NO131124B - - Google Patents

Download PDF

Info

Publication number
NO131124B
NO131124B NO04544/71A NO454471A NO131124B NO 131124 B NO131124 B NO 131124B NO 04544/71 A NO04544/71 A NO 04544/71A NO 454471 A NO454471 A NO 454471A NO 131124 B NO131124 B NO 131124B
Authority
NO
Norway
Prior art keywords
layer
mass
film
aerated concrete
finely ground
Prior art date
Application number
NO04544/71A
Other languages
Norwegian (no)
Other versions
NO131124C (en
Inventor
S Sw Svensson
Original Assignee
Intong Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intong Ab filed Critical Intong Ab
Publication of NO131124B publication Critical patent/NO131124B/no
Publication of NO131124C publication Critical patent/NO131124C/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/50Producing shaped prefabricated articles from the material specially adapted for producing articles of expanded material, e.g. cellular concrete
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/57Processes of forming layered products

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

Fremgangsmåte for støping av gassbetongprodukter. Procedure for casting aerated concrete products.

Gassbetongprodukter fremstilles vanligvis på den måten at gassbetongdannende masse, hovedsakelig bestående av kiselsyreholdig råmateriale, kalkholdig bindemiddel, porosdannende middel og vann, tappes i stopeformer av passende dimensjoner. Det kisel-syreholdige materialet kan f.eks. bestå av finmalt sand, skifer-aske, flyaske eller andre materialer med hoyt Si02-innhold. Bindemidlet kan utgjores av lesket og/eller ikke-lesket kalk eller portlandsement. Også kombinasjoner av kalk og sement er fordelaktige. Det poredannende midlet består fortrinnsvis av aluminiumpulver, som i det av bindemidlet betingede alkaliske miljoet ved stoping utvikler hydrogengass, som gir gassbetongen dens karakteristiske blærer eller porer. Stopeformene kan med Kfr. kl. 80b-24/01 fordel ha dimensjonen 600 x 120 x 60 cm, hvorved formbunnen har arealet 600 x 120 cm, mens formens fire sidevegger er 60 cm hoye. Efter inntappning i formen får man porer i stbpe-massen ved hjelp av nevnte hydrogengassutvikling, og porositeten avhenger av mengden aluminiumpulver. Derefter bringes massen til herding under en viss tid, hvorved massen får en halv- Aerated concrete products are usually produced in such a way that aerated concrete-forming mass, mainly consisting of silicic acid-containing raw material, calcareous binder, pore-forming agent and water, is poured into stop molds of suitable dimensions. The silicic acid-containing material can e.g. consist of finely ground sand, slate ash, fly ash or other materials with a high Si02 content. The binder can be made of slaked and/or unslaked lime or portland cement. Combinations of lime and cement are also advantageous. The pore-forming agent preferably consists of aluminum powder, which, in the alkaline environment conditioned by the binder, develops hydrogen gas during filling, which gives the aerated concrete its characteristic blisters or pores. The stop forms can with Kfr. at 80b-24/01 advantage has the dimensions 600 x 120 x 60 cm, whereby the base of the mold has an area of 600 x 120 cm, while the four side walls of the mold are 60 cm high. After pouring into the mould, pores are obtained in the stbpe mass with the help of the aforementioned hydrogen gas development, and the porosity depends on the amount of aluminum powder. The mass is then brought to harden for a certain time, whereby the mass acquires a semi-

plastisk bærende konsistens. Efter at massen på denne måten har stivnet til et bærende legeme fjernes formen eller deler av formen fra legemet, som i blottlagt tilstand oppdeles og formes til bygningselementer av onsket format, hensiktsmessig ved hjelp av tynne tråder som deler kroppen i langsgående, vertikale snitt. Til slutt underkastes det oppdelte og formede legemet en herdningsbehandling, fortrinnsvis dampherdning i autoklav. plastic bearing consistency. After the mass has solidified in this way into a supporting body, the form or parts of the form are removed from the body, which in the exposed state is divided and shaped into building elements of the desired format, suitably by means of thin threads that divide the body into longitudinal, vertical sections. Finally, the divided and shaped body is subjected to a hardening treatment, preferably steam hardening in an autoclave.

I visse tilfeller er det mulig i en arbeidsoperasjon å stope In certain cases, it is possible in a work operation to stop

all den for fylling av formen nodvendige gassbetongmassen. all the aerated concrete mass required for filling the form.

Hvis man f.eks. har til hensikt å stope en masse, hvis volum fordobles under poredannelsen, så inntappes masse opp til formens halve hoyde, dvs. 30 cm, hvorefter de resterende 30 cm utfylles ved massens poredannelse..1 andre tilfeller er det hensiktsmessig eller nodvendig å oppdele stopeprosessen i to eller flere trinn, hvorved massen i hvert av de foregående trinn bringes til stivning slik at man får en bærende konsistens for massen stopes i et efterfolgende arbeidstrinn. Ved at stopeprosessen oppdeles på denne måte får man blant annet en jevnere porositet enn det som fås ved en arbeidsoperasjon, og dessuten oppnås at gassbetongmassen på en tilfredsstillende måte omgir og innkapsler eventuell forekommende armering. If you e.g. intend to stop a mass, if the volume doubles during the pore formation, then the mass is poured in up to half the height of the form, i.e. 30 cm, after which the remaining 30 cm is filled in by the mass's pore formation..1 other cases it is appropriate or necessary to divide the stoping process in two or more stages, whereby the mass in each of the previous stages is brought to solidification so that a supporting consistency is obtained for the mass is stopped in a subsequent work step. By dividing the stoping process in this way, one obtains, among other things, a more uniform porosity than that obtained in a work operation, and it is also achieved that the aerated concrete mass satisfactorily surrounds and encapsulates any reinforcement that may occur.

Det har imidlertid vist seg at man av og til kan få problemer However, it has been shown that you can occasionally run into problems

ved stopning i flere etapper. Et problem er at gassbetong^when stopping in several stages. One problem is that aerated concrete^

partier som ligger i nærheten av skjoten eller grensesonen mellom to massesjikt, kan få en fra gassbetongen i ovrige partier forskjellig struktur, og i visse tilfeller kan forskjellige typer av blærer dannes, hvorved holdfastheten kan nedsettes. En annen feil, som kan oppstå, er at stopnings- parts located near the joint or the border zone between two mass layers can have a different structure from the aerated concrete in other parts, and in certain cases different types of blisters can form, whereby the holding strength can be reduced. Another error that can occur is that the stop-

skjoten efter herding ikke holder sammen på en tilfredsstillende måte. the joint after curing does not hold together satisfactorily.

Nærværende oppfinnelse vedrorer en stopningsfremgangsmåte som eliminerer ovenfor nevnte ulemper ved stopning av gassbetong. The present invention relates to a filling method which eliminates the above-mentioned disadvantages when filling aerated concrete.

i to eller flere etapper. Karakteristisk for fremgangsmåten ifblge oppfinnelsen er at det ved trinnet mellom stopning av et forste og et andre massesjikt anordnes en i det minste under stopningsfremgangsmåten i hovedsak væsketett eller væskegjennom-gang-hemmende film eller overtrekk på det forste sjiktets ovre overflate. in two or more stages. Characteristic of the method according to the invention is that at the step between stuffing a first and a second layer of mass, an essentially liquid-tight or liquid-passage-inhibiting film or coating is arranged on the upper surface of the first layer, at least during the stuffing process.

Foretatte forsok har vist at årsaken til avvikende gassbetong-struktur og ujevn blæredannelse inntil stopeskjoten, er at vannet, som inngår i det underste massesjiktet finnes i mer eller mindre hby grad under storkningen, og dette medfbrer at vann fra det ovre massesjiktet suges ned i det underste og tbrrere sjiktet og forstyrrer dannelsen av porer. Ved fremgangsmåten ifblge oppfinnelsen kan dette fenomen mestres ved at den på det forste sjiktets ovre overflate påfbrte film under det kritiske tidsintervallet frem til det at det ovre sjiktet har stbrknet, forhindrer at vann transporteres fra det ovre sjiktet til det underste. Man har kunnet slå fast at filmen ikke nbdvendigvis behbver være absolutt væsketett, men at den kan være mer eller mindre hemmende for vanntransporten mellom sjiktene. Det vesentligste er at den markante vanntransporten, som tidligere har forekommet ved fler-etappestbpninger forhin-dres . Tests carried out have shown that the reason for deviant aerated concrete structure and uneven blister formation up to the stop joint is that the water, which is part of the lower mass layer, is present to a greater or lesser extent during solidification, and this means that water from the upper mass layer is sucked into it. lower and thinner layer and disrupts the formation of pores. With the method according to the invention, this phenomenon can be mastered by the fact that the film applied to the upper surface of the first layer during the critical time interval until the upper layer has broken, prevents water from being transported from the upper layer to the lower one. It has been established that the film does not necessarily need to be absolutely liquid-tight, but that it can be more or less inhibiting for water transport between the layers. The most important thing is that the marked water transport, which has previously occurred with multi-stage constructions, is prevented.

Ifblge en spesielt fordelaktig fremgangsmåte ifblge oppfinnelsen anbringes på det aktuelle massesjiktet en film som sterkt binder . eller hefter ved gass-betongen også efter at stbrkning har blitt gjennomfbrt. Derved forbedres sammenholdningen mellom de forskjellige sjiktene. According to a particularly advantageous method according to the invention, a strongly binding film is placed on the material layer in question. or adheres to the aerated concrete even after bar breaking has been carried out. This improves the cohesion between the different layers.

Den film, som skal appliseres, kan man på forhånd avstedkomme på forskjellig måte og ved anvendelse av forskjellige materialer, således kan filmen ifblge oppfinnelsen bestå av eller omfatte plast eller gummi. Aktuell er således f.eks. The film to be applied can be prepared in advance in different ways and by using different materials, thus according to the invention the film can consist of or include plastic or rubber. Current is thus e.g.

, styrenbutadienlatex, som hensiktsmessig kan være dispergert , styrene butadiene latex, which can suitably be dispersed

i vann når den appliseres. Videre kan man anvende polyvinyl- in water when applied. Furthermore, you can use polyvinyl

alkohol, og også forskjellige former av akrylplast, f.eks. polybutylmetakrylat, polymetylmetakrylat og polyetylakrylat. Tykkelsen av film som er fremstilt av slike plaster kan ifblge utforte forsbk være slik at den tilsvarerer en plastmengde på 5 - loo, fortrinnsvis 3o - 5o g/m 2, beregnet som vekten av faste stoffer i, materialet. alcohol, and also various forms of acrylic plastic, e.g. polybutyl methacrylate, polymethyl methacrylate and polyethyl acrylate. The thickness of film produced from such plastics can, according to experiments carried out, be such that it corresponds to a plastic quantity of 5 - 10, preferably 30 - 50 g/m 2 , calculated as the weight of solids in the material.

I stedet for plast- eller gummimateriale kan man likeledes anvende limaktige materialer, f.eks. etyl-hydroksyetylcellulose Instead of plastic or rubber material, adhesive-like materials can also be used, e.g. ethyl hydroxyethyl cellulose

(MODOCOLL^<R>)). (MODOCOLL^<R>)).

I filmdannende materiale av ovennevnte slag, kan, hvis bnsket, innblandes forskjellige typer av uorganiske tilsetnings-materialer. Eksempler på slike er portlandsement eller finmalt SK^-holdige materiale, såsom sand eller sandsten. Videre In film-forming material of the above-mentioned kind, different types of inorganic additive materials can be mixed in, if desired. Examples of such are Portland cement or finely ground SK^-containing material, such as sand or sandstone. Further

kan innblandes finmalt kalk eller uporbs gassbetongmasse, som ikke er gjort porert, og som jo generelt består av en blanding av et kiselsyreholdig råmateriale og et kalkholdig bindemiddel. Det er også mulig på forhånd å avstedkomme filmer eller overtrekk som består bare av ett eller flere uorganiske materialer, dvs. uten plast- eller gummi-innhold finely ground lime or unporous aerated concrete mass can be mixed in, which has not been made porous, and which generally consists of a mixture of a silicic acid-containing raw material and a calcareous binder. It is also possible in advance to obtain films or covers that consist only of one or more inorganic materials, i.e. without plastic or rubber content

Ifblge oppfinnelsen er det mest fordelaktig å anbringe filmen med dennes plan eller overflateutbredelse orientert vinkelrett mot planet til ett av den stbpte massebokken utvunnet bygningselement. Dette skjer f.eks. ved at filmen påfbres det forste sjiktets ovre overflate, som er vesentlig horisontalt, hvorefter oppdelingen av stbpningsblokken gjennomfbres ved hjelp av vertikale snitt. Man bnsker f.eks. å fremstille 6 elementer med lengden 600 cm og bredden 60 cm av en form med dimensjonen 600 x 120 x 60 cm. Derved kan man stope et forste massesjikt med hbyden 30 cm hvor porene allerede er ferdigdannet, hvorefter en film appliseres på sjiktets horisontale ovre overflate. På det forste sjiktet stbpes et andre sjikt med 30 cm hbyde, dvs. formen fylles til sin bverste kant. Herefter oppdeles den dannede blokken ved hjelp av fem vertikale snitt til seks elementer med dimensjonene 600 x 60 x 20 cm, hvorved skjbtene eller filmens plan blir beliggende på tvers av elementets store overflate eller plan. According to the invention, it is most advantageous to place the film with its plane or surface extension oriented perpendicular to the plane of one of the building elements extracted from the stamped pulp block. This happens e.g. in that the film is applied to the upper surface of the first layer, which is essentially horizontal, after which the division of the building block is carried out by means of vertical cuts. One uses e.g. to produce 6 elements with a length of 600 cm and a width of 60 cm from a mold with dimensions of 600 x 120 x 60 cm. In this way, a first mass layer with a height of 30 cm can be filled where the pores have already been formed, after which a film is applied to the layer's horizontal upper surface. On the first layer, a second layer with a height of 30 cm is stitched, i.e. the mold is filled to its uppermost edge. The formed block is then divided by means of five vertical cuts into six elements with the dimensions 600 x 60 x 20 cm, whereby the sheets or the plane of the film are located across the large surface or plane of the element.

Selve appliseringen av filmen kan i praksis gjennomføres ved sproyting av det fildannende materiale ved hjelp av et vilkårlig sprbyteaggregat. The actual application of the film can in practice be carried out by spraying the film-forming material with the help of an arbitrary spray unit.

Nedenfor vises to eksempler på praktisk anvendelse av oppfinnelsen : Two examples of practical application of the invention are shown below:

EKSE MPEL I EXE MPEL I

I en stopeform med dimensjoner 600 x 120 x 60 cm tappes 1,1 m<3 >gassbetongmasse av en type hvis volum fordobles ved poredannelse. Nesten umiddelbart efter tappingen har massen blitt porbs, og massesjiktet har nå hbyden 30 cm. Dette sjikt får storkne i lbpet av 40 minutter, hvilket sikrer at sjiktet rekker å få en betryggende styrke for påstbpning av neste massesjikt. En gang under stbrkningstiden appliseres på masse-sjiktets bverste overflate en heldekkende film som består av styrenbutadien-latex i en mengde på 40 g/m 2. Efter at stbrkningen har funnet sted, hvorved latexen har dannet en væske-hemmende film, itappes ytterligere 1,1 m 3 gassbetongmasse, som får danne porer og som får storkne. I en spesiell oppdelings-stasjon deles den således stbpte blokken i et hensiktsmessig antall elementer, som til slutt dampherdes i en autoklav med damp med temperatur en 180 C samt tilsvarende overtrykk i lbpet av 12 timer. In a mold with dimensions 600 x 120 x 60 cm, 1.1 m<3 >aerated concrete mass of a type whose volume is doubled by pore formation is poured. Almost immediately after bottling, the mass has become porbs, and the mass layer is now 30 cm high. This layer is allowed to solidify in 40 minutes, which ensures that the layer has sufficient strength for the application of the next mass layer. Once during the rock breaking time, a full-covering film consisting of styrene butadiene latex is applied to the top surface of the pulp layer in an amount of 40 g/m 2. After the rock breaking has taken place, whereby the latex has formed a liquid-inhibiting film, a further 1 ,1 m 3 aerated concrete mass, which is allowed to form pores and which is allowed to solidify. In a special splitting station, the thus-stipped block is divided into an appropriate number of elements, which are finally steam-cured in an autoclave with steam at a temperature of 180 C and a corresponding excess pressure in the course of 12 hours.

EKSEMPEL II EXAMPLE II

I stedet for styrenbutadienlatex ifblge eksempel I gjbres på forhånd ferdig et filmdannende materiale bestående av 4 vektsdeler 50 %'ig polymetylmetakrylatdispersjon med 2 vektsdeler portlandsement og 6 vektsdeler vann. Denne blandingen påfbres et forste massesjikt i en mengde på 100 g/m 2. Instead of styrene butadiene latex according to example I, a film-forming material consisting of 4 parts by weight of 50% polymethyl methacrylate dispersion with 2 parts by weight of portland cement and 6 parts by weight of water is prepared in advance. This mixture is applied as a first mass layer in an amount of 100 g/m 2.

Gassbetongelementer, som er fremstilt ifblge ovenstående eksempel, oppviser jevn porestruktur på begge sider av stbpningsskjbten, hvortil kommer at sammenholdningen mellom de forskjellige sammen-stbpte sjiktene i et element er usedvanlig god. Aerated concrete elements, which have been produced in accordance with the above example, exhibit a uniform pore structure on both sides of the reinforced joint, to which the correlation between the different reinforced layers in an element is exceptionally good.

Foruten nevnte fordeler gir oppfinnelsen betydelige stopnings-tekniske fordeler. Således har det tidligere vært forbundet med store vanskeligheter eksakt å kunne fastsette riktig tids- In addition to the aforementioned advantages, the invention provides significant stopping technical advantages. Thus, it has previously been associated with great difficulties to be able to determine exactly the correct time

punkt for påstopningen av det andre eller det efterfolgende massesjiktet. Hvis nemlig det andre sjiktet påstopes altfor tidlig, point for the filling of the second or subsequent mass layer. Namely, if the second layer is piled on too early,

har risikoen vært stor for at det forste sjiktet skal kollapse, has there been a high risk of the first layer collapsing,

mens på den annen side altfor lang venting med påstopningen av det andre sjiktet har innebært at vanntransporten mellom sjik- while, on the other hand, too long a wait with the filling of the second layer has meant that the water transport between layers

tene har rukket å bli betydelig, hvilket har medfort defekter i gassbetongen som ligger nærmest stbpnings-skjoten. Ved an- the ten has managed to become significant, which has resulted in defects in the aerated concrete which is closest to the stbpnings joint. By an-

vendelse av visse utgangsmaterialer har man tidligere vært nodt til å stope det andre sjiktet allerede 20 - 25 minutter efter stopningen av det forste sjiktet for å unngå altfor store defekter omkring stopningsskjoten. Dette har naturligvis betydd at risikoen for kollaps hos det forste sjiktet har vært overhengende, mens tiden har vært for kort for at gassbetongen skal rekke å storkne til fullgod styrke. Disse ulemper elimineres helt ved fremgangsmåten ifblge oppfinnelsen ved at det forste sjiktet kan tillates å storkne så lenge at det får en betryggende hårdhet eller styrke uten at nevneverdig vann- reversal of certain starting materials, it has previously been necessary to stop the second layer already 20 - 25 minutes after the stop of the first layer in order to avoid excessive defects around the stop joint. This has naturally meant that the risk of collapse in the first layer has been imminent, while the time has been too short for the aerated concrete to solidify to full strength. These disadvantages are completely eliminated by the method according to the invention in that the first layer can be allowed to solidify for such a long time that it acquires a reassuring hardness or strength without significant water-

transport forekommer. transport occurs.

Claims (3)

1. Fremgangsmåte for å forbedre sammenfbyningene ved flersjiktsstbping av gassbetongprodukter, hvorved hvert sjikt gjbres porbst og får storkne inntil det bærer neste sjikt, hvoretter flersjikts-legemet eventuelt etter oppdeling og forming dampherdes i autoklav, karakterisert ved at det mellom sjiktene i form av lbsning eller vann-dispersjon påfbres 5-loo g/m 2 , fortrinnsvis 3o-5o g/m 2, filmdannende polymert materiale, eventuelt tilsatt uorganisk materiale, og som i det minste under stopeprosessen hemmer eller hindrer vann i å suges fra den nylig stbpte massen til det allerede stbrknede sjiktet samt fremmer sammenholdningen av stbpe-sammenfbyningen etter dampherdningen.1. Method for improving the connections by multilayer casting of aerated concrete products, whereby each layer is filled with porous material and allowed to solidify until it supports the next layer, after which the multilayer body, possibly after division and shaping, is steam-cured in an autoclave, characterized by the fact that between the layers in the form of bonding or water dispersion is applied 5-loo g/m 2 , preferably 3o-5o g/m 2 , film-forming polymeric material, possibly added inorganic material, and which at least during the stomping process inhibits or prevents water from being sucked from the newly stomped mass to the already broken layer as well as promotes the cohesiveness of the joint after steam curing. 2. Fremgangsmåte etter krav 1, karakterisert ved at det som uorganisk materiale anvendes fortrinnsvis portlandcement, finmalt SiC^-holdig materiale, såsom sand eller sandsten og/eller finmalt kalk.2. Method according to claim 1, characterized in that the inorganic material used is preferably Portland cement, finely ground SiC^-containing material, such as sand or sandstone and/or finely ground lime. 3. Fremgangsmåte etter krav 1 eller 2, karakterisert ved at det filmdannende materialet anbringes .med *sitt overflateplan orientert i det vesentlige vinkelrett mot planet til et av den stopte flersjiktslegeme utvunnet bygningselement.3. Method according to claim 1 or 2, characterized in that the film-forming material is placed with *its surface plane oriented essentially perpendicular to the plane of a building element extracted from the stopped multilayer body.
NO4544/71A 1970-12-10 1971-12-09 NO131124C (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE16709/70A SE362237B (en) 1970-12-10 1970-12-10

Publications (2)

Publication Number Publication Date
NO131124B true NO131124B (en) 1974-12-30
NO131124C NO131124C (en) 1975-04-09

Family

ID=20302641

Family Applications (1)

Application Number Title Priority Date Filing Date
NO4544/71A NO131124C (en) 1970-12-10 1971-12-09

Country Status (10)

Country Link
US (1) US3808299A (en)
JP (1) JPS5129178B1 (en)
AT (1) AT306612B (en)
BE (1) BE776561A (en)
CH (1) CH537345A (en)
DE (1) DE2145819C3 (en)
FR (1) FR2117579A5 (en)
IT (1) IT943706B (en)
NO (1) NO131124C (en)
SE (1) SE362237B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1466772A (en) * 1974-08-07 1977-03-09 Low J Castings of articles containing calcined gypsum
US4083526A (en) * 1976-09-27 1978-04-11 Alton Box Board Company Paperboard tube concrete forms
DE2739181B2 (en) * 1977-08-31 1979-07-19 Ytong Ag, 8000 Muenchen Process for the production of hydrothermally hardened aerated concrete components as well as aerated concrete components
FR2625915B1 (en) * 1988-01-15 1990-05-25 Degremont PROCESS FOR THE MANUFACTURE OF FLOORS FOR FILTERS, AND FLOORS THUS PRODUCED
CH675874A5 (en) * 1988-08-11 1990-11-15 Arnold Buechel
US5534292A (en) * 1991-09-17 1996-07-09 Mitsuo; Koji Method for producing and curing hydraulic material
US5397516A (en) * 1993-03-25 1995-03-14 Thermo Cement Engineering Corp. Process for making building panels
US5814253A (en) * 1993-03-25 1998-09-29 Thermoflex, Inc. Process for making a lightweight, cementitious, three dimensional structure
US6395205B1 (en) * 1996-07-17 2002-05-28 Chemical Lime Company Method of manufacturing an aerated autoclaved concrete material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE355390C (en) * 1921-01-12 1922-06-26 Soc D Const Et De Location D A Automatic adjustment device, especially for brakes
FR841023A (en) * 1937-07-23 1939-05-09 Cie Int Freins Automatiques System for taking up play in vehicle brakes
GB885169A (en) * 1959-02-20 1961-12-20 Westinghouse Brake & Signal Improvements relating to brake cylinders for fluid pressure braking apparatus
US3043406A (en) * 1960-01-27 1962-07-10 Bromsregulator Svenska Ab Air brake cylinders with built-in slack adjuster
GB935118A (en) * 1960-11-18 1963-08-28 Westinghouse Brake & Signal Improvements in or relating to resetting mechanisms for slack adjusters on brakes
FR1453106A (en) * 1964-10-08 1966-04-15 Girling Ltd Automatic adjustment device for vehicle brakes
FR1522751A (en) * 1967-05-11 1968-04-26 Knorr Bremse Gmbh Compressed air brake cylinder with automatic, single-acting slack adjuster, especially for rail vehicles
GB1186807A (en) * 1968-09-27 1970-04-08 Bromsregulator Svenska Ab Improvements in railway vehicle disc brakes

Also Published As

Publication number Publication date
DE2145819B2 (en) 1979-10-25
CH537345A (en) 1973-05-31
FR2117579A5 (en) 1972-07-21
DE2145819C3 (en) 1980-07-03
DE2145819A1 (en) 1972-06-29
IT943706B (en) 1973-04-10
US3808299A (en) 1974-04-30
BE776561A (en) 1972-04-04
JPS5129178B1 (en) 1976-08-24
AT306612B (en) 1973-04-25
SE362237B (en) 1973-12-03
NO131124C (en) 1975-04-09

Similar Documents

Publication Publication Date Title
US3834918A (en) Raw batch for forming porous architectural structures and method of preparing same
DE2835423A1 (en) CONCRETE AND MORTAR ADDITIVES AND THEIR USE
GB1134554A (en) Improvements relating to the production of lightweight constructional plates
NO131124B (en)
GB1362614A (en) Insulating building materials
US2301101A (en) Hot top
ES396905A1 (en) Building construction
US1951344A (en) Manufacture of precast building units of porous concrete
US2905566A (en) Plaster composition
GB2053184A (en) Plaster composition
US2241604A (en) Manufacture of artificial stone
NO126524B (en)
NO132833B (en)
GB1450719A (en) Method and apparatus for making a cementitious wedge shaped slab
US4222784A (en) Novel binder and its utilization for preparing quick-setting mortars and microconcretes
CN207419806U (en) A kind of girt strip lacing wire for built-in square plaster mould box cast-in-place concrete hollow floor slab
US2210444A (en) Reinforcement of concrete or the like
US1600552A (en) Method of making plaster tile
RU159997U1 (en) FACING PLATE
CA1047742A (en) Process for increasing the mechanical strength of porous articles
GB2139547A (en) Method for making concrete blocks
US1752194A (en) Process of preparing an oxychloride cement
US4786450A (en) Method for the production of building elements particularly suited for use as brick facings
US2129769A (en) Method of constructing upright concrete walls
US1874170A (en) Process for bonding cement and gypsum