NO133410B - - Google Patents

Download PDF

Info

Publication number
NO133410B
NO133410B NO3680/72A NO368072A NO133410B NO 133410 B NO133410 B NO 133410B NO 3680/72 A NO3680/72 A NO 3680/72A NO 368072 A NO368072 A NO 368072A NO 133410 B NO133410 B NO 133410B
Authority
NO
Norway
Prior art keywords
electrolyte
fiber
strand
sleeve
vortex chamber
Prior art date
Application number
NO3680/72A
Other languages
Norwegian (no)
Other versions
NO133410C (en
Inventor
J Vetter
Original Assignee
Maschf Augsburg Nuernberg Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschf Augsburg Nuernberg Ag filed Critical Maschf Augsburg Nuernberg Ag
Publication of NO133410B publication Critical patent/NO133410B/no
Publication of NO133410C publication Critical patent/NO133410C/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires

Description

Foreliggende oppfinnelse angår en fremgangsmåte v/ed katodisk behandling au tynne, elektrisk ledende fiberstrenger henholdsvis -bunter au stor lengde. The present invention relates to a method for cathodic treatment of thin, electrically conductive fiber strands or long bundles.

Ved de hittil kjente fremgangsmåter ued galuanisering In the hitherto known methods without galuanisation

ble fiberstrengen trukket gjennom en med elektrolyttuæske fylt beholder. Denne fremgangsmåte uiste seg imidlertid bare til-fredsstillende når man stilte beskjedne krau til produktet, da den førte til lokal nedsettelse au elektrolyttens utladningsdyktige ioner samt til ujeun metallutskillelse på enkelte tråd-ers omkrets (dersom strengen besto au flere enkelttråder ) . Til dette kommer også den vanskelighet ued anvendelse av fiberbunter som streng at de ytre tråder i bunten virker elektrisk avskjerm-ende på de tråder som befinner seg i kjernen - i overensstemmelse med virkningen av det Faraday'ske bur. the fiber strand was pulled through a container filled with electrolyte solution. However, this method only proved satisfactory when modest demands were placed on the product, as it led to a local reduction in the electrolyte's dischargeable ions as well as to uneven metal deposition on the circumference of individual wires (if the strand consisted of several individual wires). Added to this is the difficulty with the use of fiber bundles as string, that the outer strands in the bundle act as an electrical shield on the strands located in the core - in accordance with the effect of the Faraday cage.

En fremgangsmåte er også kjent (se DT-OS 1 112 367 ), . ved hvilken fiberstrengen etter å være ført gjennom en med elektrolyttvæske fylt beholder, hvoretter strengen ble ført videre inn i en ved bunnen av førstnevnte beholder anbragt behandlingsbe-holder som likeledes var fylt med elektrolyttvæske, strengen bie ført motsatt den ovenfra og nedad rettede bevegelsesretning skrått nedenfra og påsprøytet elektrolyttstråler. Fiberstrengen blir riktignok alltid påsprøytet frisk elektrolytt, således at den lokale nedsettelse av utladningsdyktige joner i elektrolytten ble unngått, mén heller ikke denne fremgangsmåte egner seg til galvanisk behandling av fiberstrenger som er satt sammen av mange enkelttråder, fordi den ovenfor neunte avskjermningsvirk-ning bevirket av de ytre tråder i bunten fremdeles var tilstede, således at de indre tråder ikke i tilstrekkelig grad ble utsatt for elektrolyttens joner, idet hele strengen når det gjelder den innbyrdes beliggenhet au de enkelte tråder, forble uforandret under hele galvaniseringsprosessen. A method is also known (see DT-OS 1 112 367 ), . whereby the fiber strand, after having been led through a container filled with electrolyte liquid, after which the strand was further led into a treatment container placed at the bottom of the first-mentioned container which was also filled with electrolyte liquid, the strand was led opposite the direction of movement directed from above and downwards obliquely from below and sprayed electrolyte jets. The fiber strand is, of course, always sprayed with fresh electrolyte, so that the local reduction of discharge-capable ions in the electrolyte was avoided, but this method is also not suitable for galvanic treatment of fiber strands that are composed of many individual strands, because the above-mentioned shielding effect caused by the outer wires in the bundle were still present, so that the inner wires were not sufficiently exposed to the ions of the electrolyte, as the entire strand, in terms of the mutual location of the individual wires, remained unchanged during the entire galvanizing process.

For å kunne galvanisere denslags fiberbunter (som kan bestå av inntil ca. 10 000 tynne enkeltfibre), har man hittil forsøkt å løse snoingen, således at de enkelte fibre eller tråder kommer til å ligge stort sett ved siden av hverandre i det elek-trolytiske bad (se R.V. Sara: "Fabrication and properties of graphitefiber, nickel-matrix composites", 14th National Sampe Symposium November 1968, Union Carbide Corp. Carbon Products Division). Denne fremgangsmåte har imidlertid også vist mangler, hvoriblant skal nevnes en mekanisk beskadigelse av de enkelte fibre, en lokal forringelse av antallet av elektrolyttens ut — ladningsdyktige ioner, samt en uregelmessig metallutskillélse på den enkelte fibre eller tråder. In order to be able to galvanize such fiber bundles (which can consist of up to approx. 10,000 thin individual fibres), attempts have so far been made to resolve the twisting, so that the individual fibers or threads will lie mostly next to each other in the electrolytic bath (see R.V. Sara: "Fabrication and properties of graphite fiber, nickel-matrix composites", 14th National Sampe Symposium November 1968, Union Carbide Corp. Carbon Products Division). However, this method has also shown shortcomings, among which should be mentioned a mechanical damage to the individual fibres, a local deterioration of the number of the electrolyte's chargeable ions, as well as an irregular metal excretion on the individual fibers or threads.

Hensikten med oppfinnelsen er å skaffe en fremgangsmåte ved samt en innretning for overtrekning henholdsvis behandling av en tynn elektrisk ledende fiberstreng hhv. -bunt med praktisk talt uendelig lengde, ved hvilken de ovenfor nevnte ulemper i stor grad unngås. På alle de enkelte fibre i bunten skal der avsettes et tettest og jevnest mulig overtrekk av metall fra elektrolytten uten at det er nødvendig med noen mekanisk behandling (løsing av snoingen) og uten at man behøver å frykte noen beskadigelse av de enkelte fibre. Fremgangsmåten skal ennvidere kunne gjennomføres i en eneste arbeidsgang i en enklest mulig innretning for å sikre en størst mulig grad av automasjon. The purpose of the invention is to provide a method and a device for coating or treating a thin electrically conductive fiber strand or -bundle of practically infinite length, whereby the above-mentioned disadvantages are largely avoided. On all the individual fibers in the bundle, the densest and most even coating of metal from the electrolyte must be deposited without the need for any mechanical treatment (untwisting) and without the need to fear any damage to the individual fibers. The procedure must also be able to be carried out in a single work step in the simplest possible device to ensure the greatest possible degree of automation.

I henhold til oppfinnelsen løses oppgaven ved at fiberstrengen trekkes gjennom et med en anode utstyrt.hvirvelkammer, således at strengen spres ut i vifteform ved hjelp av en kontinuerlig tilført elektrolyttstråle som på i og for seg kjent måte sprøytes inn ved hjelp av dyser. Derved oppnår man uten å måtte foreta en mekanisk løsing av snoingen at de enkelte sammentvundne strenger, ved hjelp av den radialt innad mot fiberstrengen rettede innsprøytning i et hvirvelkammer og en hvirvelbevegelse av elektroly tt væsken at denne væske sprer seg ut på fiberstrengen (som er koblet som elektrode) som løper gjennom hvirvelkammeret og består av mange små enkelttråder, således at alle de enkelte tråder vil bli jevnt fuktet med elektrolytt og dermed få en jevn galvanisk påføring. Anoden er anordnet i det indre av hvirvelkammeret. Da elektrolyttstrålen ved å føres forbi anoden sam-tidig blir en strømleder, finner der på alle de steder som nås av strålen, sted en metallavsetning. Elektrolytten når fortrinns-vis også frem til fibrene i buntens kjerne uten at de utenomlig-gende fibre vil virke avskjermande. Utspredingen av fiberstrengen ved hjelp av elektrolyttstrålehvirvelen sikrer en statisk jevn, optimal avsetning. Tilførselen av frisk elektrolytt hindrer videre at der finner sted en lokal forringelse av antallet utladningsdyktige ioner. En særlig fordel ved fremgangsmåten ifølge oppfinnelsen er også at en hvilken som helst elektrolyttvæske kan finne anvendelse (f.eks. alkalisk eller sur Cu-elektroly tt,' Ni-sulfamat etc.). According to the invention, the task is solved by pulling the fiber strand through a vortex chamber equipped with an anode, so that the strand is spread out in a fan shape by means of a continuously supplied electrolyte jet which is injected in a manner known per se by means of nozzles. Thereby, without having to perform a mechanical release of the twist, it is achieved that the individual twisted strands, by means of the injection directed radially inward towards the fiber strand into a vortex chamber and a vortex movement of the electrolyte liquid, that this liquid spreads out onto the fiber strand (which is connected as an electrode) which runs through the vortex chamber and consists of many small individual wires, so that all the individual wires will be evenly moistened with electrolyte and thus receive an even galvanic application. The anode is arranged in the interior of the vortex chamber. As the electrolyte jet, by passing past the anode, simultaneously becomes a current conductor, a metal deposit takes place in all the places reached by the jet. The electrolyte also preferably reaches the fibers in the core of the bundle without the outer fibers acting as a shield. The spreading of the fiber strand by means of the electrolyte jet vortex ensures a statically uniform, optimal deposition. The supply of fresh electrolyte further prevents a local deterioration in the number of ions capable of discharge. A particular advantage of the method according to the invention is also that any electrolyte liquid can be used (e.g. alkaline or acidic Cu electrolyte, Ni-sulfamate, etc.).

Innretningen for utførelse av fremgangsmåten består ifølge den videre oppfinnelse av et elektrisk ikke-ledende materiale bestående hvirvelkammer med et innvendig ringrom som er begrenset av en hylse og som opptar en ringformet anode og i hvilket ringrom elektrolytbtilførselsledningen munner ut. The device for carrying out the method consists, according to the further invention, of an electrically non-conductive material consisting of a vortex chamber with an internal annulus which is limited by a sleeve and which occupies an annular anode and into which annulus the electrolyte supply line opens.

For å oppnå en god hvirvelvirkning av elektrolyttstrålen er der. i hylsens mantel anordnet radialt rettede slisser (dyser) som forløper i det vesentlige i hylsens lengderetning og er jevnt fordelt over dennes omkrets. To achieve a good swirl effect of the electrolyte jet is there. radially directed slits (nozzles) arranged in the casing of the sleeve which run essentially in the longitudinal direction of the sleeve and are evenly distributed over its circumference.

For tilførsel av strøm til fiberstrengen som skal galvan-iseres i hvirvelkammeret, er der hensiktsmessig bak hvirvelkammeret anordnet en valse, over hvilken den galvaniserte fiberstreng føres. Innretningen utmerker seg ved en enkel og billig konstruksjon. Dysene, gjennom hvilke elektrolyttvæsken trer ut fra ringrommet til fiberstrengen, kan være utformet som radialt rettede slisser. Deres form må imidlertid innebære sikkerhet for at man oppnår den nødvendige gjennomhvirvling av elektrolyttvæsken og spredning av elektrolyttvæsken som sprøytes på fiberstrengen. En bevegelse av dysene samt en pulsering av elektrolytten kan i tilfelle bringe ytterligere fordeler. An-vendelsen av innretningen ifølge oppfinnelsen er ikke begrenset til galvanisering av fiberstrenger, idet den f.eks. også kan anvendes ved elektrolytisk etsing eller spyling av fiberbunter. For the supply of current to the fiber strand to be galvanized in the vortex chamber, a roller is suitably arranged behind the vortex chamber, over which the galvanized fiber strand is guided. The device is distinguished by a simple and inexpensive construction. The nozzles, through which the electrolyte liquid emerges from the annulus to the fiber strand, can be designed as radially directed slits. Their shape must, however, ensure that the necessary swirling through of the electrolyte liquid and spreading of the electrolyte liquid that is sprayed onto the fiber strand is achieved. A movement of the nozzles as well as a pulsation of the electrolyte can in this case bring further advantages. The use of the device according to the invention is not limited to galvanizing fiber strands, as it e.g. can also be used for electrolytic etching or flushing of fiber bundles.

Oppfinnelsen skal forklares i forbindelse med et utførel-seseksempel som er gjengitt på tegningene, huis fig. 1 v/iser skjematisk en innretning for utførelse au oppfinnelsen, og fig. The invention will be explained in connection with an example of execution which is reproduced in the drawings, huis fig. 1 schematically shows a device for carrying out the invention, and fig.

2 viser et hvirvelkammer. 2 shows a vortex chamber.

Fra en spole 1 vikles der av en fiberstreng 2 som kan bestå av ca. 10 000 enkelte karbonfibertråder. Denne streng føres i aksial retning gjennom et hvirvelkammer 3 og over en valse 4 til en oppviklingsspole 5. • I hvirveikammerets 3 ringrom 6 (hvirvelkammeret vises særskilt på fig. 2) er der anordnet en ringformet anode 7 som over en elektrisk ledning 8 med et amperemeter A er forbundet med en strømkilde 9, hvis spenning kan avlese på et voltmeter V. Ringrommet 6 er ennvidere forbundet med et tilførselsrør 10, gjennom hvilket elektrolytten E ved hjelp av en pumpe 11 tilføres fra en forrådsbeholder 12 gjennom dysene 13 mot fiberstrengen 2. Den overflødige elektrolyttvæske som renner bort fra fiberstrengen, drypper ned i forråds-beholderen. Etter at fiberstrengen 2 er påført et overtrekk i hvirvelkammeret 3, føres den over valsen 4 som over en ledning 14 er forbundet med strømkildens 9 katode. Den galvaniserte fiberstreng føres etter en (ikke vist) tørking til oppviklings-spolen 5 i pilens retning. From a spool 1, a fiber strand 2 is wound, which can consist of approx. 10,000 individual carbon fiber threads. This string is guided in the axial direction through a vortex chamber 3 and over a roller 4 to a winding coil 5. • In the vortex chamber 3's annulus 6 (the vortex chamber is shown separately in Fig. 2) there is arranged an annular anode 7 which over an electric wire 8 with a ammeter A is connected to a current source 9, the voltage of which can be read on a voltmeter V. The annular space 6 is further connected to a supply pipe 10, through which the electrolyte E is supplied by means of a pump 11 from a storage container 12 through the nozzles 13 towards the fiber strand 2. The excess electrolyte liquid that flows away from the fiber strand drips into the storage container. After the fiber strand 2 has been coated in the vortex chamber 3, it is passed over the roller 4 which is connected via a line 14 to the cathode of the current source 9. After drying (not shown), the galvanized fiber strand is fed to the winding coil 5 in the direction of the arrow.

Hvirvelkammeret 3 består ifølge fig. 2 i det vesentlige The vortex chamber 3 consists according to fig. 2 essentially

av to innbyrdes forbundne husdeler 15 og 16 av ikke-ledende materiale og begrenser ringrommet 6. Husdelen 15 har form av en skive, i hvis midte der rager opp en hylse 15a, hvis senterakse er betegnet med A'. Denne hylses mantel har seks langs omkretsen jevnt fordelte dyser 13 som forløper akseparallelt etter en del av en sinuslinje. Dens. på aksen A' projiserte lengde har en høyde som omtrent tilsvarer anodens 7 høyde. Dysenes form kan imidlertid være vilkårlig og kan f.eks. bestå av boringer eller slisser av egnet form, idet dog forutsetningen er at fiberstrengen som beveger seg langs aksen A', over hele sin omkrets blir jevnt påvirket av den turbulente elektrolyttstråle og derved spredt ut til viftelignende form. of two interconnected housing parts 15 and 16 of non-conductive material and limit the annular space 6. The housing part 15 has the shape of a disk, in the middle of which a sleeve 15a protrudes, whose central axis is denoted by A'. The mantle of this sleeve has six evenly distributed nozzles 13 along the circumference which run parallel to the axis along part of a sinusoidal line. Its. on the axis A' projected length has a height which roughly corresponds to the height of the anode 7. However, the shape of the nozzles can be arbitrary and can e.g. consist of bores or slits of a suitable shape, the assumption being, however, that the fiber strand which moves along the axis A', over its entire circumference is uniformly affected by the turbulent electrolyte jet and thereby spread out into a fan-like shape.

Den ringformede anode 7 såvel som den annen husdels 16 veggdel hviler mot den skiveformede husdel 15. Berøringsflat-ene mellom de to husdeler 15 og 16 er utformet med tetninger 17 og 18 for tetning au ringrommet 6. Husdelen 16 har ennuidere boringer 10' og 19 for tilførselsledningen 10 for elektrolytt samt for anodeledningen 8. Boringene 20 opptar ikke uiste spenn-skruer som holder de to husdeler sammen. The ring-shaped anode 7 as well as the wall part of the second housing part 16 rests against the disk-shaped housing part 15. The contact surfaces between the two housing parts 15 and 16 are designed with seals 17 and 18 for sealing in the annular space 6. The housing part 16 has hollow bores 10' and 19 for the supply line 10 for electrolyte as well as for the anode line 8. The bores 20 do not accommodate the tension screws that hold the two housing parts together.

Innenfor oppfinnelsens ramme kan hvirvelkammeret også utføres på forskjellige måter, særlig gjelder dette dysene, ued hjelp au hvilke utspredningen av fiberstrengen skjer med elektroly ttstrålene. Således kan dysene f.eks. være anordnet be-vegelige, deres tverrsnitt kan være variabelt og den ringformede anode kan være innstillbar langs omkretsen under driften. Within the scope of the invention, the swirl chamber can also be made in different ways, this particularly applies to the nozzles, with the help of which the spreading of the fiber strand takes place with the electrolyte jets. Thus, the nozzles can e.g. be arranged to be movable, their cross-section can be variable and the ring-shaped anode can be adjustable along the circumference during operation.

Claims (4)

1. Fremgangsmåte ved katodisk behandling av tynne, elektrisk ledende fiberstrenger henholdsvis -bunter av stor lengde,karakterisert vedat fiberstrengen trekkes gjennom et med en anode utstyrt hvirvelkammer, således at strengen spres ut i vifteform ved hjelp av en kontinuerlig eller diskontinuer-lig elektrolyttstråle som på i og for seg kjent måte sprøytes inn ved hjelp au dyser.1. Method for cathodic treatment of thin, electrically conductive fiber strands or long bundles, characterized in that the fiber strand is pulled through a vortex chamber equipped with an anode, so that the strand is spread out in a fan shape by means of a continuous or discontinuous electrolyte jet which on in a manner known per se is injected using au nozzles. 2. Innretning for utførelse av fremgangsmåten i henhold til krav 1,karakterisert vedat et av elektrisk ikke-ledende materiale bestående hvirvelkammer (3) med et innvendig ringrom (6) som er begrenset av en hylse (15a) og som opptar en ringformet anode (7) og i hvilket ringrom elektrolytt-tilførselsledningen (10) munner ut.2. Device for carrying out the method according to claim 1, characterized in that a vortex chamber (3) consisting of electrically non-conductive material with an internal annular space (6) which is limited by a sleeve (15a) and which occupies an annular anode ( 7) and into which annulus the electrolyte supply line (10) opens. 3. Innretning i henhold til krav 2,karakterisertued at der i hylsens (15a) mantel er anordnet radialt rettede slisser (dyser 13) som forløper i det uesentlige i hylsens lengderetning og er jevnt fordelt over dennes omkrets.3. Device according to claim 2, characterized in that radially directed slits (nozzles 13) are arranged in the casing of the sleeve (15a) which run essentially in the longitudinal direction of the sleeve and are evenly distributed over its circumference. 4. Innretning i henhold til kravene 2 eller 3,karakterisert vedat der for tilførsel au strøm til fiberstrengen (2) bak huirvelkammeret er anordnet en valse (4) over hvilken den galvaniserte fiberbunt føres.4. Device according to claims 2 or 3, characterized in that for supplying power to the fiber strand (2) behind the swirl chamber, a roller (4) is arranged over which the galvanized fiber bundle is guided.
NO3680/72A 1971-10-16 1972-10-13 NO133410C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2151618A DE2151618C3 (en) 1971-10-16 1971-10-16 Method and device for the cathodic treatment of thin, electrically conductive fiber strands or bundles

Publications (2)

Publication Number Publication Date
NO133410B true NO133410B (en) 1976-01-19
NO133410C NO133410C (en) 1976-04-28

Family

ID=5822537

Family Applications (1)

Application Number Title Priority Date Filing Date
NO3680/72A NO133410C (en) 1971-10-16 1972-10-13

Country Status (14)

Country Link
US (1) US3896010A (en)
JP (1) JPS4847437A (en)
AT (1) AT316249B (en)
BE (1) BE790167A (en)
CH (1) CH584766A5 (en)
DD (1) DD100285A5 (en)
DE (1) DE2151618C3 (en)
DK (1) DK141970C (en)
FI (1) FI53988C (en)
FR (1) FR2156258B3 (en)
GB (1) GB1410028A (en)
IT (1) IT967931B (en)
NL (1) NL7213630A (en)
NO (1) NO133410C (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132617A (en) * 1973-10-04 1979-01-02 Galentan, A.G. Apparatus for continuous application of strip-, ribbon- or patch-shaped coatings to a metal tape
US4162952A (en) * 1977-02-24 1979-07-31 Societe Anonyme dite: F.M.C. Apparatus for electrolysis by projection
JPS53122894A (en) * 1977-03-30 1978-10-26 Japan Exlan Co Ltd Treating of carbon fiber
US4169780A (en) * 1977-05-24 1979-10-02 Societe Les Piles Wonder Process and apparatus for making negative electrodes, in particular in cadmium or zinc, for electrochemical generators, and the negative electrodes thus obtained
US4128459A (en) * 1977-11-25 1978-12-05 Allied Chemical Corporation Continuous electroplating of alloy onto metallic strip
US4448655A (en) * 1981-11-17 1984-05-15 Inoue-Japax Research Incorporated Traveling-wire electroerosion machining electrode and method
US4609449A (en) * 1982-03-16 1986-09-02 American Cyanamid Company Apparatus for the production of continuous yarns or tows comprising high strength metal coated fibers
US4661403A (en) * 1982-03-16 1987-04-28 American Cyanamid Company Yarns and tows comprising high strength metal coated fibers, process for their production, and articles made therefrom
US4680100A (en) * 1982-03-16 1987-07-14 American Cyanamid Company Electrochemical cells and electrodes therefor
US4904351A (en) * 1982-03-16 1990-02-27 American Cyanamid Company Process for continuously plating fiber
US4909910A (en) * 1982-03-16 1990-03-20 American Cyanamid Yarns and tows comprising high strength metal coated fibers, process for their production, and articles made therefrom
US4852453A (en) * 1982-03-16 1989-08-01 American Cyanamid Company Chaff comprising metal coated fibers
DE3241452C2 (en) * 1982-10-06 1985-05-30 Schweizerische Aluminium Ag, Chippis Method and device for the galvanic production of dispersion coatings and their application
US4468294A (en) * 1983-05-19 1984-08-28 Honeywell Inc. Acoustic desensitization of optical fibers by means of nickel jackets
DE3482273D1 (en) * 1983-06-24 1990-06-21 American Cyanamid Co DEVICE AND METHOD FOR CONTINUOUSLY PLATING FIBERS.
DE3474841D1 (en) * 1983-06-24 1988-12-01 American Cyanamid Co Electrodes, electro-chemical cells containing said electrodes, and process for forming and utilizing such electrodes
US4686013A (en) * 1986-03-14 1987-08-11 Gates Energy Products, Inc. Electrode for a rechargeable electrochemical cell and method and apparatus for making same
US4871623A (en) * 1988-02-19 1989-10-03 Minnesota Mining And Manufacturing Company Sheet-member containing a plurality of elongated enclosed electrodeposited channels and method
US5070606A (en) * 1988-07-25 1991-12-10 Minnesota Mining And Manufacturing Company Method for producing a sheet member containing at least one enclosed channel
EP0409235B1 (en) * 1989-07-20 1996-02-28 Toho Rayon Co., Ltd. Process for the surface treatment of carbon fiber strands
DE4430652C2 (en) * 1994-08-29 1997-01-30 Metallglanz Gmbh Galvanic method and device for carrying out the method and its use for galvanic or chemical treatment, in particular for the continuous application of metallic layers to a body
US8137752B2 (en) * 2003-12-08 2012-03-20 Syscom Advanced Materials, Inc. Method and apparatus for the treatment of individual filaments of a multifilament yarn
US8524065B2 (en) * 2008-09-19 2013-09-03 Metokote Corporation Systems and methods for electrocoating a part
US9324472B2 (en) 2010-12-29 2016-04-26 Syscom Advanced Materials, Inc. Metal and metallized fiber hybrid wire
US20140057127A1 (en) * 2012-08-22 2014-02-27 Infineon Technologies Ag Method for processing at least one carbon fiber, method for fabricating a carbon copper composite, and carbon copper composite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669865A (en) * 1966-01-03 1972-06-13 Honeywell Inc Apparatus for uniformly plating a continuous cylindrical substrate

Also Published As

Publication number Publication date
IT967931B (en) 1974-03-11
JPS4847437A (en) 1973-07-05
FR2156258A1 (en) 1973-05-25
DK141970C (en) 1980-12-08
DE2151618B2 (en) 1974-09-05
NO133410C (en) 1976-04-28
GB1410028A (en) 1975-10-15
BE790167A (en) 1973-02-15
NL7213630A (en) 1973-04-18
FI53988B (en) 1978-05-31
CH584766A5 (en) 1977-02-15
DD100285A5 (en) 1973-09-12
DE2151618C3 (en) 1975-05-28
US3896010A (en) 1975-07-22
DK141970B (en) 1980-07-28
FI53988C (en) 1978-09-11
FR2156258B3 (en) 1975-10-31
AT316249B (en) 1974-06-25
DE2151618A1 (en) 1973-04-26

Similar Documents

Publication Publication Date Title
NO133410B (en)
US2431065A (en) Continuous wire and strip electro-processing machine
US2859157A (en) Method and apparatus for electroplating the interior surface of conductive material apertures
US2848390A (en) Method and apparatus for applying metal to glass
US2946698A (en) Method of applying wax to strands of glass fibers
US3379632A (en) Electrolytic apparatus
US4028871A (en) Process and apparatus for producing spun yarn
US2943598A (en) Wire coating apparatus
US2131598A (en) Method and apparatus for applying a fibrous coating to a filament
US3835638A (en) Process for producing core yarn
US830093A (en) Apparatus for galvanizing wire.
US4281617A (en) Apparatus for coating conductors
CN209759615U (en) Efficient electroplating diamond wire production line system
US2800448A (en) Cataphoretic coating machine
US3686772A (en) Apparatus for drying textile material
JPS6116516B2 (en)
SU253521A1 (en) Device for galvanic coating of wire
US1071676A (en) Method of insulating electrical conductors.
US3085547A (en) Rotating wiper for wire tinning
US1766201A (en) Copper-coated wire rope
SU1705421A1 (en) Anode for electroplating
US2940248A (en) Method for application of liquid treatment to cord or the like during twisting
JPS62110975A (en) Plating treatment of carbon fiber bundle
JPH03216139A (en) Fishing line
SU711184A1 (en) Apparatus for applying metallic coating onto autotransformer contact tracks