NO130205B - - Google Patents

Download PDF

Info

Publication number
NO130205B
NO130205B NO02034/72*[A NO203472A NO130205B NO 130205 B NO130205 B NO 130205B NO 203472 A NO203472 A NO 203472A NO 130205 B NO130205 B NO 130205B
Authority
NO
Norway
Prior art keywords
splinter
splinters
sleeve
diameter
tubes
Prior art date
Application number
NO02034/72*[A
Other languages
Norwegian (no)
Inventor
H Tieben
Original Assignee
Diehl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl filed Critical Diehl
Publication of NO130205B publication Critical patent/NO130205B/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/32Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction the hull or case comprising a plurality of discrete bodies, e.g. steel balls, embedded therein or disposed around the explosive charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Disintegrating Or Milling (AREA)
  • Extrusion Of Metal (AREA)

Description

Fremgangsmåte til fremstilling av splinthylser. Method for the production of cotter sleeves.

Oppfinnelsen vedrører en fremgangsmåte for fremstilling av splinthylser ved anvendelse av prefabrikerte, fortrinnsvis kuleformede splinter. The invention relates to a method for producing cotter sleeves using prefabricated, preferably ball-shaped cotter pins.

Det er allerede kjent å forbehandle sprenglegemer ved langs- og tverrgående innsnitt, slik at de ved detonering av sprengladningen deles opp i adskilte splinter. Det er også kjent å tilveie-bringe denne virkning ved innlegg av en på forhånd utformet folie på sprengstoffoverflaten. Bortsett fra at den.effekt som kreves for opp-deling av slike sprenglegemer vesentlig reduserer splinteffekten, sik-rer de ovennevnte forholdsregler ikke at det dannes splinter av definert størrelse, gjennomslagseffekt og jevn spredning til alle sider. It is already known to pre-treat explosives by longitudinal and transverse incisions, so that when the explosive charge is detonated, they are split into separate splinters. It is also known to provide this effect by placing a preformed foil on the surface of the explosive. Apart from the fact that the power required for breaking up such explosives significantly reduces the splinter effect, the above-mentioned precautions do not ensure that splinters of a defined size, penetration effect and uniform spread to all sides are formed.

En bedre splintvirkning og -fordeling kan oppnås med prefabrikerte splinter som f. eks.-fylles i en form og leires i et herd-ende skjelett av betong, kunststoff eller lignende. Det er aåledes kjent å 'anordne prefabrikerte kulesplinter i ett eller flere lag på A better splinter effect and distribution can be achieved with prefabricated splinters which, for example, are filled in a mold and embedded in a hardening skeleton made of concrete, plastic or the like. It is therefore known to arrange prefabricated ball splinters in one or more layers on

et sprenglegeme. Kulene er derved forbundet med en støpeharpiks eller lignende og danner en mer eller mindre motstandsdyktig splinthylse. an explosive device. The balls are thereby connected with a casting resin or the like and form a more or less splinter-resistant sleeve.

Da denne sammenbakte splinthylse imidlertid bare er istand til å ta opp små aksiale krefter og så å si ingen radiale krefter, er anvend-elsen begrenset til kasteammunisjon og rotasjonsfattige rakettprosjek-tiler. Til bruk for prosjektiler kreves ikke bare et hylseskjelett, men dessuten også en ommantling som er istand til å oppta de opptred-ende .krefter. Dette 'betyr at det dels må medføres ekstra masse som ikke'bidrar til splintvirkningen, dels som ovenfor nevnt, at spreng-ladningens, effekt reduseres. Ved hjelp av prefabrikerte kulesplinter økes riktignok trefftettheten vesentlig hos splintprosjektiler med ekstra innleirede kulesplinter og ommantling, men gjennomslagseffekten reduseres på en uønsket måte. However, since this combined splinter sleeve is only able to take up small axial forces and virtually no radial forces, its use is limited to throw ammunition and low-rotation rocket projectiles. For use with projectiles, not only a sleeve skeleton is required, but also a casing that is able to absorb the acting forces. This means that extra mass must be carried which does not contribute to the splintering effect, and, as mentioned above, that the effect of the explosive charge is reduced. With the help of prefabricated bullet splinters, the hit density of splinter projectiles with extra embedded bullet splinters and sheathing is indeed increased significantly, but the impact effect is reduced in an undesirable way.

Foreliggende oppfinnelse går derfor ut på å utforme prefabrikerte splinter sammen med prosjektil-, resp. stridshodehylsen, slik at det oppstår en splintmantel som riktignok er istand til å overvinne de skyve- og rotasjonskrefter som opptrer ved utskyting, men som av sprengladningen uten større effekttap deles fullstendig opp i splinter av definert størrelse og antall og med stor gjennom-slagsef f ekt og fastsatt spredningsområde. The present invention therefore consists in designing prefabricated splinters together with projectile, resp. the warhead sleeve, so that a shrapnel jacket is created which is indeed able to overcome the thrust and rotation forces that occur during launch, but which is completely broken up by the explosive charge without major loss of effect into shrapnel of a defined size and number and with a high penetration effect and fixed distribution area.

Ifølge oppfinnelsen løses denne oppgave ved at det i en sylindrisk, svakt konisk forløpende, verktø<y>hulform med en indre diameter som svarer til den ytre diameter av splinthylsen som skal fremstilles, innføres et metallisk (prosjektil-) rørlegeme med passende ytre diameter, at det sentrisk i rørlegemet innføres et annet metallisk rørlegeme, hvis ytre diameter er så meget mindre enn den indre diameter av yttermantelrørlegemet at avstanden svarer til den dobbelte maksimale diameter av splintene, at splintfyllingen helles inn i det således dannede rørsylinderhulrom og at det indre rørlegeme i tilslutning ved høytrykkforming under fullstendig omslutning av splintene trykkes radialt'utad-og trykkes sammen med det. ytre rør til en rotasjonssymmetrisk splinthylse med splintmantel anordnet i rørenes grenseområde. According to the invention, this task is solved by introducing a metallic (projectile) tubular body with a suitable outer diameter into a cylindrical, slightly conical, tool hole shape with an inner diameter that corresponds to the outer diameter of the splinter sleeve to be produced, that another metallic tube body is introduced centrally in the tube body, whose outer diameter is so much smaller than the inner diameter of the outer casing tube body that the distance corresponds to twice the maximum diameter of the splinters, that the splinter filling is poured into the pipe cylinder cavity thus formed and that the inner tube body in connection by high-pressure forming under complete enclosing of the splines is pressed radially outwards-and pressed together with it. outer tube to a rotationally symmetrical spline sleeve with a spline jacket arranged in the border area of the tubes.

Derved kan det fremstilles en splintmantel i ett eller flere lag. Til fremstilling av splintlegemer i flere lag settes flere rør, som hvert er smalere enn det utenpåliggende rør, svarende til den dobbelte splintdiameter, sentrisk i hverandre. Rørsylinderhul-rommene fylles med splintlegemer, og rørene trykkes deretter mot hverandre under fullstendig innelukking av splintene, samt under samtidig forhåndsfragmentering av rørene i splintelementer med fastsatt størr-else og masse. Thereby, a splint mantle can be produced in one or more layers. For the production of splinter bodies in several layers, several tubes, each of which is narrower than the overlying tube, corresponding to twice the splinter diameter, are inserted centrally into each other. The tube cylinder cavities are filled with splinter bodies, and the tubes are then pressed against each other under complete containment of the splinters, as well as during simultaneous pre-fragmentation of the tubes into splinter elements of fixed size and mass.

Med fremgangsmåten ifølge oppfinnelsen oppnås splinthylser, som består av to eller flere rør som er presset mot hverandre og er prefragmentert av de innelukkede kulesplinter og omslutter ett eller flere lag av kulesplinter. Disse splinthylser holder stand mot de skyve- og sentrifugalkrefter som oppstår ved rotasjonsprosjektiler under avskytning. Da rørene ved høytrykkformingen blir innsnittsak- With the method according to the invention, splinter sleeves are obtained, which consist of two or more tubes that are pressed against each other and are pre-fragmented by the enclosed ball splinters and enclose one or more layers of ball splinters. These splinter sleeves withstand the thrust and centrifugal forces that occur with rotating projectiles during firing. As the pipes are cut during high-pressure forming

tig prefragmentert av de innpressede kulesplinter av hardt materiale, likesom blir forskjelligartet komprimert og dermed oppdelt i et sammenhengende gitter av splintelementer, oppnås at det ved detonering av sprengladningen ikke bare frigjøres kulesplinter, men at også røre- pre-fragmented by the pressed-in bullet splinters of hard material, as well as being variously compressed and thus divided into a continuous grid of splinter elements, it is achieved that upon detonation of the explosive charge not only are bullet splinters released, but also

ne deles opp i mange, jevne splinter med fastsatt størrelse, som spres over et begrenset område med definert gjennomslagseffekt. are divided into many, even splinters of a fixed size, which are spread over a limited area with a defined penetration effect.

Fremgangsmåten skal i det følgende beskrives nærmere under henvisning til tegningen. Fig. 1 er et sideriss av et rotasjonsprosjektil, delvis i snitt. The procedure will be described in more detail below with reference to the drawing. Fig. 1 is a side view of a rotary projectile, partially in section.

Fig. 2 viser et partielt snitt av en en-lags splinthylse Fig. 2 shows a partial section of a single-layer splint sleeve

før høytrykkformingen. Fig. 3 viser det partielle snitt ifølge fig. 2 etter sam-menpressing. before the high pressure forming. Fig. 3 shows the partial section according to fig. 2 after compression.

Fig. 4 viser et partielt snitt av en to-lags splinthylse Fig. 4 shows a partial section of a two-layer splint sleeve

før høytrykkformingen. before the high pressure forming.

Fig. 5 viser samme snitt etter høytrykkformingen. Fig. 5 shows the same section after high-pressure forming.

Fig. 6 viser splintelementer som oppstår ved sprengning av Fig. 6 shows splinter elements that occur when blasting off

en splinthylse fremstilt ifølge oppfinnelsen. a splint sleeve produced according to the invention.

Ifølge fig. 1 brukes en splinthylse 2 som prosjektilmantel ved et prosjektil 1. Mantelen 2 omslutter en sprengladning 3 som kan tennes ved en tenning 4. Splinthylsens 2 oppbygning og fremstilling skal omtales nærmere under henvisning til fig. 2-5- According to fig. 1, a splinter sleeve 2 is used as a projectile jacket for a projectile 1. The jacket 2 encloses an explosive charge 3 which can be ignited by an ignition 4. The structure and manufacture of the splinter sleeve 2 shall be described in more detail with reference to fig. 2-5-

Ifølge fig. 2 består hylsen i utgangstilstand av et ytre According to fig. 2, the sleeve in its initial state consists of an outer

rør 6 av formbart metall, f. eks. sterkt aluminium eller stål, med en veggtykkelse på f. eks. 3 mm, et lag prefabrikerte kulesplinter 7 av pipe 6 of malleable metal, e.g. strong aluminum or steel, with a wall thickness of e.g. 3 mm, a layer of prefabricated ball splinters 7 av

keramikk (Al^O^) eller hardmetall som wolframkarbid, jern-titan-leger- ceramic (Al^O^) or hard metal such as tungsten carbide, iron-titanium alloys

ing eller lignende med en diameter på f. eks. 4 mm og et indre metall- ing or similar with a diameter of e.g. 4 mm and an inner metal

rør 8 med en veggtykkelse på f. eks. 5 mm. Splintene 7 kan også ha en annen form enn kuleform. De kan f. eks. ha valseform. Det vesent- pipe 8 with a wall thickness of e.g. 5 mm. The splints 7 can also have a shape other than spherical. They can e.g. have a roller shape. The essential

lige er dog at hulrommet mellom-rørene 6, 8 er jevnt fylt med et splintlag 7. however, it is important that the cavity between the pipes 6, 8 is evenly filled with a splinter layer 7.

Til fremstilling av splinthylsen 2 ifølge fig. 3 forbindes For the production of the spline sleeve 2 according to fig. 3 are connected

rørene 6, 8 med hverandre ifølge nevnte fremgangsmåte. Den radiale deformering kan derved på kjent måte skje sjokklignende, f. eks. ved eksplosjonsforming eller elektromagnetisk eller ved trykkpåvirkning, the pipes 6, 8 with each other according to the aforementioned method. The radial deformation can thereby occur in a known manner shock-like, e.g. by explosive forming or electromagnetic or by pressure influence,

dvs. gjennomdrivning av en konisk kalibreringsbolt gjennom det indre rør 8. Derved vil ikke bare splintene 7 allsidig innesluttes i rørene i.e. driving a conical calibration bolt through the inner tube 8. Thereby not only will the pins 7 be enclosed in the tubes from all sides

.6, 8, men rørene 6, 8 vil samtidig bli forskjellig komprimert og for- .6, 8, but the pipes 6, 8 will at the same time be compressed differently and

synt med innsnitt. Det oppstår et gitter av sammenhengende splinter med definert størrelse. Dette gitter omslutter de prefabrikerte kule-splihtene 7 drivspeillignende og vil ved detonering av sprengladnin- sin with incisions. A lattice of connected splinters of a defined size is created. This grid encloses the prefabricated ball-splits 7 in a driving mirror-like manner and will, upon detonation of the explosive charge,

gen 3 ikke bare frigi kulesplintene 75 men også selv brytes ned til jevne splinter. gen 3 not only release the ball splinters 75 but also break down into even splinters.

Ifølge fig. 4 og 5 kan splinthylsen også bestå av flere According to fig. 4 and 5, the spline sleeve can also consist of several

lag. Fremgangsmåten svarer da til den som allerede er omtalt. I til- layer. The procedure then corresponds to the one already mentioned. In to-

legg til rørene 6 og 8 er det anordnet ytterligere et indre rør 10. in addition to tubes 6 and 8, an additional inner tube 10 is arranged.

I et rørformet hulrom 9 er det fylt enda et lag kulesplinter 7. Som Another layer of ball splinters 7 is filled in a tubular cavity 9. As

det vil fremgå av fig. 5, er kulesplintene 7 også her etter høytrykk- it will appear from fig. 5, the ball cotter pins 7 are also here after high-pressure

forming helt innpreget i rørene 6, 8, 10 og rørene er gitterlignende forhåndsdelt. forming completely impressed in the tubes 6, 8, 10 and the tubes are lattice-like pre-divided.

Fig. 6 viser størrelsen av bruddsplintene 11 i forhold til Fig. 6 shows the size of the break pins 11 in relation to

kulesplintene 7. the ball splinters 7.

Ved bruk av rør av meget sterke materialer og ved ekstra forsterkning ved formingen, vil ikke bare kulesplintene 7, men også bruddsplintene 11 av rørene 6, 8, 10 få stor gjennomslagseffekt. When using pipes made of very strong materials and with extra reinforcement during the forming, not only the ball splints 7, but also the fracture splints 11 of the pipes 6, 8, 10 will have a large penetration effect.

Claims (2)

Fremgangsmåte til fremstilling av splinthylser ved anvend-Procedure for the production of cotter sleeves by using else av prefabrikerte, fortrinnsvis kuleformede splinter, karakterisert ved at det i en sylindrisk, noe konisk forløpende verktøyhulform med en indre diameter som svarer til den ytre diameter for splinthylsen (2) som skal fremstilles, innføres et metallisk (prosjektil-) rørlegeme (6) med passende ytre diameter, at det sentrisk iproduction of prefabricated, preferably ball-shaped splinters, characterized in that a metallic (projectile) tubular body (6) is inserted into a cylindrical, somewhat conical tool cavity with an inner diameter that corresponds to the outer diameter of the splinter sleeve (2) to be produced with suitable outer diameter, that it centrically i rørlegemet (6) innføres et annet metallisk rørlegeme (8) hvis ytre diameter er så meget mindre enn den indre diameter av yttermantelrør-legemet (6) som den dobbelte maksimale diameter av splintene (7), at splintfyllingen (7) helles inn i det således dannede rørsylinderhul-rom (5) og at det indre rørlegeme (8) i tilslutning ved høytrykkdefor-mering under innpressing av rørveggene i hulrommene mellom splintene (7) deformeres radialt utad til en rotasjonssymmetrisk splinthylse (2)pipe body (6) another metallic pipe body (8) is introduced whose outer diameter is so much smaller than the inner diameter of the outer casing pipe body (6) or twice the maximum diameter of the splinters (7), that the splinter filling (7) is poured into it pipe cylinder cavities (5) formed in this way and that the inner tube body (8) in connection with high-pressure deformation during pressing of the pipe walls in the cavities between the cotter pins (7) is deformed radially outwards into a rotationally symmetrical cotter sleeve (2) og sammen med det ytre rørlegeme (6) presses til en rotasjonssymmetrisk splinthylse med splintmantel anordnet i rørenes grenseområde.and, together with the outer pipe body (6), is pressed into a rotationally symmetrical spline sleeve with a spline jacket arranged in the border area of the pipes. 2. Fremgangsmåte som angitt i krav 1 til fremstilling av2. Method as specified in claim 1 for the production of splintlegemer i flere lag, karakterisert ved at flere rør (6, 8, 10), som hvert er om den dobbelte splintdiameter smalere enn det utenpåliggende rør, settes sentrisk i hverandre, at rørsylin-derhulrommene (5, 9) fylles med splintlegemer (7) og at de indre rør (8, 10) deformeres radialt utad under fullstendig inneslutning av splintene (7) og ved samtidig prefragmentering av rørene (6, 8, 10) til splintelementer med fastsatt størrelse og masse.splinter bodies in several layers, characterized in that several tubes (6, 8, 10), each of which is twice the splinter diameter narrower than the overlying tube, are placed centrically in each other, that the pipe cylinder cavities (5, 9) are filled with splinter bodies (7 ) and that the inner tubes (8, 10) are deformed radially outwards under complete containment of the splinters (7) and by simultaneous prefragmentation of the tubes (6, 8, 10) into splinter elements of fixed size and mass.
NO02034/72*[A 1971-06-12 1972-06-08 NO130205B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2129196A DE2129196C3 (en) 1971-06-12 1971-06-12 Fragmentation body for fragmentation projectiles and warheads

Publications (1)

Publication Number Publication Date
NO130205B true NO130205B (en) 1974-07-22

Family

ID=5810573

Family Applications (1)

Application Number Title Priority Date Filing Date
NO02034/72*[A NO130205B (en) 1971-06-12 1972-06-08

Country Status (11)

Country Link
US (1) US3815504A (en)
AT (1) AT316356B (en)
BE (1) BE784623A (en)
CH (1) CH556014A (en)
DE (1) DE2129196C3 (en)
FR (1) FR2151826A5 (en)
GB (1) GB1364782A (en)
IT (1) IT956381B (en)
NL (1) NL7207380A (en)
NO (1) NO130205B (en)
SE (1) SE393186B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460013C3 (en) * 1974-12-19 1978-08-24 Sintermetallwerk Krebsoege Gmbh, 5608 Radevormwald Process for the production of metallic moldings
AT336449B (en) * 1975-06-20 1977-05-10 Foerenade Fabriksverken GRENADES, IN PARTICULAR FOR GRENADE THROWERS
NL7701244A (en) * 1976-03-23 1977-09-27 Diehl Fa SPLINTER SHELL FOR GRANATE COMBAT HEAD AND THE LIKE.
BE889289A (en) * 1981-06-18 1981-12-18 Prb N V Prb Sa HOLLOW HEAD WITH CONTROLLED FRAGMENTATION FOR EXPLOSIVE DEVICE
DE2633163A1 (en) * 1976-07-23 1978-01-26 Karlsruhe Augsburg Iweka LANDMINE, ESPECIALLY PROTECTIVE SHRAFT MINE
ES469500A1 (en) * 1978-05-05 1979-02-16 Amado Laguna De Rins Sa Fragmentation-type anti-aircraft missile - has external casing screwed onto front to form annular chamber for balls of high density material
DE2852657C2 (en) * 1978-12-06 1984-10-04 Diehl GmbH & Co, 8500 Nürnberg Fragmentation body for fragmentation projectiles
DE2852658A1 (en) * 1978-12-06 1980-06-12 Diehl Gmbh & Co METHOD FOR PRODUCING METALLIC MOLDED BODIES
DE2852659A1 (en) * 1978-12-06 1980-06-19 Diehl Gmbh & Co METHOD FOR PRODUCING METALLIC MOLDED BODIES
ES476388A1 (en) * 1978-12-27 1979-04-16 Lasheras Barrios Fernando Anti-aircraft projectile.
DE7925652U1 (en) * 1979-09-11 1981-03-19 Ets. Salgad, Vaduz WING STABILIZED SHELL
FR2504253B1 (en) * 1981-04-15 1987-01-02 Haut Rhin Manufacture Machines EXPLOSIVE CHARGE COMPRISING AN ENCLOSURE CONTAINING PREFRAGMENT SHARDS AND METHOD OF MANUFACTURE
DE3224704A1 (en) * 1982-07-02 1984-01-05 Rheinmetall GmbH, 4000 Düsseldorf EXPLOSIVE FLOOR WITH A SINGLE OR MULTILAYERED EXTERNAL COVER
GB8329526D0 (en) * 1983-11-04 1983-12-07 Wimet Ltd Pellets
AT382236B (en) * 1982-10-11 1987-01-26 Ver Edelstahlwerke Ag METHOD FOR PRODUCING A SPLITTER BODY AND SPLITTER BODY PRODUCED THEREFOR
SE450294B (en) * 1984-04-02 1987-06-15 Bofors Ab GRANATHOLE INCLUDING FORMAT SPLITS AND SETS FOR ITS MANUFACTURING
FR2598214B1 (en) * 1986-05-05 1990-01-05 Luchaire Sa PROCESS FOR THE PRODUCTION OF SHUNTING AMMUNITION AND AMMUNITION OBTAINED BY THIS PROCESS
US5163166A (en) * 1989-10-11 1992-11-10 Dynamit Nobel Aktiengesellschaft Warhead with enhanced fragmentation effect
US5117759A (en) * 1991-08-05 1992-06-02 The United States Of America As Represented By The Secretary Of The Navy Filamentary composite dual wall warhead
US5119730A (en) * 1991-08-05 1992-06-09 The United States Of America As Represented By The Secretary Of The Navy Composite sheet stringer ordnance section
DE4308027A1 (en) * 1993-03-13 1994-09-15 Diehl Gmbh & Co Splinter body for splinter projectiles and method for producing a splinter projectile
SE508651C2 (en) * 1995-10-05 1998-10-26 Bofors Ab Firearm gun intended for grenades
DE19632597C1 (en) * 1996-08-13 1998-01-22 Daimler Benz Aerospace Ag Projectile, especially for non-lethal active components
DE19638293A1 (en) * 1996-09-19 1998-03-26 Diehl Gmbh & Co Hand grenade with pre-made fragments
DE19855537C2 (en) * 1998-08-27 2002-08-29 Rheinmetall W & M Gmbh Process for the manufacture of an explosive device
SE522865C2 (en) * 2000-07-03 2004-03-16 Bofors Defence Ab Charging arrangement for ammunition carrying unit
US8689669B2 (en) 2003-04-30 2014-04-08 Bofors Defence Ab Method of producing warheads containing explosives
DE10328156B3 (en) * 2003-06-16 2014-03-13 Bae Systems Bofors Ab Method for manufacturing casings or portions of similar forming fragments, involves completely covering or filling free space with metal powder, which then is compacted under high pressure to form single body having same material strength
SE0800326L (en) * 2008-02-14 2009-08-15 Bae Systems Bofors Ab Split grenade and manufacturing process therefore
WO2015175037A2 (en) * 2014-02-11 2015-11-19 Raytheon Company Munition with outer enclosure
SE541548C2 (en) * 2015-06-17 2019-10-29 Bae Systems Bofors Ab Procedure for pre-fragmentation of a combat part and pre-fragmented combat part
EP3403047B1 (en) * 2016-01-15 2022-06-22 Saab Bofors Dynamics Switzerland Ltd. Warhead
JP6765442B2 (en) * 2016-01-15 2020-10-07 サーブ・ボフォース・ダイナミクス・スウィツァランド・リミテッド warhead
US10634472B1 (en) 2016-03-22 2020-04-28 Northrop Grumman Innovation Systems, Inc. Prefragmented warheads with enhanced performance
US11614311B1 (en) 2016-03-22 2023-03-28 Northrop Grumman Systems Corporation Prefragmented warheads with enhanced performance
US11226181B2 (en) * 2017-03-06 2022-01-18 Omnitek Partners, L.L.C. High explosive fragmentation mortars
US11041704B1 (en) 2017-07-25 2021-06-22 The United States Of America As Represented By The Secretary Of The Army Method of manufacturing composite projectile body embedded with preformed fragments
SE543620C2 (en) * 2017-12-05 2021-04-20 Bae Systems Bofors Ab Effect part with preformed elements
SE2000234A1 (en) * 2020-12-14 2022-06-15 Saab Ab A fragmentation warhead a method of manufacturing of a fragmentation warhead

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB133076A (en) * 1916-01-15 1919-10-09 Societa Anonima Meccanica Lombarda Improvements in or relating to artillery projectiles
US1234657A (en) * 1917-04-21 1917-07-24 Andrew W Graham Projectile.
US2564751A (en) * 1945-05-19 1951-08-21 Lawrence H Cook Grenade
US2724334A (en) * 1949-12-12 1955-11-22 William C Norton High velocity armor piercing shot

Also Published As

Publication number Publication date
US3815504A (en) 1974-06-11
NL7207380A (en) 1972-12-14
BE784623A (en) 1972-10-02
DE2129196B2 (en) 1975-04-03
GB1364782A (en) 1974-08-29
IT956381B (en) 1973-10-10
DE2129196C3 (en) 1975-11-13
CH556014A (en) 1974-11-15
FR2151826A5 (en) 1973-04-20
SE393186B (en) 1977-05-02
DE2129196A1 (en) 1973-01-04
AT316356B (en) 1974-07-10

Similar Documents

Publication Publication Date Title
NO130205B (en)
CA2611169C (en) Projectile or warhead
US8061275B1 (en) Warhead selectively releasing fragments of varied sizes and shapes
NO149086B (en) SPIN COVER FOR PROJECTILES, HEADS AND LIKE
US4305333A (en) Warhead for projectiles and rockets
US2798431A (en) Fragmentation warhead
EA001318B1 (en) Projectile or warhead
US11187508B2 (en) Warhead
US4503776A (en) Fragmentation body for fragmentation projectiles and warheads
US3000309A (en) Fragmentation projectile
US11105596B1 (en) Prefragmented warheads with enhanced performance
US3945321A (en) Shell and method of manufacturing the same
EP0848228B1 (en) Ballistic high-explosive type projectile without a fuze
US3628457A (en) Rocket-assisted projectile or gun-boosted rocket with supported propellant grain
CN113137897A (en) Composite transverse effect enhanced bullet based on active material and inert material
RU2407980C2 (en) Explosive shell
EP3403047B1 (en) Warhead
RU2118790C1 (en) Fragmentation shell
US8707868B2 (en) Pre-compressed penetrator element for projectile
FI58980C (en) VINGSTABILIZERS IN THE PROJECT
RU2165065C1 (en) Jet projectile
GB2115909A (en) A fragmentation body for fragmentation projectiles and warheads
NO149226B (en) SPLINTER HOUSING FOR PROJECTILES, HEADS, CASTLE AMUNITIES AND LIKE
LT6958B (en) Warhead
US20220011079A1 (en) Warhead with asymmetric initiation