NO133464B - - Google Patents

Download PDF

Info

Publication number
NO133464B
NO133464B NO3566/73A NO356673A NO133464B NO 133464 B NO133464 B NO 133464B NO 3566/73 A NO3566/73 A NO 3566/73A NO 356673 A NO356673 A NO 356673A NO 133464 B NO133464 B NO 133464B
Authority
NO
Norway
Prior art keywords
medium
flow
flanges
heat
heat exchange
Prior art date
Application number
NO3566/73A
Other languages
Norwegian (no)
Other versions
NO133464C (en
Inventor
O B Platell
Original Assignee
Saab Scania Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saab Scania Ab filed Critical Saab Scania Ab
Publication of NO133464B publication Critical patent/NO133464B/no
Publication of NO133464C publication Critical patent/NO133464C/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0266Particular core assemblies, e.g. having different orientations or having different geometric features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/029Other particular headers or end plates with increasing or decreasing cross-section, e.g. having conical shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details

Description

Den foreliggende oppfinnelse vedrorer en anordning ved varme- The present invention relates to a device for heating

veksler som har et av f ordelerrbr, ror og samling-sr.br oppbygget rorsystem,i hvilken anordning en væske,gass eller et medium som gjennomgår en faseomforming mellom væske— og gasstilstand,i det folg-ende benevnt det innesluttede mediet, er innrettet for å gjennom-strømme, samt mellom rorene gående og med disse forbundede remseformede flenser, Jhvilke atskilt av spalter sammen méd rorene danner minst en skiveformet varmeveksiingsvegg-, ~som er anordnet "for inne i -rorene å gjennomstrommes av det innesluttede mediet og utenfor rorene å gjénnomstrbmmes av et annet varmétransporterende medium, i fortsettelsen benevnt det ytre mediet. exchanger which has a pipe system made up of a distributor tube, tube and collecting tube, in which device a liquid, gas or a medium that undergoes a phase transformation between liquid and gas state, hereinafter referred to as the contained medium, is arranged to flow through, as well as running between the pipes and connected to these strip-shaped flanges, which, separated by slots, together with the pipes form at least one disk-shaped heat transfer wall, ~which is arranged "for inside the pipes to be flowed through by the enclosed medium and outside the pipes to be traversed by another heat-transporting medium, hereafter referred to as the external medium.

For å lette forståelsen av oppfinnelsen, skal her også forst all-ment beskrives de varmeveksler som i dag eksempelvis anvendes slik som kjblere i en automobils motorkjolesystem. Disse varmevekslers varmevekslingsvegg strekker seg kun mellom rorene og er som regel oppbygd med en relativt stor delning (noen millimeter) mellom flensene, hvilket for et gitt rom gir få flenser og dermed en relativt, liten varmeoverforingsflate på disse. For å få tilstrekkelig stor varmeoverfbrende flate, har flensene derfor blitt gjort relativt brede slik at en relativt lang gassvegg (4-5 cm) oppnås for det ytre mediet, hvilket resulterer i et betydelig trykkfall gjennom varmevekslingsveggen. In order to facilitate the understanding of the invention, the heat exchangers that are used today, for example, as cables in an automobile's engine cooling system, shall also be described here in general. The heat exchange wall of these heat exchangers only extends between the rudders and is usually built up with a relatively large gap (a few millimeters) between the flanges, which for a given room results in few flanges and thus a relatively small heat transfer surface on them. In order to obtain a sufficiently large heat transfer surface, the flanges have therefore been made relatively wide so that a relatively long gas wall (4-5 cm) is obtained for the outer medium, which results in a significant pressure drop through the heat exchange wall.

For i en viss grad å forbedre varmeoverfbringen ved flensoverflåtene, er flensene iblant forsynt med gjennombrutte tunger, som oker tur-bulensen hos det ytre mediet og dermed varmeoverfbringen mellom dette og flensene. Tungene oker imidlertid også det ytre mediets trykkfall, hvilket fjerner en stor del av gevinsten ved den okede varmeoverfbringen og bidrar til behovet av en effektkrevende vifte. Det forekommer også ofte at flensdelingen er ujevn eller at flensene ikke er parallelle med hverandre, hvilket også er til ulempe, ettersom, strbmningsfordelningen over varmeveksleren derved blir ujevn og den får de stbrste strbmningene nettopp hvor varmeoverfbringen er dårligst.. De relativt spredtliggende plasserte flensene medfbrer dog.at storreIsen. på rbrmantelflate pr. flensoverflate er slik at det.i en på denne måte oppbygd varmeveksler hersker balanse mellom de to medienes varmeoverfbringseyne. De bvrxge forutnevnte faktorene medvirker imidlertid til at som helhet varmeoverfbringen fra varmevekslerens utside til dens innside blir relativt dårlig^ Således har eksempelvis en på denne måte oppbygd moderne automobilkjbler i det rom som normalt står til rådighet for denne, en utilstrekkelig kjbleeffekt ved slike ytterluf t te mperaturer som eksempelvis forekommer i mer tempererte klimatiske soner. In order to improve the heat transfer at the flange surfaces to a certain extent, the flanges are sometimes provided with pierced tongues, which increase the turbulence of the outer medium and thus the heat transfer between this and the flanges. However, the tongues also increase the external medium's pressure drop, which removes a large part of the gain from the increased heat transfer and contributes to the need for a power-demanding fan. It also often happens that the flange distribution is uneven or that the flanges are not parallel to each other, which is also a disadvantage, as the flow distribution over the heat exchanger thereby becomes uneven and it receives the steepest flows precisely where the heat transfer is worst. The relatively widely spaced flanges lead to however.at storreIsen. on rbrmantel surface per flange surface is such that, in a heat exchanger constructed in this way, there is a balance between the heat transfer points of the two media. However, the above-mentioned factors contribute to the overall heat transfer from the outside of the heat exchanger to its inside being relatively poor^ Thus, for example, a modern car heater built in this way in the space that is normally available for it has an insufficient heating effect with such outside air temperatures that, for example, occur in more temperate climatic zones.

For å forsoke å forbedre en slik varmevekslers varmeoverfbringsevne på den ytre siden, er det blitt foreslått at varmevekslingsveggens flensdeling skal minskes slik at- flensoverflaten dermed bkes. Hvis-flensene derved gjores plane og slette, samt helt parallelle og gis en delning som er ^ o,7 mm,oppnås en fullt utviklet laminærstrbm-ning i spalten idet varmeoverfbringsverdien a mellom det ytre mediet og flensene står i omvendt proporsjon til spaltbredden. Velges spaltbredden til omkring o,5 mm, oppnås en varmeoverfbringsverdi a på varmevekslerens ytre side som er av samme stbrrelsesorden In order to try to improve the heat transfer capability of such a heat exchanger on the outer side, it has been proposed that the flange division of the heat exchange wall should be reduced so that the flange surface is thereby bent. If the flanges are thereby made flat and smooth, as well as completely parallel and given a pitch of ^ o.7 mm, a fully developed laminar flow is achieved in the gap, as the heat transfer value a between the outer medium and the flanges is in inverse proportion to the gap width. If the gap width is chosen to be around o.5 mm, a heat transfer value a is achieved on the outside of the heat exchanger which is of the same order of magnitude

som hos de ovenfor beskrevne kjente varmevekslerne med turbulent strbmning^ På grunn av de meget tett sittende flensene kan en slik varmeveksler gjbres med en dybde på kun ca. 5 mm på flensene as with the known heat exchangers with turbulent flow described above^ Due to the very close-fitting flanges, such a heat exchanger can be built with a depth of only approx. 5 mm on the flanges

for at samme totale flensoverflate som i de ovenfor beskrevne varmevekslerne skal oppnås. Varmeoverfbringen er dessuten hbyest ved spaltinnlbpskanten på flensen, hvorfor den gjennomsnittlige varmeoverfbringsverdien a pr. flensoverflåte blir stbrre jo smalere flensen er. Denne utfbrelse med en strbmningsvei for det ytre mediet på kun 5 mm, .sammen med "flensenes jevne utforming, medfbrer so that the same total flange surface as in the heat exchangers described above is to be achieved. Heat transfer is also highest at the gap inlet edge of the flange, which is why the average heat transfer value a per the narrower the flange, the narrower the flange surface becomes. This design, with a flow path for the outer medium of only 5 mm, together with the smooth design of the flanges, results in

at strbmningsmotstanden_på yttersiden blir mindre enn hos de inn-ledningsvis beskrevne varmevekslerne, til tross for at flensdelingen er så liten. Hvis det antas at spaltbredden minskes for en varmevekslingsvegg med uforandret varmeoverfbringsevne, minsker dens that the strain resistance_on the outside becomes smaller than with the heat exchangers described in the introduction, despite the fact that the flange division is so small. If it is assumed that the gap width decreases for a heat exchange wall with unchanged heat transfer capacity, its

-f lensf late i proporsjon til spaltbredden, ettersom -den overforte varmen stort sett -er proporsjonal til produktet av flensflaten og a -verdien.. Den tette flensdelingen medfbrer imidlertid at den varmeeffekt som på den ytre siden kan formidles -via den gjennom det store antallet flenser oppnådde flensflaten, blir så stor at den ikke.kan utnyttes fullt i varmevekslingsveggen, ettersom da varmeoverfbringsevnen mellom det innesluttede mediet og rbrveggene blir begrenset, det vil -si er betydelig mindre enn på utsiden mellom det ytre mediet og flensene. Dette beror dels på at rorenes varmeoverfbringsflate ikke strekker til og dels på -at rorene gir opphav til et trykkfall, som ±>remser det innesluttede mediets strømning ved den relativt hbye strbmningshastighet -som for effektivitetens skyld må råde i et kon-vensjonelt sir kulasjonsrbrsystem. -flange surface in proportion to the gap width, as -the transferred heat is largely proportional to the product of the flange surface and the a -value. the number of flanges achieved the flange surface becomes so large that it cannot be fully utilized in the heat exchange wall, as the heat transfer capability between the enclosed medium and the rib walls becomes limited, i.e. is significantly less than on the outside between the outer medium and the flanges. This is partly due to the fact that the heat transfer surface of the pipes does not extend to and partly to -that the pipes give rise to a pressure drop, which ±>reduces the flow of the contained medium at the relatively high flow rate -which, for the sake of efficiency, must prevail in a conventional circulation pipe system.

I USA-patent nr. 1.935.322 beskrives en varmeveksler av det i inn-ledningen nevnte ^slag, ved hvilken i den hensikt å oppnå en forbedret varmeoverfbringseffekt inne i roret, varmevekslingsveggens flenser også gjennomgår selve rorene. For konstruktivt å oppnå dette, er det i varmevekslingsveggenshorisontalt gående flenser nedpressét korrugeringer, som har koniske sidevegger samt en plan bunn ved de flenspartier hvor vertikalt orienterte ror skal fore-finnes. Rorenes vegger er derved dannet ved at korrugeringene er stablet i hverandre samt samménfbyet med bindemiddel. Korrugeringenes etter"sammenfbyningen inne i rorene eksisterende, ved hjelp av en spalte atskilte bunner er utformet hellende til den ene siden i flensens tverr-retning, idet hver annen bunn er hellet mot samme retning og de mellomliggende bunnene mot den andre retningen. Ved hver. bunns laveste del er det opptatt strbmningshull for det innesluttede mediet, som er anordnet for å komme inri i varmeveksler-<y>eggens ovre del og i siksak strbmme nedad i rorene ved at det be-,stryker bunnene, det vil si de gjennom rorene gående flenser. Den forbedrede varmeoverfbringseffekten som derved oppnås, er i patentet satt i relasjon til en varmevekslingsvegg som er oppbygd med likeledes tidligere nevnte store delning mellom flensene. Skulle imidlertid denne flensutforming i rorene anvendes sammen med en varmevekslingsvegg som har så smale spalter at laminærstromning oppstår gjennom disse, oppnås det avhengig av at spaltene så og si er kob-let i serie, et betydelig stort.trykkfall som medfbrer at det innesluttede mediets strbmningshastighet blir meget lav. Den tidligere beskrevne forskjellen i varmeeffektivitet mellom varmevekslerens In US patent no. 1,935,322, a heat exchanger of the type mentioned in the introduction is described, in which, in order to achieve an improved heat transfer effect inside the rudder, the flanges of the heat exchange wall also pass through the rudders themselves. In order to constructively achieve this, corrugations are pressed into the horizontally running flanges of the heat exchange wall, which have conical side walls and a flat bottom at the flange parts where vertically oriented rudders are to be found. The walls of the rudders are thereby formed by stacking the corrugations on top of each other and binding them together with a binder. After the joining of the corrugations inside the tubes, the bottoms, which are separated by a slot, are designed sloping to one side in the transverse direction of the flange, every other bottom being sloped towards the same direction and the intermediate bottoms towards the other direction. At each. the lowest part of the bottom is the occupied flow hole for the contained medium, which is arranged to enter the upper part of the heat exchanger egg and flow in a zigzag downwards into the tubes by coating the bottoms, i.e. through the tubes walking flanges. The improved heat transfer effect that is thereby achieved is put in the patent in relation to a heat exchange wall which is built up with the previously mentioned large separation between the flanges. However, should this flange design in the rudders be used together with a heat exchange wall which has such narrow slits that laminar flow occurs through these, depending on the fact that the slits are connected in series, a significantly large pressure drop is achieved which means that they t the contained medium's flow rate becomes very low. The previously described difference in heat efficiency between the heat exchanger's

ytre og indre side blir herved; stort sett bestående . outer and inner sides are hereby; mostly consisting of .

Et formål med den foreliggende oppfinnelse er ved avhjelpning av An object of the present invention is by remedying

ovennevnte ulemper, å frembringe en forbedret varmeveksler hvis varmevekslingsvegg på den ytre siden nettopp er utformet slik at det ytre mediet får laminær strbmning og hvor rorene på den indre^ siden har. gjennomgående flenser hvilke gjennomstrommes laminært av det innesluttede mediet på en slik måte at en for yttersiden, jevn-byrdig og fullt ut like god varmeoverfbringsevne oppnås. above-mentioned disadvantages, to produce an improved heat exchanger whose heat exchange wall on the outer side is precisely designed so that the outer medium gets laminar strbmning and where the tubes on the inner^ side have. continuous flanges which are laminarly flowed through by the enclosed medium in such a way that a uniform and fully equally good heat transfer capability is achieved on the outside.

Et annet formål med oppfinnelsen er å tilveiebringe en varmeveksler av karakteren motstrbmsveksler, som utmerkes av en særdeles lav strbmningsmotstand for det indre mediet. Another purpose of the invention is to provide a heat exchanger of the counter-flow type, which is characterized by a particularly low flow resistance for the internal medium.

Enda et formål med oppfinnelsen er å tilveiebringe en effektiv varmevekslingsvegg, i hvilken såvel rorene som de fugelasker, hvilke sammenholder varmevekslingsveggens komponenter, ikke behbver å ha noen primær varmeopptakende, varmeoverfbrende qg varmeavgivende funksjon og derfor således ikke behbver være tilvirket av varmeledende mate-.riale... Another purpose of the invention is to provide an efficient heat exchange wall, in which both the pipes and the joint spacers, which hold the heat exchange wall components together, do not need to have any primary heat absorbing, heat transferring and heat emitting function and therefore do not need to be made of heat conducting material. ...

Et annet formål med oppfinnelsen er å tilveiebringe en varmevekslingsvegg oppbygd av få ytterst enkle„ elementer innrettet for å gi en så noyaktig delning og så snevre toleranser meilom varmevekslingsveggens flenser at det ytre mediets stromning gjennom denne blir likeformet over hele varmevekslerens innlbpsflate. Another purpose of the invention is to provide a heat exchange wall made up of a few extremely simple elements designed to provide such a precise division and such narrow tolerances between the heat exchange wall's flanges that the flow of the external medium through this is uniformly shaped over the entire heat exchanger's inlet surface.

Ytterligere et formål med oppfinnelsen er å tilveiebringe en varmevekslingsvegg som er så tynn at, for tilveiebringelsen av en storre flensflate pr. det ytre mediets innlopsflate i varmeveksleren -og samtidig en senket ^trbmningsmotstand for det ytre mediet, flere slike vegger kan-plasseres siksak-formet inntil hverandre uten a-t altfor stor dei av innlopsflaten avskjermes med veggenes sidekanter. A further object of the invention is to provide a heat exchange wall which is so thin that, for the provision of a larger flange surface per the inlet surface of the external medium in the heat exchanger - and at the same time a lowered resistance to the external medium, several such walls can be placed in a zigzag shape next to each other without being too large, the inlet surface is shielded with the side edges of the walls.

Enda et formål med oppfinnel-sen jsr å tilveiebringe en varmevekslingsvegg hvis utformning er således beskaffen at en varmeoverfbrings-teknisk og stromningsteknisk optimering av varmevekslingsveggen samtidig lett kan tilveiebringes for-både det ytre og det innesluttede mediet. Dette oppnås ifolge -oppfinnelsen ved at rorene i tverrsnitts-retning, i en -retning som hovedsakelig er parallell med det ytre mediets stromningsretrning gjennom varmevekslingensveggen, er -gitt en innerdimensjon som overstiger flensenes bredde, -slik at det i hvert ror på veggens fremre og bakre side-, regnet i -det ytre mediets strbmningsretning.gjennom veggen, dannes en langsgående rordel, at den bakre rbrdelens -gjennomstrbmningsflate er gitt suksessiv -f lateminskning og den fremre rbrdelens gjennomstrbmningsflate en suksessiv flatebkning i det innesluttede mediets strbmningsretning, samt at det innesluttede mediet er innrettet for å komme inn i de i roret innesluttede spalter i varmevekslingsveggdelen fra den ene rordelen og etter gjennomgang av spaltene utstromme Another object of the invention is to provide a heat exchange wall whose design is such that a heat transfer technical and flow technical optimization of the heat exchange wall can be easily provided at the same time for both the outer and the enclosed medium. According to the invention, this is achieved in that the rudders in the cross-sectional direction, in a direction which is mainly parallel to the flow direction of the external medium through the heat exchange wall, are given an inner dimension that exceeds the width of the flanges, so that in each rudder on the front and rear side-, calculated in -the direction of flow of the outer medium. through the wall, a longitudinal tube part is formed, that the flow-through surface of the rear tube part is given a successive -surface reduction and the flow-through surface of the front tube part a successive surface bend in the direction of flow of the enclosed medium, and that the enclosed the medium is arranged to enter the slits enclosed in the rudder in the heat exchange wall part from one rudder part and, after passing through the slits, flow out

-i den andre rordelen. -in the second rudder section.

Ytterligere kjennetegn og fordeler ved -anordningen ifblge oppfinnelsen fremgår av etterfblgende detaljerte beskrivelse-av en utfor-elsesform av den samme, hvilken er tilsiktet å anvendes som kjoler, eksempelvis i et kjbretbys drivrnotorkj ble system. Beskrivelsen er gitt med henvisninger til vedlagte -tegninger. Figur 1 er et delvis snittperspektivbilde av en del av en varmevekslers .anordnet ror med -flenser, ifblge oppfinnelsen, tatt langs en linje I- I i figur 4 og vridd 9o° med urviseren. Figur 2 viser et froritriss av en varmeveksler som er forsynt-med anordningen -ifblge oppfinnelsen. Further characteristics and advantages of the device according to the invention appear from the following detailed description of an embodiment of the same, which is intended to be used as a dresser, for example in a city's drive-rotor system. The description is given with references to the attached drawings. Figure 1 is a partial sectional perspective view of a part of a heat exchanger with a flanged rudder, according to the invention, taken along a line I-I in Figure 4 and rotated 9o° clockwise. Figure 2 shows a schematic diagram of a heat exchanger which is provided - with the device - according to the invention.

Figur 3 er et bilde av samme varmeveksler sett ovenfra. Figure 3 is a picture of the same heat exchanger seen from above.

Figur 4 er et snitt gjennom hoen av nevnte varmevekslers ror og flenser tatt langsmed en linje IV - IV i figur 2'. Figur 5 illustrerer en måte for integrert å oppbygge anordningen ifdlge oppfinnelsen, blant annet ved hjelp av en spesiell flens-, bbyning. Figurene 6 og 7 viser noen varianter av nevnte flénsbbyning. Figurene 8 og 9 viser i et frontalriss og tverrsnitt en annen integrert....oppbygning av anordningen ifblge oppfinnelsen. Figur.lp er et sideriss av varmeveksleren ifblge oppfinnelsen langs retningen X - X i figur 3. På tegningen betegner 1 en kjbretbyskjbler som har ét sirkulasjpns-rbrsystem 2 for et innesluttet, på tegningene med"svarte piler angitt ,. me.dium 3. Dette rorsystem innbefatter i sin bvfe bakre del . et horisontalt orientert innlbpsror 4 samt i sin hedre fremre-del et.likeledes horisontalt gåénde utlbpsrbr 5.' Innlbps- og utlbps-: rorene er parallelt beliggende på avstand fra hverandre, regnet i et ytre, ,på tegningene med hvite piler angitt, mediums 6,strbmningsretning . fremfor kjbleren. Seks vertikalt orienterte", nedentil, til-lukkede fordelerrbr 7, 8, 9, hvilke hair en tvérrsnittsflate som suksessivt minsker i det innesluttede mediets- strbmningsretning, ;er med jevn delning relativt hverandre tilsluttet det horisontale bakre innlbpsrbret 4. Fem andre likeledes vertikalt gående opptil lukkede samlingsrbr lo, hvis tvérrsnittsflate suksessivt oker i det innesluttede, mediets strbmningsretning, ér med jevrt delning relativt hverandre tilsluttet det horisontale fremre utibpsrbret 5, slik at de se:tt .1 ytre mediets nevnte strbmningsretning står méllom f or-delerrbrene. Mellom de bakre vertikale fordeierrbrene 7, 8, 9 og de fremre vertikale samlingsrbrene lo er et stort antall horisont talt orienterte ror 11 anbrakt slik at de sammen med fordeler- og samlingsrbrene danner en av ti plane deler sammensatt, ovenfra sett i siksak fullstendig rbrstamme 12. Et meget stort antall vertikalt gående folietynne, av- et metall som har god varmeledningsevne til-virkede remseformede, flenser 13, atskilt av så smale spalter 14 at .brisket a -verdi oppnås for det ytre mediet 6, og derved også for det indre mediet 3, danner sammen med rorene en varmevekslingsvegg 15. Plensveggens remsformede flenser 13 er derved like lange -som de vertikale fordelerrbrene 7, 8, 9 og samlingsrbrene lo, samt strekker seg ubrutt også gjennom rorene 11, i hvilke de danner en varme-vekslingsdel_15 TL Rorene er derved ifblge oppfinnelsen i tverr-snittsretning, i en retning som hovedsakelig er parallell med det ytre mediets strbmningsretning gjennom flensveggen, gitt en -innerdimensjon L som overstiger flensenes 13 bredde F, slik at det i rorene på varmevekslerveggens 15 fremre respektivt bakre side dannes fra hverandre av flensene atskilte rbrdeler, en bakre 16 og en fremre 17. Det innesluttede -mediet 3 er anordnet for fra fordelerrbrene 7, 8 og 9 å strbmme .inn i rbrdelene 16 samt etter gjennomgang av varme-veks Ung sveggde lens 15 3? spalter 14 å strbmme ut til samlingsrbrene lo, via rbrdelene 17. Rorenes og flensenes midtplan er innrettet til ikke å sammenfalle, og derved danne en slik vinkel med hverandre, at den bakre rbrdelens 16 gjennomstrbmningsflate suksessivt minskes i det innesluttede mediets 3 strbmningsretning samtidig som den fremre -rbrdelens 17 strbmningsflate suksessivt bkes i tilsvarende grad. -Flensenes 13 gjennomgang gjennom rorene 11 krever selvf blgellg -en, integrert oppbygning av varmevekslingsveggens rbr og flenser. -Noen forslag -til en slik vises i figurene 5-9. I utf'dreisen ifblge figvir 5 er flensene 13 rder de skal gå gjennom rorene bbyd et fler-tall ganger slik at-de danner på hverandre lagte folder 18, hvilke dels tjenestegjbr som dist-anseelementer som gir fast bestemt spalt-"bredde og dels oppbygger den del av rbrveggen som er beliggende i spalten~14 mellom f lensene. Ved'at flensene fbyes~til hverandre i dette veggparti ved hjelp av sammenføyningsmidde!, f.eks./lim, danner de bbyde delene en sammenhengende midtre del 19 av rbrveggen. Rorets to av flensene atskilte rbrdeler 16, 17 dannes av to renneformede rbrveggdeler 2b, 21, som fbyes på samme måte til rorets midtre del 19 med sine mot -denne vendte rette kanter 22. I figurene 6 og 7 vises to ytterligere grunnleggende eksempler på de mangfoldige måter på -hvilke flensene kan bbyes for å danne den mellom flensene beliggende delen 19 av rbrveggen. I figur 6 er flensen 13 ved hver rbr-vegg utformet med en u-formet del 23 med to trinn, et smalere lengst ned bbyd trinn 24 og et ovenfor dette beliggende bredere trinn -25. De-således utformede delene hos nærliggende flenser plasseres i hverandre og sammenbindes med sammenfbyningsmiddel. I figur 7 er flensene Figure 4 is a section through the head of said heat exchanger's rudder and flanges taken along a line IV - IV in Figure 2'. Figure 5 illustrates a way of integrally building up the device according to the invention, among other things by means of a special flange construction. Figures 6 and 7 show some variants of the aforementioned flanged baying. Figures 8 and 9 show, in a frontal view and cross-section, another integrated structure of the device according to the invention. Figure 11 is a side view of the heat exchanger according to the invention along the direction X - X in Figure 3. In the drawing, 1 denotes a closed-circuit boiler which has a circulation system 2 for an enclosed medium 3 in the drawings with black arrows. This rudder system includes in its lower rear part a horizontally oriented inlet rudder 4 and in its upper front part a similarly horizontally running outlet rudder 5. Inlet and outlet pipes are parallel located at a distance from each other, calculated in an outer, on the drawings with white arrows indicated, direction of flow of medium 6, in front of the boiler. Six vertically oriented, below, closed distribution pipes 7, 8 . direction of flow, are, with equal division relative to each other, connected to the horizontal front extension bar 5, so that, as seen in 1, the aforementioned direction of flow of the outer medium is between the divider bars. Between the rear vertical distribution rods 7, 8, 9 and the front vertical collection rods 10, a large number of horizontally oriented rods 11 are placed so that together with the distribution and collection rods they form one of ten planar parts assembled, seen from above in a zigzag complete rod trunk 12 A very large number of vertically running foil-thin, strip-shaped flanges 13 made of a metal that has good thermal conductivity, separated by such narrow slits 14 that a brisk a value is obtained for the outer medium 6, and thereby also for the inner the medium 3 forms, together with the pipes, a heat exchange wall 15. The strip-shaped flanges 13 of the lawn wall are therefore the same length as the vertical distribution pipes 7, 8, 9 and the collection pipes, and also extend unbroken through the pipes 11, in which they form a heat exchange part_15 TL The pipes are therefore, according to the invention, in cross-sectional direction, in a direction which is mainly parallel to the direction of flow of the external medium through the flange wall, given an -inner dimension L which exceeds the width F of the flanges 13, so that in the pipes on the front and rear sides of the heat exchanger wall 15, separate pipe parts are formed, a rear 16 and a front 17, separated from each other by the flanges. The enclosed medium 3 is arranged so that from the distributor pipes 7, 8 and 9 strbmme .into the rbrparts 16 as well as after review of heat-vex Ung sweggde lance 15 3? slits 14 to flow out to the collecting ribs, via the tube parts 17. The middle planes of the tubes and flanges are arranged so as not to coincide, and thereby form such an angle with each other, that the flow surface of the rear tube part 16 is successively reduced in the flow direction of the contained medium 3 at the same time as the the front wheel part's 17 straining surface is successively bent to a corresponding degree. - The passage of the flanges 13 through the pipes 11 even requires an integrated construction of the pipes and flanges of the heat exchange wall. - Some suggestions - for such are shown in figures 5-9. In the exit according to fig. 5, the flanges 13 where they are to pass through the tubes are bent a number of times so that they form overlapping folds 18, which partly serve as distance elements that give a fixed gap width and partly builds up the part of the tube wall which is located in the gap 14 between the flanges. By connecting the flanges to each other in this wall section with the help of a joining agent, e.g./glue, the joined parts form a continuous central part 19 of The rudder's two flange-separated rbrparts 16, 17 are formed by two channel-shaped rbrwall parts 2b, 21, which are attached in the same way to the rudder's central part 19 with their opposite straight edges 22. Figures 6 and 7 show two further basic examples in the various ways in which the flanges can be bent to form the part 19 of the rib wall located between the flanges. In Figure 6, the flange 13 at each rib wall is designed with a U-shaped part 23 with two steps, a narrower furthest down is bent step 24 and one above them tte situated wider steps -25. The thus-designed parts of adjacent flanges are placed in each other and joined with joining agent. In figure 7 are the flanges

utfort med.en u-formet nedbbyning 26 som har bblgeformet rundede, noe koniske sider 27 hvilke sneppes i hverandre og sammenføyes. Begge bbyningsmåtene gir en.til sin størrelse nbyaktig bestemt spaltbredde.. Slik som ved utfpreisen ifblge figur 5 dannes i begge tilfeller de atskilte rbrdelene 16, 17 av rbrveggdelene 2o, 21. carried out with a u-shaped structure 26 which has bell-shaped rounded, somewhat conical sides 27 which are snapped into each other and joined. Both bending methods give a slit width that is precisely determined for its size. As with the output according to Figure 5, in both cases the separated tube parts 16, 17 are formed by the tube wall parts 20, 21.

I figurene 8 og 9 vises hvorledes flensen kan gå plan gjennom rorene som da eksempelvis sorrr her vises, er utfort av sammenfbyde ring-formede elementer 28, hvilke er lagt mellom flensene. Elementenes tykkelse i aksiell retning er hovedsakelig av samme størrelses-orden som spaltbredden 14, slik at de også tjenestegjør som dis-tanseelementer. Et sammenføyningsmidde1 sammenholder ringene og Figures 8 and 9 show how the flange can go flat through the rudders which, for example, as shown here, are made of joined ring-shaped elements 28, which are placed between the flanges. The thickness of the elements in the axial direction is mainly of the same order of magnitude as the gap width 14, so that they also serve as distance elements. A joining mite1 joins the rings and

.flensene. Ettersom flensene er så tynne at de har folietykkelse, .påvirkes sammenbindingsfugen 29 ikke av det trinn.som flensene gir opphav til i denne. Flensenes tykkelse "svelges" av fugen.. Anordningens, ifblge oppfinnelsen, funksjon skal -nå nærmere for-klares ved at det i sirkulasjonsrbrsystemet innesluttede mediet antas å .utgjbres av en oppvarmet væske som ved gjennomgang av den -beskrevne kjbretbyskjbleren skal pverfbre„sin varme til det ytre mediet. 6,- i . dette tilfelle luft. , Det innesluttede mediet kommer, inn i kjbretbyskjbleren i dens i kjblertoppen beliggende horisontale innlbpsrbret 4 og fordeles .vertikalt nedad over varmevekslingsveggen via fordelerrbrene. 7, 8 og 9. Ifra disse spres mediet.ut horisontalt i rorene 11 i hvilke det innkommer via den bakre rordelen, 16. Ved mediets strbmning gjennom spaltene 14 i varmevekslingsveggderen 15 T bestryker det flensene. 13 og avgir sin varme til disse hvoretter det avkjølte mediet strbmmer videre via rordelen 17 til samlingsrbrene lo. Gjennom disse ledes det innesluttede mediet videre vertikalt nedad ■til utlbpsrbret 5 gjennom hvilket det forlater kjbleren. Den varme -som.f lensene mottok i varmevekslingsveggdelen 15. T ledes av de ubrutte gjennom rørveggene gående flensene 13 utad til den utenfor rorene eksisterende varmevekslingsveggdelen 15 Y. I denne del, hvis spalter 14 gjennornstrommes av det, relativt det innesluttede mediet, kaldere gassformede ytre mediet 6 som der bestryker flensene 13,- overfores varmen til det ytre mediet, hvilket bortfbrer det. .the flanges. As the flanges are so thin that they have foil thickness, the connection joint 29 is not affected by the step which the flanges give rise to in this. The thickness of the flanges is "swallowed" by the joint. The function of the device, according to the invention, is now to be explained in more detail by the fact that the medium contained in the circulation tube system is assumed to be produced by a heated liquid which, when passing through the -described kybretbysbilder, must transfer its heat to the external medium. 6 in . in this case air. , The contained medium comes, into the kybretbyskjäbler in its i The top of the boiler is located in the horizontal intake pipes 4 and is distributed vertically downwards over the heat exchange wall via the distribution pipes. 7, 8 and 9. From these, the medium is spread out horizontally in the tubes 11 into which it enters via the rear tube part, 16. As the medium flows through the slits 14 in the heat exchange wall 15 T, it coats the flanges. 13 and emits its heat to these, after which the cooled medium flows on via the rudder part 17 to the collection tubes. Through these, the contained medium is guided further vertically downwards ■to outlet port 5 through which it leaves the boiler. The heat received by the flanges in the heat exchange wall part 15. T is led by the unbroken flanges 13 passing through the pipe walls outwards to the heat exchange wall part 15 Y existing outside the pipes. In this part, whose gaps 14 are recirculated by the, relative to the enclosed medium, colder gaseous the outer medium 6 which coats the flanges 13, the heat is transferred to the outer medium, which removes it.

Hvis det innesluttede mediet utgjbres av vann og det ytre av luft, er forholdet mellom deres a -verdier ca. 2o:l. Hvis det indre mediet utgjbres av kondensert vanndamp og det ytre av luft, er forholdet mellom a-verdiene enda-.storre. Den i rorene eksisterende varme— vekslingsveggdelens 15 T flensoverflate kan således være betydelig mindre enn den utenfor rorene eksisterende varmevekslingsveggdelens 15 Y flensoverflate for varmevekslerens indre side begrenser varmevekslingsveggens 15-varmevekslingsprestasjon. If the contained medium is made up of water and the outer one of air, the ratio between their a -values is approx. 2o:l. If the inner medium is made up of condensed water vapor and the outer one of air, the ratio between the a-values is even greater. The flange surface of the heat exchange wall part 15 T existing in the pipes can thus be significantly smaller than the flange surface of the heat exchange wall part 15 Y existing outside the pipes for the inner side of the heat exchanger limits the heat exchange wall 15 heat exchange performance.

For vann er vafmekapasiteten pr. volum ca. 4ooo ganger storre enn for luft, -hvilket jnedfbrer at det innesluttede mediets strbmning, det vil si volum pr. tidsenhet, gjennom varmevekslingsveggens spalter 14 kan være betydelig mindre enn det ytre mediets strbmning gjennom dens spalter uten at det innesluttede mediets varmekapasitetsstrbm-ning får noen begrensende innvirkning -på ovennevnte prestasjon. Her-med får også det innesluttede mediets spaltgjennomgangsst-rbmning laminær-karakter og ved at parallellstrbmning skjer gjennom spaltene langsmed rorenes -hele lengde en så helt uvanlig lav strbmningsmotstand a-t-.den praktisk talt kan sees bort fra. For water, the heating capacity per volume approx. 400 times greater than for air, -which means that the pressure of the contained medium, i.e. volume per unit of time, through the slots 14 of the heat exchange wall can be significantly less than the external medium's strain through its slits without the enclosed medium's heat capacity strain having any limiting effect on the above-mentioned performance. With this, the enclosed medium's slit-through flow also acquires a laminar character, and by the fact that parallel flow occurs through the slits along the entire length of the tubes, a flow resistance is so unusually low that it can practically be disregarded.

Ved at rbrdelenes 16 og 17 utstrekning i.det ytre -mediets strbmningsretning og "dermed -deres tvérrsnittsf late kan bkes uten at rorene nevneverdig påvirker det ytre mediets strbmningsmotstand ved varmevekslingsveggen, kan-det oppnås en lav strbmningsmotstand i rbrdelene for-det innesluttede mediet. By the fact that the extent of the pipe parts 16 and 17 in the direction of flow of the external medium and "thus their cross-sectional surface can be bent without the pipes significantly affecting the flow resistance of the external medium at the heat exchange wall, a low flow resistance can be achieved in the pipe parts for the enclosed medium.

Varmevekslingsveggen ifblge oppfinnelsen oppnår en effektiv mot-strbmskarakter ved at varmetransporten mellom mediene skjer i flensen hovedsakelig vinkelrett mot medienes innbyrdes motrettede strømnings— retninger. The heat exchange wall according to the invention achieves an effective counter-flow character in that the heat transport between the media takes place in the flange mainly perpendicular to the media's mutually opposed flow directions.

Ettersom flensene -ved at de også gjennomgår rorene, står i direkte varmeutbyttende kontakt med .såvel det ytre, som det innesluttede mediet og alene kan fullgjbre varmetransporten mellom mediene, behbver en således oppbygd varmevekslervegg ikke ha sine rbrdeler eller til og med hele ror og de fugelasker som sammenholder rorene As the flanges - by also passing through the pipes, are in direct heat-exchange contact with both the outside and the contained medium and alone can complete the heat transport between the media, a heat exchanger wall constructed in this way does not need its pipe parts or even entire pipes and the joint spacers that hold the rudders together

og flensene utfort av"-et materiale som primært har varmeopptakende, varmeoverfbrende og varme avgivende funksjon. Rorene såvel som innlbps-, fordeler-, samlings- og utlbpsrbrene kan eksempelvis være tilvirket av et plastmateriale. and the flanges are made of a material which primarily has a heat-absorbing, heat-transferring and heat-emitting function. The pipes as well as the intake, distributor, collection and outlet pipes can, for example, be made of a plastic material.

Ved,at såvel rordelen 16 som fordelerrbrene 7, 8 og 9 har en i det innesluttede mediets strbmningsretning minskende tverrsnittsflate og såvel: rordelen 17 som samlingsrbrene lo en okende tyerrsnitts- In that both the rudder part 16 and the distribution tubes 7, 8 and 9 have a decreasing cross-sectional area in the direction of flow of the contained medium and both: the rudder part 17 and the collecting tubes have an increasing cross-section

,flate .i nevnte strbmningsretning, blir strbmningsfordelingen til rorene 11.og. spaltene 14 meget jevn, hvorved kjbleren utnyttes optimalt. Ved varmevekslingsveggen ifblge oppfinnelsen kan for det innesluttede mediet eksempelvis en god optimering gjbres for produktene av a-verdien og. varmeoverfbrende flater, det vil si flensoverflaten, uten at det innesluttede mediets strbmningsmotstand går opp til.verdier som blir begrenset for varmevekslerens varmevekslingsprestasjon, kun ved å variere rorenes bredde, det vil si den i rorene, innesluttede flenslengden. , ,flat .in the aforementioned flow direction, the flow distribution to the rudders becomes 11. and. the slits 14 very evenly, thereby making optimal use of the comber. With the heat exchange wall according to the invention, for the contained medium, for example, a good optimization can be achieved for the products of the a value and. heat-transferring surfaces, i.e. the flange surface, without the flow resistance of the enclosed medium reaching values that are limited for the heat exchanger's heat exchange performance, only by varying the width of the tubes, i.e. the flange length enclosed in the tubes. ,

Den tynne varmevekslingsvegg som oppnås ved en.,oppbygning ifblge oppfinnelsen, av den samme, muliggj.br slik som tydeligst fremgår av figur-3. en.siksak-formet, skrått mot.det ytre mediets anstrbmnings-retning anordnet varmevekslingsvegg og dermed en betydelig forbkning av det ytre mediets effektive gjennomstrbmningsflater hvilket med- The thin heat exchange wall which is achieved by a construction according to the invention, of the same, is possible as is most clearly seen in figure-3. a zigzag-shaped heat exchange wall inclined towards the direction of the external medium's effort, and thus a significant bending of the external medium's effective flow surfaces, which

fbrer en lav strbmningsmot stand., .... provides a low flow resistance., ....

Selv- om:det ovenfor-er beskrevet -og på tegningene vist en utfbrelses-form og tillempning av oppfinnelsen,, er det tydelig at..oppfinnelsen ikke skal betraktes som begrenset til denne spesielle.utfbrelse, Although the above has been described and the drawings show an embodiment and application of the invention, it is clear that the invention should not be considered as limited to this particular embodiment.

men at oppfinnelsen omfatter likeledes enhver variasjon eller modi-fikasjon som innses av,fagmannen, og. faller innenfor.rammen av den i vedlagte patentkrav angitte oppfinnelsestanke., but that the invention also includes any variation or modification that is realized by the person skilled in the art, and. falls within the framework of the inventive idea stated in the attached patent claims.,

Claims (2)

1. Anordning,ved varmeveksler som har et av fordelerrbr (7, 8,1. Device, in the case of a heat exchanger that has one of the distribution boards (7, 8, 9), ror (11) og samlingsrbr (10) oppbygd rbrsystem (2), i hvilken anordning en væske, en gass eller et medium som gjennomgår en faseomforming mellom væske- og gasstilstand, i det fblgende benevnt det innesluttede mediet (3), er innrettet for å gjennom-strømme, samt gjennom og mellom rorene (11) gående og med disse forbundne remseformede flenser (13), hvilke atskilt av spalter (14), sammen med rorene danner minst en skiveformet varmevekslingsvegg (15) som er anordnet for inne i rorene å gjennom-strbmmes av det innesluttede mediet og utenfor rorene å gjennomstrommes av et annet varmetransporterende medium, i det etter-følgende benevnt det ytre mediet (6), karakterisert ved at rorene (11) i tverrsnittretning, i en retning som hovedsakelig er parallell med det ytre mediets (6) strbmningsretning gjennom varmevekslingsveggen (15) er gitt en innerdimensjon (L) som overstiger flensenes bredde (F), slik at det i hvert ror (11) på veggens bakre og fremre side i det ytre mediets strbmningsretning gjennom veggen, dannes en langsmed veggen gående rordel (16, 17) , at den bakre rbz-delens (16) gjennomstrbmningsflate er gitt en suksessiv flateminskning og den fremre rbrdelens (17) gjennomstrbmningsflate en suksessiv flatebkning, i det innesluttede mediets (3) strbmningsretning, samt at det innesluttede mediet (3) er innrettet for å komme inn i de i roret innesluttede spalter (14) i varmevekslingsveggdelen (15 T) fra den bakre rordelen (16) og etter gjennomgang av spaltene strbmme ut i den fremre rordelen (17). 9), tubes (11) and collecting tubes (10) made up tube system (2), in which device a liquid, a gas or a medium that undergoes a phase transformation between liquid and gas state, hereinafter referred to as the enclosed medium (3), is arranged to flow through, as well as through and between the rudders (11) running and connected to these strip-shaped flanges (13), which separated by slots (14), together with the rudders form at least one disk-shaped heat exchange wall (15) which is arranged for inside the tubes to be flowed through by the enclosed medium and outside the tubes to be flowed through by another heat-transporting medium, hereinafter referred to as the outer medium (6), characterized in that the tubes (11) in the cross-sectional direction, in a direction which mainly is parallel to the direction of flow of the outer medium (6) through the heat exchange wall (15) is given an inner dimension (L) that exceeds the width of the flanges (F), so that in each row (11) on the back and front side of the wall in the direction of flow of the outer medium through the wall, a tube part (16, 17) running along the wall is formed, such that the flow surface of the rear tube part (16) is given a successive decrease in area and the flow surface of the front tube part (17) a successive surface bend, in the direction of flow of the contained medium (3) , and that the contained medium (3) is arranged to enter the slots (14) enclosed in the rudder in the heat exchange wall part (15 T) from the rear rudder part (16) and, after passing through the slots, flow out into the front rudder part (17 ). 2. Anordning som angitt i krav 1, karakterisert ved at fordelerrbrenes (7, 8, 9) tvérrsnittsflate er gitt en suksessiv flateminskning, samt samlingsrbrenes (10) tverrsnittsflate er gitt en suksessiv flatebkning, begge i det innesluttede mediets (3) strbmningsretning.2. Device as stated in claim 1, characterized in that the cross-sectional surface of the distribution pipes (7, 8, 9) is given a successive reduction in area, and the cross-sectional surface of the collecting pipes (10) is given a successive surface bending, both in the direction of the flow of the contained medium (3).
NO3566/73A 1972-09-13 1973-09-12 NO133464C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE7211835A SE374429B (en) 1972-09-13 1972-09-13

Publications (2)

Publication Number Publication Date
NO133464B true NO133464B (en) 1976-01-26
NO133464C NO133464C (en) 1976-05-05

Family

ID=20294701

Family Applications (1)

Application Number Title Priority Date Filing Date
NO3566/73A NO133464C (en) 1972-09-13 1973-09-12

Country Status (8)

Country Link
US (1) US3835923A (en)
JP (1) JPS5216905B2 (en)
FI (1) FI54411C (en)
FR (1) FR2199104B1 (en)
GB (1) GB1421216A (en)
IT (1) IT994241B (en)
NO (1) NO133464C (en)
SE (1) SE374429B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL51674A (en) * 1976-03-23 1980-01-31 Maschf Augsburg Nuernberg Ag Dry cooling tower with heat exchanger
WO1980001104A1 (en) * 1978-11-24 1980-05-29 Caterpillar Tractor Co Heat exchanger having inclined tubes
EP0020369A1 (en) * 1978-11-24 1981-01-07 Caterpillar Tractor Co. Self purging heat exchanger
BR7909036A (en) * 1979-09-27 1981-08-25 Caterpillar Tractor Co APPLIANCE FOR ASSEMBLING THE TUBES OF A HEAT EXCHANGER
US4295521A (en) * 1979-09-27 1981-10-20 Caterpillar Tractor Co. Heat exchanger core mounting apparatus
SE445138B (en) * 1981-03-20 1986-06-02 Wirsbo Bruks Ab MIXTURES BETWEEN TWO MEDIA FOR THE CONDENSATION OF ANGES
US5287917A (en) * 1993-02-16 1994-02-22 Antonio Cannata Heat exchanger
AU1422297A (en) * 1995-12-14 1997-07-03 Karmazin Products Corporation Flat tube heat exchanger
US20050274489A1 (en) * 2004-06-10 2005-12-15 Brand Joseph H Heat exchange device and method
US7476993B2 (en) * 2006-04-28 2009-01-13 Pratt & Whitney Canada Corp. Method of making electric machine winding
US10480869B2 (en) * 2015-09-30 2019-11-19 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1508860A (en) * 1921-08-22 1924-09-16 Alexander T Stuart Radiator
USB473366I5 (en) * 1965-07-20
US3407876A (en) * 1966-10-17 1968-10-29 Westinghouse Electric Corp Heat exchangers having plate-type fins
SE356124B (en) * 1970-08-21 1973-05-14 K Oestbo

Also Published As

Publication number Publication date
FR2199104A1 (en) 1974-04-05
GB1421216A (en) 1976-01-14
NO133464C (en) 1976-05-05
SE374429B (en) 1975-03-03
DE2345853A1 (en) 1974-07-11
FI54411C (en) 1978-11-10
JPS4993946A (en) 1974-09-06
JPS5216905B2 (en) 1977-05-12
AU5996273A (en) 1975-03-06
US3835923A (en) 1974-09-17
IT994241B (en) 1975-10-20
FI54411B (en) 1978-07-31
DE2345853B2 (en) 1977-06-02
FR2199104B1 (en) 1978-01-13

Similar Documents

Publication Publication Date Title
US3111982A (en) Corrugated heat exchange structures
US4049048A (en) Finned tube bundle heat exchanger
NO133464B (en)
US4556105A (en) Parallel heat exchanger with interlocking plate arrangement
US20080257534A1 (en) Heat Exchanger
WO2016028878A1 (en) Low refrigerant charge microchannel heat exchanger
RU2019101427A (en) HEAT EXCHANGER CONTAINING A DEVICE FOR DISTRIBUTING A LIQUID-GAS MIXTURE
US3735811A (en) Heat exchanger
US3153446A (en) Heat exchanger
US10094619B2 (en) Heat exchanger having arcuately and linearly arranged heat exchange tubes
CN105135753A (en) Micro channel heat exchanger for heat pump air conditioner
US3223155A (en) Header construction for unit heater coil
ES409674A1 (en) Heat exchanger for two vapor media
CN211855020U (en) Heat exchange tube and heat exchanger with same
CN106969545A (en) Micro-channel heat exchanger and Teat pump boiler
GB2051333A (en) Heat exchanger
JP6377628B2 (en) Finned tube element, method for manufacturing the same, and heat exchanger provided with finned tube element
US3033536A (en) Radiator system
CN106931808A (en) Micro-channel heat exchanger and dehumidifier
JPS59104094A (en) Heat exchanger
CN206959637U (en) Heat exchanger and heat exchange module
GB672721A (en) Improvements in heat exchange apparatus, and elements therefor
CN112964111B (en) Heat exchange tube and heat exchanger with same
US1743785A (en) Heat exchanger
JPS63131993A (en) Heat exchanger