løpsåpningene 25a-c. Deretter passerer vannet gjennom luftoppsamlingskamrene 3 6a-c i hvilke eventuelle gjenværende luftbobler i vannet kan stige opp og samles i de klokkelignende utvidelser.Vannet ledes deretter ut til sjøens forskjellige deler gjennom vanndistribusjons--kanalene 393-0. Vannet har ved sin gjennomgang gjennom apparatet hatt kontakt med luft og derved tatt opp oxygen. in the housing 21 on the outside of the mixing channel 27 and further out through the outlet openings 25a-c. The water then passes through the air collection chambers 3 6a-c in which any remaining air bubbles in the water can rise and collect in the bell-like extensions. The water is then led out to the various parts of the lake through the water distribution channels 393-0. During its passage through the device, the water has come into contact with air and thereby taken up oxygen.

Den i husets 21 øvre del 22 oppsamlede oxygenfattige luft av-ledes suksessivt til atmosfæren gjennom utluftningsåpningen 33 og gassavtapningsrør 34. For at ikke røret 34 også skal fungere som en mammutpumpe, må strømningen gjennom denne rørledning begrenses. Dette oppnåes ved hjelp av strupeventilen 35- Denne innstilles slik at luftvolumet inne i huset blir så lite som mulig og at det holder seg i det vesentlige konstant. Dette er vesentlig fordi hvis mottrykket i røret 34 var for lite, skulle luften dra med seg vann og den termiske lagdeling i sjøen ville forstyrres. Skulle på den annen side mottrykket være for stort, vokser luftvolumet i huset 21 og kan bli så stort av vannsirkulasjonen delvis opphører, og delvis vil luftens løftekraft løfte hele apparatet opp mot overflaten . The oxygen-poor air collected in the upper part 22 of the housing 21 is successively diverted to the atmosphere through the ventilation opening 33 and gas drainage pipe 34. In order that the pipe 34 does not also function as a mammoth pump, the flow through this pipeline must be limited. This is achieved with the help of the throttle valve 35 - This is set so that the air volume inside the house is as small as possible and that it remains essentially constant. This is important because if the back pressure in the pipe 34 was too small, the air would drag water along with it and the thermal stratification in the sea would be disturbed. Should, on the other hand, the back pressure be too great, the air volume in the housing 21 grows and can become so large that the water circulation partly ceases, and partly the lifting force of the air will lift the whole apparatus up towards the surface.

Som en sikkerhet for at det sistnevnte tilfelle ikke skal inntreffe, vil ventillukene 45 i husets 21 øvre del 22 åpnes så fort vektens 47 hele tyngde påvirker linen 46. Når lukene 45 åpnes, slippes en stor luftmengde raskt ut av huset, hvorved løfte-kraften avtar og en oppstigning av apparatet unngåes. As a guarantee that the latter case will not occur, the valve hatches 45 in the upper part 22 of the housing 21 will be opened as soon as the entire weight of the weight 47 affects the line 46. When the hatches 45 are opened, a large amount of air is quickly released from the housing, whereby the lifting force decreases and an ascent of the device is avoided.

I luftoppsamlingskamrene 36a-c skjer en sekundær oppsamling av luftbobler fra vannet, dvs. en fraskillelse av den luft som eventuelt gjenstår i vannet etter at det har passert huset 21. Da små luftbobler har en mindre stigehastighet i vann enn store luftbobler, ville det kreves en meget liten strømningshastighet gjennom huset 21 for å skille ut samtlige luftbobler. En slik lav strøm-ningshastighet medfører at apparatet får en meget lav kapasitet. Dette unngåes ved den anordnede sekundære avluftning. Strømnings-hastigheten gjennom huset 21 velges dog slik at kun de meget små luftbobler dras med nedover. Den i luftoppsamlingskamrene 36a-c derved oppsamlede luft utslippes suksessivt til atmosfæren gjennom avluftningsledningene 37a-c og ventilene 38a-c, In the air collection chambers 36a-c, a secondary collection of air bubbles from the water takes place, i.e. a separation of the air that may remain in the water after it has passed the housing 21. As small air bubbles have a lower rise rate in water than large air bubbles, it would be required a very small flow rate through housing 21 to separate out all air bubbles. Such a low flow rate results in the device having a very low capacity. This is avoided by the arranged secondary venting. However, the flow speed through the housing 21 is chosen so that only the very small air bubbles are dragged downwards. The air thus collected in the air collection chambers 36a-c is released successively to the atmosphere through the vent lines 37a-c and the valves 38a-c,

Ved den ovenfor beskrevne utførelsesform av oppfinnelsen anvendes strupeventiler for å regulere luftvolumenes størrelse i huset 21 og i luftoppsamlingskamrene 36a-c, hvilke ventiler er be-regnet for manuell innstilling slik at ønskede luftvolumer erholdes. Disse ventilfunksjoner kan naturligvis automatiseres, eksempelvis ved hjelp av flottører som registrerer vann-nivået inne i huset 21, hhv. kamrene 36a-c, og at disse flottører påvirker ventiler i av-luftningsrørledningene. In the above-described embodiment of the invention, throttle valves are used to regulate the size of the air volume in the housing 21 and in the air collection chambers 36a-c, which valves are calculated for manual setting so that desired air volumes are obtained. These valve functions can of course be automated, for example by means of floats which register the water level inside the housing 21, respectively. the chambers 36a-c, and that these floats affect valves in the deaeration pipelines.

Ifølge en forenklet utførelsesform av oppfinnelsen kan apparatet utformes uten luftoppsamlingskammere i utløpsledningene. Istedet er strømningshastigheten i vannet blitt nedsatt ved en økning av den ringformede spalten gjennom det vertikale røret og husets innervegg, hvorved selv relativt små luftbobler forhindres fra å trekkes med i vannstrømmen. According to a simplified embodiment of the invention, the device can be designed without air collection chambers in the outlet lines. Instead, the flow rate in the water has been reduced by increasing the annular gap through the vertical pipe and the inner wall of the house, whereby even relatively small air bubbles are prevented from being drawn into the water flow.

Regulering av luftvolumets størrelse i huset 21 kan også automatiseres ved at et organ registrerer forholdet mellom hele apparatets vekt og den løftekraft som virker på apparatet i vannet og at dette styrer en ventil i avluftningsledningen 34- Denne ventil skal derved styres slik at den øker luftgjennomstrømningen i røret 34 når forholdet mellom vekten og løftekraften blir mindre enn en viss verdi, og redusere luftstrømmen når de nevnte forhold overstiger en annen høyere verdi. Regulation of the size of the air volume in the housing 21 can also be automated by an organ registering the relationship between the weight of the entire device and the lifting force acting on the device in the water and that this controls a valve in the vent line 34- This valve must thereby be controlled so that it increases the air flow in the tube 34 when the ratio between the weight and the lifting force becomes less than a certain value, and reduce the air flow when the said ratio exceeds another higher value.

Claims (9)

1. Fremgangsmåte ved oxygenanrikning av vann i sjoer eller lignende som er tilstrekkelig dype til at vannet under sommerhalvåret oppdeles i to termiske skikt, et ovre, varmere skikt epilimnion, og et undre, koldere skikt hypolimnion, karakterisert ved at en gasspute dannet i hypolimnion opprettholdes av oxygenholdig gass, at oxygenholdig gass innfores i hypolimnion slik at en lokal strom av vann og gass tilveiebringes ved mammutpumpevirkning, at den i vannet ikke opploste gass skilles fra vannstrdmmen ved at denne oppfanges av gassputen og av denne bringes til å fortsette i en nedadrettet bane, hvorefter det oxygenanrikede vann ledes ut i hypolimnion og oppfanget gass i gassputen kontinuerlig avtappes fra gassputen gjennom et ror til atmosfæren slik at vannets termiske lagdeling ikke forstyrres.1. Procedure for oxygen enrichment of water in lakes or the like that are sufficiently deep for the water during the summer months to be divided into two thermal layers, an upper, warmer layer epilimnion, and a lower, colder layer hypolimnion, characterized by the fact that a gas cushion formed in the hypolimnion is maintained of oxygen-containing gas, that oxygen-containing gas is introduced into the hypolimnion so that a local stream of water and gas is provided by mammoth pumping action, that the gas not dissolved in the water is separated from the water stream by this being captured by the gas cushion and caused by this to continue in a downward path , after which the oxygen-enriched water is led out into the hypolimnion and captured gas in the gas cushion is continuously drained from the gas cushion through a rudder to the atmosphere so that the thermal stratification of the water is not disturbed. 2. Fremgangsmåte ifolge krav 1, karakterisert ved at gassavtapningen til atmosfæren utfores slik at gassputens volum og trykk opprettholdes ved en på forhånd bestemt verdi.2. Method according to claim 1, characterized in that the gas withdrawal to the atmosphere is carried out so that the volume and pressure of the gas cushion is maintained at a predetermined value. 3. Fremgangsmåte ifolge krav 1, karakterisert ved at det oxygenanrikede vann bringes til å gjennomgå en sekundær gassadskillelse efter at vannstrommen har passert den nedadrettede bane.3. Method according to claim 1, characterized in that the oxygen-enriched water is caused to undergo a secondary gas separation after the water stream has passed the downward path. 4. Fremgangsmåte ifolge hvilket som helst av de foregående krav, karakterisert ved at den oxygenholdige gass er luft.4. Method according to any of the preceding claims, characterized in that the oxygen-containing gas is air. 5. Apparat for oxygenanrikning av vann i sjder eller lignende ved fremgangsmåten ifolge krav 1-4, karakterisert ved at det omfatter en hovedsakelig vertikalt rettet og i hypolimnion plasert blandingskana1 (27), et i hypolimnion plasert gassmunnstykke (28) for innforing av oxygenholdig gass i blandingskanalens nedre ende og som tilveiebringer en oppadrettet gass-vann-stromning gjennom kanalen, og et klokkelignende hus (21) plasert i hypolimnion ovenfor blandingskanalens ovre ende for adskillelse og oppsamling av ikke-opplost gass i vannet, hvilket hus er utstyrt dels med utldpsåpninger (25a - c) for oxygenanriket vann plasert ved et lavere nivå enn blandingskanalens ovre ende og dels et gass-avtapningsror (34) for evakuering av oppsamlet gass fra huset til atmosfæren uten at vannets termiske lagdeling forstyrres.5. Apparatus for oxygen enrichment of water in ponds or the like by the method according to claims 1-4, characterized in that it comprises a mainly vertically directed mixing trough1 (27) placed in the hypolimnion, a gas nozzle (28) placed in the hypolimnion for introducing oxygen-containing gas at the lower end of the mixing channel and which provides an upward gas-water flow through the channel, and a bell-like housing (21) placed in the hypolimnion above the upper end of the mixing channel for separation and collection of undissolved gas in the water, which housing is partly equipped with exhaust openings (25a - c) for oxygen-enriched water placed at a lower level than the upper end of the mixing channel and partly a gas drain pipe (34) for evacuating collected gas from the house to the atmosphere without disturbing the thermal stratification of the water. 6. Apparat ifolge krav 5, karakterisert ved en ventil (35) for kontroll av gassavtapningen fra huset slik at en gasspute av en på forhånd bestemt stdrrelse opprettholdes i huset.6. Apparatus according to claim 5, characterized by a valve (35) for controlling the gas withdrawal from the housing so that a gas cushion of a predetermined size is maintained in the housing. 7. Apparat ifolge krav 5 eller 6, karakterisert ved at der til husets vannutlopsåpninger (25a - c) er tilsluttet vanndistribusjonskanaler (39a - c) forsynt med luftoppsamlingskam-re (36a - c) for sekundær adskillelse av ikke-opplost gass i vannet, og ror (37a - c) med kontrollventiler (38a - c) for evakuering av gassen til atmosfæren.7. Apparatus according to claim 5 or 6, characterized in that there are water distribution channels (39a - c) connected to the house's water outlet openings (25a - c) provided with air collection chambers (36a - c) for secondary separation of undissolved gas in the water, and rudders (37a - c) with control valves (38a - c) for evacuating the gas to the atmosphere. 8. Apparat ifolge hvilket som helst av de foregående krav, karakterisert ved at huset utvider seg konisk nedover mot vannutlopsåpningene.8. Apparatus according to any one of the preceding claims, characterized in that the housing expands conically downwards towards the water outlet openings. 9. Apparat ifolge hvilket som helst av de foregående krav, karakterisert ved at gassmunnstykket (28) er ringfor-met og orientert hovedsakelig vinkelrett mot blandingskanalens (27) geometriske lengdeakse.9. Apparatus according to any one of the preceding claims, characterized in that the gas nozzle (28) is ring-shaped and oriented mainly perpendicular to the geometric longitudinal axis of the mixing channel (27).
NO192772A 1971-06-01 1972-05-31 NO134488C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE700271A SE352874B (en) 1971-06-01 1971-06-01
SE97272A SE360846C (en) 1972-01-28 1972-01-28

Publications (2)

Publication Number Publication Date
NO134488B true NO134488B (en) 1976-07-12
NO134488C NO134488C (en) 1976-10-20

Family

ID=26654195

Family Applications (1)

Application Number Title Priority Date Filing Date
NO192772A NO134488C (en) 1971-06-01 1972-05-31

Country Status (8)

Country Link
AT (1) AT313205B (en)
CA (1) CA963187A (en)
CH (1) CH536794A (en)
DE (1) DE2225976C3 (en)
FI (1) FI59081C (en)
FR (1) FR2140125B1 (en)
GB (1) GB1393028A (en)
NO (1) NO134488C (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2710109C2 (en) * 1976-06-18 1982-11-04 Industrial Research Institute, Tokyo Device for the enrichment of dissolved oxygen in water
GB2064970B (en) * 1979-12-13 1983-02-09 Venturator Ltd Device for the gasification of liquids
FR2473351A1 (en) * 1980-01-09 1981-07-17 Degremont Sa DEVICE FOR INTRODUCING GAS IN A LIQUID
EP0210296A1 (en) * 1985-08-01 1987-02-04 Klaus-Peter Dipl.-Phys. Schmidt-Kufeke Tubular aerator
FR2569575B1 (en) * 1984-09-03 1990-02-16 Air Liquide DEEP-WATER OXYGENATION PROCESS AND PLANT
DE3675632D1 (en) * 1985-05-07 1990-12-20 Fred Dipl Ing Petersen METHOD FOR INPUTING OXYGEN IN WATER AND DEVICE FOR IMPLEMENTING THE METHOD.
DE3931617A1 (en) * 1989-09-22 1991-04-04 Ieg Ind Engineering Gmbh ARRANGEMENT FOR CLEANING AND VENTILATION OF OPEN WATERS
EP0457261B1 (en) * 1990-05-16 1993-03-10 TEGEO Tegtmeyer Geophysik GmbH Apparatus for purification, for example of contaminated groundwater
FR2698867B1 (en) * 1992-12-04 1995-01-06 Carboxyque Francaise Oxygenation system for a body of water.
SE541852C2 (en) * 2017-09-04 2019-12-27 Wallenius Water Innovation Ab A system for providing a flow to a fluid, a tank comprising the system and a method
WO2020222655A1 (en) * 2019-04-29 2020-11-05 Searas As Device for transport and treatment of liquid

Also Published As

Publication number Publication date
GB1393028A (en) 1975-05-07
FR2140125A1 (en) 1973-01-12
CH536794A (en) 1973-05-15
DE2225976A1 (en) 1972-12-07
FI59081C (en) 1981-06-10
CA963187A (en) 1975-02-18
DE2225976B2 (en) 1977-11-10
FR2140125B1 (en) 1977-04-29
NO134488C (en) 1976-10-20
DE2225976C3 (en) 1980-09-04
FI59081B (en) 1981-02-27
AT313205B (en) 1974-02-11

Similar Documents

Publication Publication Date Title
US4060574A (en) Device for lake restoration by oxygen-enriching of the water
US4107240A (en) Method and device for lake restoration by oxygen-enriching of the water
NO134488B (en)
EP0028094B1 (en) Long vertical shaft bioreactor and method of protecting it against extreme surges of influent waste water
DK164723B (en) PROCEDURE AND SYSTEM FOR INCREASING OXYGEN CONTENT IN A WATER MASS WITH A RELATIVELY LOW OXYGEN CONTENT
NO743724L (en)
CN103195037A (en) Floating algae salvage device
RU2642095C1 (en) Combined irrigation system
NO161568B (en) VULCANIZED DISEASES AND USE OF THIS PREPARATION OF WHEEL TIRES.
NO811948L (en) UNDERWATER FOR OIL.
US3255576A (en) Mud degasser
NO20180928A1 (en) System for seawater circulation in fish farms
CN206212701U (en) A kind of batch production pipeline vegetable growing device system
NO161063B (en) PROCEDURE FOR CLEANING NATURAL GAS IN THE SEA AND APPARATUS FOR IMPLEMENTING THE PROCEDURE.
NO332887B1 (en) Mixing apparatus
NO20190561A1 (en) Device for multiple skimming
JP2022530270A (en) Equipment for liquid transfer and processing
US446051A (en) James a
CN205241274U (en) Get rid of device of aquatic haloform
NO325432B1 (en) Method and apparatus for adjusting gas content in water
US2105078A (en) Proportioning device
CN103828760A (en) Efficient aerator
NO315029B1 (en) Process and plant for dissolving gas in a liquid, and using the same
NO129248B (en)
US1281949A (en) Apparatus for raising sunken vessels.