NO129384B - - Google Patents

Download PDF

Info

Publication number
NO129384B
NO129384B NO00425/71A NO42571A NO129384B NO 129384 B NO129384 B NO 129384B NO 00425/71 A NO00425/71 A NO 00425/71A NO 42571 A NO42571 A NO 42571A NO 129384 B NO129384 B NO 129384B
Authority
NO
Norway
Prior art keywords
metal
compound
mercury
organic compound
group
Prior art date
Application number
NO00425/71A
Other languages
Norwegian (no)
Inventor
N Yokota
S Tokuda
Y Ito
H Takatomi
Original Assignee
Soda O Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP45017353A external-priority patent/JPS4918937B1/ja
Priority claimed from JP3141270A external-priority patent/JPS4819793B1/ja
Priority claimed from JP6939870A external-priority patent/JPS5116916B1/ja
Application filed by Soda O Co Ltd filed Critical Soda O Co Ltd
Publication of NO129384B publication Critical patent/NO129384B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3092Packing of a container, e.g. packing a cartridge or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3251Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3253Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure not containing any of the heteroatoms nitrogen, oxygen or sulfur, e.g. aromatic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3255Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. heterocyclic or heteroaromatic structures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Description

Nærværende oppfinnelse vedrbrer en fremgangsmåte for fjerning av rest-metaller fra en gassfase eller væskefase (uttrykket omfatter også oppslemninger), hvorved metallet kan fjernes med en utmerket virkningsgrad og hvorved konsentrasjonen kan angis i ppb-enheter (1 ppb = 1/1000 ppm). Dette oppnås ved at man anvender et enkelt fremstillbart og lett tilgjengelig behandlingsmidde1, og ved at man en lengre tid opprettholder den nevnte hbye virkningsgrad ved hjelp av behandlingsmidlet. The present invention relates to a method for removing residual metals from a gas phase or liquid phase (the term also includes slurries), whereby the metal can be removed with an excellent degree of efficiency and whereby the concentration can be indicated in ppb units (1 ppb = 1/1000 ppm). This is achieved by using an easy-to-produce and easily available treatment agent1, and by maintaining the aforementioned high degree of effectiveness for a longer period of time with the help of the treatment agent.

Oppfinnelsen vedrbrer spesielt en fremgangsmåte for fjerning av metaller, som f.eks. Hg, Au, Bi, Cd, Co, Cr, Cu, Ni, Pb, Zn, Ag, Mn, Fe, Mo,- Ti, Mg og Al fra en gassfase eller væskefase fra hvilken metallet skal fjernes, og hvorved man bringer den metall-holdige gass- eller væskefasen i kontakt med et fast behandlingsmiddel, som består av et bæremateriale, hvilket f.eks. kan utvelges fra gruppen bestående av karbon, silikagel, silika-alumi-niumoksydgel og minst 50 vekts-% silikagel og zeolitt, samt en ved hjelp av adsorpsjon på dette fastholdt forbindelse. The invention relates in particular to a method for removing metals, such as e.g. Hg, Au, Bi, Cd, Co, Cr, Cu, Ni, Pb, Zn, Ag, Mn, Fe, Mo, Ti, Mg and Al from a gas phase or liquid phase from which the metal is to be removed, and by which it is brought the metal-containing gas or liquid phase in contact with a solid treatment agent, which consists of a carrier material, which e.g. can be selected from the group consisting of carbon, silica gel, silica-aluminium oxide gel and at least 50% by weight of silica gel and zeolite, as well as a compound retained on this by means of adsorption.

Når det gjelder teknikkens stand på dette område skal man nevne When it comes to the state of the art in this area, mention should be made

at U.S. patent nr. 3.050.461 vedrbrer sammensetninger som inneholder forbindelser som er i stand til å danne en chelat - forbindelse med et metall som inneholder -OH, -N= og -NI^- gruppen. Disse sammensetninger anvendes i form av et fast fiksert sjikt for å fjerne metaller så som Cu, Co, Fe, Cr, Pb, etc. fra bensin. Videre beskriver U.S. patent 2.938.907 forbindelser som kan danne kom-plekser med metaller som inneholder gruppene -C=S og -NH- i molekylet. Hollandsk patentansbkning 6.407.240, som var offentlig tilgjengelig 28. desember 1964, beskriver bruken av alkenyltiourea som kompleksdannende middel for kobber. Hollandsk patentansbkning 6.614.513, som var offentlig tilgjengelig 2. mai 1967, beskriver videre anvendelsen av polyestere for metallkompleksdannende formål. Polyestermolekylet inneholder gruppene -SH og -N=. Det tyske ut-legningsskriftet 1.039.238 beskriver ekstraksjon av metaller fra vandige lbsninger ved hjelp av de substituerte ditiokarbamater. Videre beskriver U.S. patent 3.197.274 og U.S. patent 3.239.565 ekstraksjon av metaller ved hjelp av aminohydroksyalkyl-forbindelser. Alle de ovennevnte patentskrifter beskriver imidlertid ikke anvendelsen av den foreslåtte organiske forbindelsen ifblge nærværende oppfinnelse, ved å utfelle denne på bærematerialet, og at man ved en slik fremgangsmåte avstedkommer en forbedret effekt. U.S. patent nr. 3.165.512 beskriver bruken av derivater av morfolinon, hvilke derivater imidlertid ikke tilhbrer noen av de forbindelser som anvendes ifblge nærværende oppfinnelse. Det nevnte patent nevner heller ikke noe om at den organiske forbindelse skal utfelles på bærematerialet. Britisk patent 933.563 beskriver gjenvinning av Ge ved anvendelse av tannin som utfelles på et ioneutbytter-materiale ("Wofatit E"). Tannin tilhbrer imidlertid ikke de organiske forbindelser som anvendes ifblge nærværende oppfinnelse, og ioneutbytter-materialet er et fast bærestoff som ikke tilhbrer de bære-stoffer som kan anvendes ifblge nærværende oppfinnelse. that the U.S. patent no. 3,050,461 relates to compositions containing compounds capable of forming a chelate compound with a metal containing the -OH, -N= and -NI^- group. These compositions are used in the form of a solid fixed layer to remove metals such as Cu, Co, Fe, Cr, Pb, etc. from petrol. Furthermore, the U.S. describes patent 2,938,907 compounds which can form complexes with metals containing the groups -C=S and -NH- in the molecule. Dutch Patent Application 6,407,240, which was publicly available on December 28, 1964, describes the use of alkenylthiourea as a complexing agent for copper. Dutch Patent Application 6,614,513, which was publicly available on May 2, 1967, further describes the use of polyesters for metal complexing purposes. The polyester molecule contains the groups -SH and -N=. The German publication 1,039,238 describes the extraction of metals from aqueous solutions by means of the substituted dithiocarbamates. Furthermore, the U.S. describes patent 3,197,274 and U.S. Pat. patent 3,239,565 extraction of metals using aminohydroxyalkyl compounds. However, all the above-mentioned patents do not describe the use of the proposed organic compound according to the present invention, by precipitating it on the support material, and that such a method results in an improved effect. U.S. patent no. 3,165,512 describes the use of derivatives of morpholinone, which derivatives, however, do not include any of the compounds used according to the present invention. The aforementioned patent also does not mention anything about the organic compound being precipitated on the support material. British Patent 933,563 describes the recovery of Ge using tannin which is precipitated on an ion exchange material ("Wofatit E"). However, tannin does not belong to the organic compounds used according to the present invention, and the ion exchange material is a solid carrier which does not belong to the carriers which can be used according to the present invention.

Med fremgangsmåten ifblge nærværende oppfinnelse får man en uovertruffet virkning ved å anvende en organisk forbindelse som er i stand til å danne en merkaptid- eller en chelat-forbindelse av et metall, og som utfelles på et spesielt bæremateriale ved at foran nevnte organiske forbindelse adsorberes på foran nevnte materiale. With the method according to the present invention, an unsurpassed effect is obtained by using an organic compound which is capable of forming a mercaptide or a chelate compound of a metal, and which is precipitated on a special support material by the aforementioned organic compound being adsorbed on in front of said material.

Fra tidligere er fblgende metall-holdige avgasser, flytende avfallsprodukter og lignende kjente: konsentrert vandig kaustisk alkali-lbsning fra elektrolyse av alkalisalter ved hjelp av kvikksblv-cellen; hydrogengass og syntetisk saltsyre, som er syntetisert hydrogengass og klorgass; forskjellige andre avlbpsvann og avgasser som er dannet ved elektrolyse av alkalisalter i kvikksblvcellen; forskjellige flytende avfallsstoffer og avgasser som har oppstått ved smelting av sink, kvikksblv, kobber og andre metaller; avlbpsvann fra pletterings-industrien; flytende avfallsstoffer som inneholder katalysatorer eller spaltningsprodukter derav, og som har blitt brukt ved polymerisasjons-reaksjoner og andre kata-lytiske reaksjoner; forskjellige flytende avfallsstoffer fra den syntetiske kjemiske industrien, og som anvender metall-forbindelser; og andre metallholdige og da spesielt tungmetall-holdige avgasser, avfallslbsninger og lignende, og som det finnes en hel del av i tilknytning til uorganiske og organiske industrier og gruveindustrien. The following metal-containing exhaust gases, liquid waste products and the like are known from the past: concentrated aqueous caustic alkali solution from electrolysis of alkali salts using the mercury vapor cell; hydrogen gas and synthetic hydrochloric acid, which are synthesized hydrogen gas and chlorine gas; various other waste water and waste gases formed by the electrolysis of alkali salts in the mercury cell; various liquid waste substances and exhaust gases that have arisen from the smelting of zinc, mercury, copper and other metals; wastewater from the plating industry; liquid waste substances containing catalysts or decomposition products thereof, and which have been used in polymerization reactions and other catalytic reactions; various liquid wastes from the synthetic chemical industry, which use metal compounds; and other metal-containing and especially heavy-metal-containing exhaust gases, waste solutions and the like, and of which there is a whole lot in connection with inorganic and organic industries and the mining industry.

I den senere tid har det blitt et spesielt stort bnske å kunne fjerne disse metallene fra de generelt skadelige metallholdige avgassene og avfallslosningene, for derved å kunne redusere mengdene til et nivå som kan aksepteres med hensyn til å unngå miljb-forurensning. I enkelte tilfeller sammenfaller disse bnsker også med onsket om å gjenvinne metallene. In recent times, there has been a particularly great desire to be able to remove these metals from the generally harmful metal-containing exhaust gases and waste discharges, in order to thereby be able to reduce the quantities to a level that can be accepted with regard to avoiding environmental pollution. In some cases, these needs also coincide with the desire to recover the metals.

Den vanlig anvendte metoden for å fjerne metaller fra metall-holdige gass- eller væskemedia, består enten i å utfelle eller flokkulere metallet ved tilsetning av et utfellingsmiddel eller et flokkuleringsmiddel, hvorefter metallet isoleres og oppsamles, eller den består i å absorbere metallet og isolere det ved å anvende en absorbent, som f.eks. aktivkull. The commonly used method of removing metals from metal-containing gas or liquid media consists either in precipitating or flocculating the metal by adding a precipitant or flocculating agent, after which the metal is isolated and collected, or it consists in absorbing the metal and isolating it by using an absorbent, such as activated carbon.

Når det gjelder den førstnevnte metoden er det imidlertid ytterst vanskelig å separere den ovenpå flytende losningen og dermed det metall-holdige presipitatet eller flokkulatet fra den store mengden avfallslosning som skal behandles. Videre var det nodvendig å anvende en storre mengde behandlingsmiddel, og det var også nodvendig med et stort antall utfellings-apparater eller finfiltrerings-apparater, for å oppnå en fullstendig separering og fjerning av de fine metallholdige faste partiklene. På den annen side var det med den sistnevnte metoden meget vanskelig å redusere konsentrasjonen av resterende metall i losningen til det onskede lave nivå. In the case of the first-mentioned method, however, it is extremely difficult to separate the above liquid discharge and thus the metal-containing precipitate or flocculate from the large amount of waste discharge to be treated. Furthermore, it was necessary to use a larger amount of treatment agent, and it was also necessary to have a large number of precipitation devices or fine filtration devices, in order to achieve a complete separation and removal of the fine metal-containing solid particles. On the other hand, with the latter method it was very difficult to reduce the concentration of residual metal in the solution to the desired low level.

Videre besto metoden for å fjerne metaller fra gassfasen, og da spesielt fjerning av dampfasemetaller som bl.a. kvikksolv i gass, i enten å kjole gassen til en lav temperatur ved normalt trykk eller et trykk mellom 3-5 kg/cm og kondensering av kvikksolv-dampen med separering av den samme, eller den besto i at kvikksolv ble adsorbert ved å la gassen passere gjennom et skikt som var pakket med aktivkull eller ved hjelp av en molekylær sil. Furthermore, the method consisted of removing metals from the gas phase, and in particular the removal of vapor phase metals such as mercury in gas, in either heating the gas to a low temperature at normal pressure or a pressure between 3-5 kg/cm and condensing the mercury vapor with separation of the same, or it consisted in the mercury being adsorbed by letting the gas pass through a layer that was packed with activated carbon or by means of a molecular sieve.

Den forste av disse metodene krever imidlertid en flertrinns kjoleutrustning for kjoling av gassen, mens den sistnevnte metoden har den ulempe at når man anvender aktivkull og molekylær-sil er mengden adsorbert kvikksolv liten, og folgelig er denne metoden lite effektiv samtidig som mengden adsorbent er stor. The first of these methods, however, requires a multi-stage dressing equipment for dressing the gas, while the latter method has the disadvantage that when activated carbon and molecular sieves are used, the amount of mercury adsorbed is small, and consequently this method is not very effective at the same time as the amount of adsorbent is large .

Det finnes en kjemisk metode for fjerning av metaller fra metallholdige materialer i gassfase, og ifolge denne metoden fjernes kvikksolv fra hydrogengass som kvikksolvklorid ved behandling med hypokloritt. Videre anvendes en behandlings-metode, ifolge hvilken man anvender svovelsyre med tilsatt kaliumpermanganatlosning, men denne metode er beheftet med den ulempe at reguleringen av driftsbetingelsene er vanskelig og en re-forurensning av gassen på grunn av overskudd av klor kan finne sted. There is a chemical method for removing metals from metal-containing materials in gas phase, and according to this method mercury is removed from hydrogen gas as mercuric chloride by treatment with hypochlorite. Furthermore, a treatment method is used, according to which sulfuric acid is used with added potassium permanganate solution, but this method is burdened with the disadvantage that the regulation of the operating conditions is difficult and a re-contamination of the gas due to an excess of chlorine can take place.

I tillegg finnes det også en metode hvor gass, som inneholder kvikksolv, behandles med oson. Separasjonen utfores ved hjelp av en elektrostatisk utskiller eller ved hjelp av mekanisk filtrering, men vanskeligheter er involvert i såvel separasjon som filtrering. In addition, there is also a method where gas containing mercury is treated with ozone. The separation is carried out by means of an electrostatic precipitator or by means of mechanical filtration, but difficulties are involved in both separation and filtration.

Selv om flere eksempler på mulige metoder har blitt beskrevet, innebærer fjerningen av metaller fra gassfase eller væskefase, innbefattet også de tilfeller hvor et samtidig onske om gjenvinning av metaller består, ikke bare betydelige vanskeligheter men også ulemper som krever en losning. Spesielt begrenses mulighetene av de hoye omkostninger med hensyn til behandlingsmiddel, apparatur og drift, da i tilfelle av avfallsløsninger og avgasser den behandlede mengden vanligvis Although several examples of possible methods have been described, the removal of metals from the gas phase or liquid phase, including those cases where there is a simultaneous desire for the recovery of metals, involves not only significant difficulties but also disadvantages that require a solution. In particular, the possibilities are limited by the high costs with respect to treatment means, equipment and operation, as in the case of waste solutions and degassing the treated quantity usually

er meget stor. Dette forer til at losningen av problemene is very large. This leads to the solution of the problems

er meget vanskelig. Det foran nevnte er således teknikkens stand idag. is very difficult. The aforementioned is thus the state of the art today.

Som et resultat av våre forskninger, hvorved vi har forsokt As a result of our researches, whereby we have attempted

å overvinne de foran nevnte vanskeligheter og ulemper og samtidig fremskaffe en metode som med fordel kan anvendes uten å være gjenstand for de tidligere nevnte begrensninger, har vi funnet at ved å anvende et fast behandlingsmiddel, hvorpå det er adsorbert og utfelt en viss organisk forbindelse som er i stand til å danne en merkaptid-forbindelse eller en N,0-.coordinert chelat-forbindelse med et tungmetall, kan metaller fjernes med en utmerket god kapasitet med hensyn til å fastholde metallet, som forekommer i det metallholdige materialet. Den nevnte gode kapasitet gjelder for såvel gassfase som væskefase, og den er stabil over en lengre tidsperiode. Ved å bli klar over dette har vi med fremgang kunnet utvikle en behandlingsmetode, med hvilken utmerkede resultater er oppnådd. to overcome the aforementioned difficulties and disadvantages and at the same time provide a method which can be advantageously used without being subject to the previously mentioned limitations, we have found that by using a solid treatment agent, on which a certain organic compound is adsorbed and precipitated which is able to form a mercaptide compound or an N,O-coordinated chelate compound with a heavy metal, metals can be removed with an excellent capacity to retain the metal, which occurs in the metal-containing material. The aforementioned good capacity applies to both gas phase and liquid phase, and it is stable over a longer period of time. By becoming aware of this, we have been able to develop a treatment method with which excellent results have been achieved.

Videre er det blitt funnet at de koordinerende betingelser omfatter (1) bruk av karbonholdig materiale som adsorptivt bærernateriale, eller bruk av andre adsorptive bærematerialer, som tidligere er brukt, og som ikke har vært brukt ved disse behandlinger, og (2) på dette utfelle ved adsorpsjon den tidligere beskrevne organiske forbindelsen, hvilket er absolutt nodvendig for å nå de ifolge oppfinnelsen oppsatte mål. Det ble videre funnet at kapasiteten med hensyn til å fastholde og fjerne metaller var uventet hoy ved bruk av den organiske forbindelsen og bærematerialet ifolge oppfinnelsen. Furthermore, it has been found that the coordinating conditions include (1) the use of carbonaceous material as adsorptive carrier material, or the use of other adsorptive carrier materials, which have previously been used, and which have not been used in these treatments, and (2) on this precipitation by adsorption the previously described organic compound, which is absolutely necessary to achieve the goals set according to the invention. It was further found that the capacity with respect to retaining and removing metals was unexpectedly high when using the organic compound and carrier material according to the invention.

Det er derfor et formål med nærværende oppfinnelse å fremskaffe en forbedret behandlingsprosess, hvorved metallholdige gass-faserieller væskefaser kan behandles med et enkelt fremstillbart og lett tilgjengelig billig behandlingsmiddel og at kapasiteten med hensyn til å fastholde og fjerne det metall-holdige materialet er meget god. Et annet formål er å fremskaffe en fordelaktig metode for fjerning av de tidligere nevnte metaller ved hjelp av en ytterst enkel apparatur og enkle driftsbetingelser. Ytterligere et formål er å fremskaffe et billig behandlingsmiddel med hoy yteevne, og som egner seg for bruk ved den foran beskrevne behandlingen. It is therefore an object of the present invention to provide an improved treatment process, whereby metal-containing gas phases or liquid phases can be treated with a simple to produce and easily available cheap treatment agent and that the capacity with regard to retaining and removing the metal-containing material is very good. Another purpose is to provide an advantageous method for removing the previously mentioned metals by means of an extremely simple apparatus and simple operating conditions. A further purpose is to provide an inexpensive treatment agent with high performance, and which is suitable for use in the treatment described above.

Ytterligere formål og fordeler med nærværende oppfinnelse vil fremgå av den folgende beskrivelse. Further purposes and advantages of the present invention will be apparent from the following description.

Ved fremgangsmåten ifblge nærværende oppfinnelse fjernes metaller fra en gassfase eller væskefase, hvorved man bringer den metallholdige gass- eller væskefasen i kontakt med et fast behandlingsmiddel, som består av et bæremateriale, hvilket for eksempel kan utvelges fra gruppen bestående av karbon, silikagel, silika-aluminiumodsydgel og minst 5o vekts-% silikagel og zeolitt, samt en ved hjelp av adsorpsjon på dette fastholdt forbindelse, og fremgangsmåten er karakterisert ved at nevnte forbindelse er valgt fra gruppen bestående av: In the method according to the present invention, metals are removed from a gas phase or liquid phase, whereby the metal-containing gas or liquid phase is brought into contact with a solid treatment agent, which consists of a carrier material, which can for example be selected from the group consisting of carbon, silica gel, silica aluminum oxide gel and at least 50% by weight silica gel and zeolite, as well as a compound retained on this by means of adsorption, and the method is characterized by said compound being selected from the group consisting of:

(a) en organisk forbindelse som er i stand til å danne en merkaptid-forbindelse med et metall, hvor forbindelsen har -SH-radikal eller et alkalisalt av dette i molekylet, som også kan inneholde et strukturelement valgt fra gruppen bestående av -N=, -S-, -NH-, -N=N- og -NH-NH-radikaler i samme molekyl; (b) en organisk forbindelse som er i stand til å danne en merkaptid-forbindelse med et metall, hvor forbindelsen har radikalet ^=C=S i molekylet som også inneholder et strukturelement valgt fra gruppen bestående av -N=, -S-, -NH-, -N=N- med unntagelse for -N=N-<^ og -NH-NH-radikaler med unntagelse for -NH-NH-<^) i samme molekyl; og (c) en organisk forbindelse som kan danne en chelat-forbindelse med et metall, hvilken forbindelse er fri for alkylradikal og har -OH-radikalet i molekylet, som også inneholder et strukturelement valgt fra gruppen bestående av -N= og -NH2-radikaler i samme molekyl. (a) an organic compound capable of forming a mercaptide compound with a metal, the compound having -SH radical or an alkali salt thereof in the molecule, which may also contain a structural element selected from the group consisting of -N= , -S-, -NH-, -N=N- and -NH-NH radicals in the same molecule; (b) an organic compound capable of forming a mercaptide compound with a metal, the compound having the radical ^=C=S in the molecule which also contains a structural element selected from the group consisting of -N=, -S-, -NH-, -N=N- with the exception of -N=N-<^ and -NH-NH radicals with the exception of -NH-NH-<^) in the same molecule; and (c) an organic compound capable of forming a chelate compound with a metal, which compound is free of alkyl radical and has the -OH radical in the molecule, which also contains a structural element selected from the group consisting of -N= and -NH2- radicals in the same molecule.

Som eksempler på forbindelser i gruppe (a), skal gruppene As examples of compounds in group (a), the groups shall

(1) - (4) angis: (1) - (4) states:

(1) Merkaptid-forbindelser med formel, (1) Mercaptide compounds of formula,

hvor R betyr en aromat eller en gruppe som i ende-stilling inneholder et -CH= eller -CH2-radikal, og M betyr hydrogen eller et alkalimetall. where R means an aromatic or a group which in the terminal position contains a -CH= or -CH2 radical, and M means hydrogen or an alkali metal.

(2) Tiazolforbindelser med formel, (2) Thiazole compounds of formula,

hvor R betyr en aromat, og where R means an aromatic, and

M hydrogen eller et alkalimetall. M hydrogen or an alkali metal.

(3) Di-alkylditiokarbaminsyre med formel, (3) Di-alkyldithiocarbamic acid of formula,

hvor R betyr et - C^Q-alkylradikal, metyl, etyl, n-butyl, etc, og where R means a - C 1 -C 4 -alkyl radical, methyl, ethyl, n-butyl, etc, and

M betyr hydrogen eller et alkalimetall. M means hydrogen or an alkali metal.

(4) Xantater med formel, (4) Xanthates with formula,

hvor R betyr butyl eller isopropyl og M hydrogen eller et alkalimetall. where R means butyl or isopropyl and M hydrogen or an alkali metal.

Spésielle eksempler på forbindelser fra gruppe (a) omfatter folgende organiske forbindelser som kan danne en merkaptid-forbindelse med et metall; Special examples of compounds from group (a) include the following organic compounds which can form a mercaptide compound with a metal;

2-aminoetantiol (H2NCH2CH2SH) 2-Aminoethanethiol (H2NCH2CH2SH)

butyl-merkaptan (C4HgSH) butyl mercaptan (C4HgSH)

cykloheksylaminsalt av 2-merkaptobenzotiazol cyclohexylamine salt of 2-mercaptobenzothiazole

L-cystein Di-alkylditiokarbaminsyre (alkalimetallsalt) -S-M; R 5 ci~ cio alkYlradikal såsom metyl, etyl og n-butyl, M; alkalimetall) 2,3-dimerkapto-l-propanol glutation 2-merkaptobenzotiazol og dets alkalimetallsalter. 2-merkaptoetanol dl-merkaptosuccinsyre pipekolin-pipekolyl-ditio-karbamat piperidin-pentametylen-ditio-karbamat L-cysteine Di-alkyldithiocarbamic acid (alkali metal salt) -S-M; R 5 ci~ cio alkYl radical such as methyl, ethyl and n-butyl, M; alkali metal) 2,3-dimercapto-l-propanol glutathione 2-mercaptobenzothiazole and its alkali metal salts. 2-mercaptoethanol dl-mercaptosuccinic acid pipecoline-pipecolyl-dithio-carbamate piperidine-pentamethylene-dithio-carbamate

tioeddiksyre (CHgCOSH) thioacetic acid (CHgCOSH)

tioglykolsyre (HS.CH2COOH) og dets alkalimetallsalter ; thioglycolic acid (HS.CH2COOH) and its alkali metal salts;

tionalid thionalide

tiofenol thiophenol

og det alkalimetallsalter5and the alkali metal salts5

isopropylxantinsyre isopropylxanthine acid

og dets alkalimetallsalter. and its alkali metal salts.

Eksempler på forbindelser fra ovenstående gruppe (b) omfatter folgende: Examples of compounds from the above group (b) include the following:

(1) tiokarbazoner med formel, (1) thiocarbazones of formula,

hvor R betyr en aromat. (2) Tiourea med formel, where R means an aromatic. (2) Thiourea with formula,

hvor R og R<1> hver betyr en aromat eller et - C^Q-alkylradikal. where R and R<1> each means an aromatic or a -C₁₋ alkyl radical.

(3) 2-merkaptobenzimidazol. (3) 2-mercaptobenzimidazole.

(4) 2-merkaptoimidazolin. (4) 2-mercaptoimidazoline.

Spesielle eksempler på forbindelser fra gruppe (b) omfatter folgende organiske forbindelser som kan danne merkaptid-forbindelse med et metall: Special examples of compounds from group (b) include the following organic compounds which can form a mercaptide compound with a metal:

Bismutiol II p-dimetylaminobenzylidenerhodamin di-(3-naf tyltiokarbazon 2-merkaptbbenzimidazol (0-fenylen-tiouréa) 2-merkaptoimidazolin (etylentiourea) tiokarbanilid di-6rtotolyltidurea ( trimetyltiourea Bismuthiol II p-Dimethylaminobenzylideneerhodamine di-(3-naphthylthiocarbazone). 2-mercaptbenzimidazole (O-phenylene-thiourea) 2-mercaptoimidazoline (ethylenethiourea) thiocarbanilide di-6rtotolyltidiurea (trimethylthiourea

Spesielle eksempler på forbindelser fra gruppe (c) omfatter f.eks. folgende organiske forbindelser som kan danne en N,0-koordinert-chelat-forbindelse med et metall: Special examples of compounds from group (c) include e.g. following organic compounds which can form an N,0-coordinated-chelate compound with a metal:

Antranilsyre Anthranilic acid

Oksin Auxin

Selv om de oven angitte organiske forbindelser, som er anvend-bare i nærværende oppfinnelse, omfatter både de som er vann-loselige og ikke-vannlbselige, så kan disse forbindelser oppløses i løsningsmidler som er egnede for de forskjellige forbindelser, hvorpå de festes til et bæremateriale ved adsorpsjon. Although the above-mentioned organic compounds, which are applicable in the present invention, include both those which are water-soluble and non-water-soluble, these compounds can be dissolved in solvents suitable for the various compounds, after which they are attached to a carrier material by adsorption.

Som slike løsningsmidler kan nevnes f.eks. vann, vandige alkaliske lbsninger som inneholder en uorganisk alkalisk substans, som f.eks. alkalimetall-hydroksyder, alkalimetall -karbonater, alkalimetall-bikarbonater og ammoniakk; metanol, etanol, propanol, butanol og andre C y - C1Q alifatiske alkoholer; halogenerte lavere hydrokarboner, som f.eks. diklormetan, triklormetan og trikloretylen-, di-lavere-alkyl-karbonyler, som f.eks. dimetyl-karbonyl; karbontetraklorid; kloroform; og aceton. As such solvents can be mentioned e.g. water, aqueous alkaline solutions containing an inorganic alkaline substance, such as e.g. alkali metal hydroxides, alkali metal carbonates, alkali metal bicarbonates and ammonia; methanol, ethanol, propanol, butanol and other C y - C1Q aliphatic alcohols; halogenated lower hydrocarbons, such as dichloromethane, trichloromethane and trichloroethylene, di-lower alkyl carbonyls, such as e.g. dimethyl carbonyl; carbon tetrachloride; chloroform; and acetone.

Disse losningsmidler er ikke underkastet noen restriksjoner, These solvents are not subject to any restrictions,

og de kan anvendes så lenge de ikke reagerer med de foran nevnte organiske forbindelser (dvs. er inerte i forhold til disse) and they can be used as long as they do not react with the aforementioned organic compounds (i.e. are inert in relation to these)

og kan lose disse. Foretrukne losningsmidler er de som lett kan fjernes efter at de foran nevnte organiske forbindelser er festet til bærematerialet ved adsorpsjon ved hjelp av metoder som f.eks. vann-vasking, vasking med en fortynnet vandig syre-losning, fordampning, vakuumtorking og lufttbrking. and can release these. Preferred solvents are those which can be easily removed after the aforementioned organic compounds have been attached to the support material by adsorption using methods such as e.g. water washing, washing with a dilute aqueous acid solution, evaporation, vacuum drying and air drying.

Det er nesten unbdvendig å nevne at et løsningsmiddel kan slbyfes i de tilfeller hvor den organiske anvendte forbindelsen selv foreligger i flytende form. It is almost unnecessary to mention that a solvent can be diluted in those cases where the organic compound used is itself in liquid form.

Når man på bærematerialet ved hjelp av adsorpsjon anbringer When applied to the carrier material by means of adsorption

den tidligere beskrevne organiske forbindelsen eller en lbsning derav, kan en hvilken som helst metode anvendes, hvorved den organiske forbindelsen eller losningen derav bringes i fullstendig kontakt med bærematerialet. F.eks. kan bære-materialet bli gjenstand for en immersjons-behandling i disse løsninger, eller lbsningene kan sendes gjennom en kolonne som er pakket med bærematerialet. Man kan ellers anvende andre the previously described organic compound or a solution thereof, any method may be used whereby the organic compound or solution thereof is brought into complete contact with the support material. E.g. the carrier material can be subjected to an immersion treatment in these solutions, or the solutions can be sent through a column packed with the carrier material. You can otherwise use others

metoder for å skape kontakt mellom væskefasen og den faste fasen. Denne fremgangsmåte for anbringelse av den organiske forbindelsen på bærematerialet ved hjelp av adsorpsjon utfores vanligvis ved romtemperatur, og, hvis onsket, kan man foreta den nevnte operasjon ved 30 - 70°C. methods to create contact between the liquid phase and the solid phase. This method of placing the organic compound on the support material by means of adsorption is usually carried out at room temperature, and, if desired, the said operation can be carried out at 30 - 70°C.

Efter avsetnings-behandlingen kan det resulterende, faste behandlings-midlet anvendes direkte men, hvis onsket, kan det anvendes efter at det har vært gjenstand for vasking med vann, vasking i fortynnet, vandig syre-losning, fordampning, vakuumtorking, lufttbrking eller andre behandlingsmetoder for fjerning av lbsning. After the deposition treatment, the resulting solid treatment agent can be used directly but, if desired, it can be used after it has been subjected to washing with water, washing in dilute, aqueous acid solution, evaporation, vacuum drying, air drying or other treatment methods for removing pounds.

Da bærematerialet utgjor substratet i det faste behandlingsmidlet, som skal anvendes i nærværende oppfinnelse, kan både naturlig forekommende og syntetiske materialer anvendes. Materialet As the carrier material forms the substrate in the solid treatment agent, which is to be used in the present invention, both naturally occurring and synthetic materials can be used. The material

som velges fra gruppen bestående av karbon-bærere, som f.eks. aktivkull og benkull, silikagel, zeolitt og silika-aluminiumoksyd-gel, som inneholder minst 50 vekts-% silikagel, oppviser utmerkede resultater, og disse anbefales derfor. Hvis onsket, kan organiske adsorbenter med hoy molekylvekt og molekyl- which is selected from the group consisting of carbon carriers, such as e.g. activated carbon and bone carbon, silica gel, zeolite and silica-alumina gel, containing at least 50% by weight of silica gel, show excellent results and are therefore recommended. If desired, organic adsorbents with high molecular weight and molecular

siler anvendes som bæremateriale, men disse er ikke onskelige på grunn av deres hbye pris. Videre kan bærere av aluminiumoksyd, magnesiumoksyd og naturlig forekommende kvarts-sand også anvendes, men de oppnådde resultatene med disse er underlegne i forhold til de tidligere anbefalte bærematerialene. sieves are used as carrier material, but these are not desirable because of their high price. Furthermore, carriers of aluminum oxide, magnesium oxide and naturally occurring quartz sand can also be used, but the results obtained with these are inferior to the previously recommended carrier materials.

Stbrrelsen av bæremateriale-partiklene kan variere over et stort område, og vanligvis anvendes de med stbrrelse 2-180 mesh, fortrinnsvis 6 - 150 mesh. Mengden av den foran nevnte organiske forbindelsen som er festet til bærematerialet ved adsorpsjon, kan også variere over et stort område, og vanligvis anvendes en mengde i området 1-30 vekts-%, fortrinnsvis 2-20 The size of the carrier material particles can vary over a large area, and usually those with a size of 2-180 mesh, preferably 6-150 mesh, are used. The amount of the aforementioned organic compound which is attached to the support material by adsorption can also vary over a large range, and usually an amount in the range of 1-30% by weight, preferably 2-20

vekts-%, beregnet på bærematerialet. Bærematerialets partikkel-stbrrelse og mengden av den organiske forbindelsen som adsorberes på bærematerialet, kan hensiktsmessig modifiseres med hensyn til bærematerial-type, type organisk forbindelse, material-type som skal behandles, det faste behandlings- % by weight, calculated on the carrier material. The particle size of the support material and the amount of the organic compound adsorbed on the support material can be appropriately modified with regard to the type of support material, type of organic compound, type of material to be treated, the fixed treatment

midlet og hastigheten med hvilken behandlingen utfores. the means and speed with which the treatment is carried out.

Det finnes ingen spesielle begrensninger med hensyn ti 1 metoden for å skape kontakt mellom det faste. behandlingsmidlet, og som ovenfor er beskrevet, bg det metallholdige materialet, som foreligger som . gassfase eller væskefase, og som skal behandles ifblge den oppfunnede fremgangsmåten. Alle kontakt-metoder i forbindelse med væske-fast-fase eller gass-fast-fase, og som er i stand til å gi en fullstendig kontakt mellom behandlingsmidlet og materialet som skal behandles, kan anvendes. En satsvis-metode kan anvendes, men man foretrekker en kontinuerlig kontakt-metode som f.eks. kolonne-metdden. There are no particular limitations with regard to the method of creating contact between the solid. the treatment agent, and as described above, bg the metal-containing material, which is available as . gas phase or liquid phase, and which is to be treated according to the invented method. All contact methods in connection with liquid-solid phase or gas-solid phase, and which are able to provide complete contact between the treatment agent and the material to be treated, can be used. A batch method can be used, but a continuous contact method such as e.g. column metdden.

F.eks. kan materialet, som skal behandles, strbmme ned gjennom en kolonne som er pakket med det faste behandlingsmidlet, eller materialet kan strbmme opp gjennom kolonnen. En annen metode består i å danne et fluidisert skikt av det faste behandlingsmidlet og la gassfase-materiålet, som skal behandles, passere gjennom nevnte skikt, eller hvis materialet, som skal behandles, er en væskefase, så kan dette sprayes. Mens kontakt-behandlingén kan utfores i et enkelt trinn,' så kan behandlingen også utfores ifblge en flertrinns-metode som består i flere kontakt-soner, og materialet, som skai behandles, får passere gjennom disse soner. Selv om det ikke finnes spesielle begrensninger med hensyn til temperaturen, ved E.g. the material to be treated can flow down through a column packed with the solid treatment agent, or the material can flow up through the column. Another method consists in forming a fluidized layer of the solid treatment agent and allowing the gas-phase material to be treated to pass through said layer, or if the material to be treated is a liquid phase, this can be sprayed. While the contact treatment can be carried out in a single step, the treatment can also be carried out according to a multi-step method consisting of several contact zones, and the material to be treated is allowed to pass through these zones. Although there are no particular restrictions with regard to temperature, wood

hvilken behandlingsmidlet'og materialet'kommer i kontakt, anvendes for det meste en temperatur mellom 5 - 35°C. which the treatment agent and the material come into contact, a temperature between 5 - 35°C is used for the most part.

Kontakt-tideri eller prosessens hastighet, dvs. den prosess hvorved det faste behandlingsmidlet kommer' :i' kontakt med det materialet som skal behandles, kan med letthet varieres av fagfolk i; overensstemmelse med typen av organisk forbindelse, partikkelstbrfelse bg typen av bærematerialet samt mengde adsorbert organisk forbindelse, typen av materialet som skal behandles' og kontakt-metode i forbindelse med behåndlirigs-midlet og materialet som' skal behandles. Vanligvis kan de optimale betingelser lett bestemmes eksperimentelt til å ligge i området SV (space velocity) = 0,2 - 20 l/t i tilfelle materialet, som skal behandles, foreligger i form av væske-fase, og i tilfelle materialet, som skal behandles, foreligger i gass-fase vil de optimale betingelser ligge ved SV = 100 - 5000 l/t. The contact time or speed of the process, i.e. the process by which the solid treatment agent comes into contact with the material to be treated, can be easily varied by professionals in; compliance with the type of organic compound, particle size bg the type of carrier material and amount of adsorbed organic compound, the type of material to be treated and contact method in connection with the treatment agent and the material to be treated. Generally, the optimal conditions can easily be determined experimentally to lie in the range SV (space velocity) = 0.2 - 20 l/h in the case that the material to be processed is in the form of a liquid phase, and in the case that the material to be processed , exists in the gas phase, the optimal conditions will be at SV = 100 - 5000 l/h.

Av metaller, som kan foreligge i gass- eller væske-fase, hvilke skal behandles ifolge den oppfunnede fremgangsmåten, Of metals, which can be present in gas or liquid phase, which are to be treated according to the invented method,

kan folgende metaller nevnes: Hg, Au, Bi, Cd, Co, Cr, Cu, the following metals can be mentioned: Hg, Au, Bi, Cd, Co, Cr, Cu,

Ni, Pb, Zn, Ag, Mn, Fe, Mo, Ti, Mg og Al. Fremgangsmåten ifolge oppfinnelsen kan med fordel anvendes ved behandling av gassfase eller væskefase, hvilke inneholder minst en av de foran nevnte metaller. Ni, Pb, Zn, Ag, Mn, Fe, Mo, Ti, Mg and Al. The method according to the invention can advantageously be used when treating gas phase or liquid phase, which contain at least one of the aforementioned metals.

Den foran beskrevne organiske forbindelsen velges fortrinnsvis med hensyn til en metall-type som forekommer i materialet som skal behandles. F.eks. anvendes fortrinnsvis tionalid, 2-merkaptobenzotiazol og p-dimetylaminobenziliden-rhodanin ved forekomst av Hg, Cu, Au, Ag, Cd og Pb; oksin og 2-merkaptobenzotiazol når det foreligger Bi, Co, Ni og Zn; og oksin og 8-hydroksykinaldin når det foreligger Mn, Cr, Fe, Mo, Ti og Mg. Når materialet, som skal behandles, inneholder flere metaller, kan flere organiske forbindelser anvendes. The above-described organic compound is preferably selected with regard to a type of metal occurring in the material to be treated. E.g. thionalide, 2-mercaptobenzothiazole and p-dimethylaminobenzylidene-rhodanine are preferably used in the presence of Hg, Cu, Au, Ag, Cd and Pb; oxine and 2-mercaptobenzothiazole when Bi, Co, Ni and Zn are present; and oxine and 8-hydroxyquinaldine when Mn, Cr, Fe, Mo, Ti and Mg are present. When the material to be treated contains several metals, several organic compounds can be used.

I tilfelle materialet, som skal behandles, foreligger som væske-fase, er det mulig efter fremgangsmåten ifolge oppfinnelsen å forbehandle materialet med en anion-bytter-harpiks, og derefter kontakte med på denne måten forbehandlede metall-holdige materialer med det foran nevnte faste behandlings-midlet. Vanligvis vil, når metall-innholdet er meget stort og gjenvinningen av metallet er aktuell, en forbehandling av dette slag være onskelig. Da gjenvinningen av metallet fra anion-bytter-harpiksen er en relativ enkel metode, kan metallet i det metall-holdige materialet gjenvinnes ved denne forbehandling. Efter dette kan losningen, som inneholder resten av metallet, komme i kontakt med det faste behandlingsmidlet ved at resten festes til behandlings-midlet. In the event that the material to be treated exists as a liquid phase, it is possible, according to the method according to the invention, to pre-treat the material with an anion-exchange resin, and then contact metal-containing materials pre-treated in this way with the aforementioned solid treatment - the means. Usually, when the metal content is very large and the recovery of the metal is relevant, a pre-treatment of this kind will be desirable. As the recovery of the metal from the anion-exchange resin is a relatively simple method, the metal in the metal-containing material can be recovered by this pretreatment. After this, the solution, which contains the rest of the metal, can come into contact with the solid treatment agent by the residue being attached to the treatment agent.

Som anion-bytter-harpiks, som inneholder en utbyttbar gruppe, kan fblgende nevnes: As anion-exchange resins, which contain an exchangeable group, the following can be mentioned:

hvor X betyr et anion, som f.eks. Cl , OH , etc, og R betyr et alkylradikal som f.eks. CH3, C2H5' etc. where X means an anion, such as Cl , OH , etc, and R means an alkyl radical such as e.g. CH3, C2H5' etc.

Forbehandlingen kan utfores på fblgende måte. Det materialet som skal behandles får suksessivt gjennomstrbmme en kolonne, som er fylt med en tidligere beskrevet anion-bytter-harpiks. Alternativt tilsettes anion-bytter-harpiksen til behandlings-tanken, og adsorpsjonen utfores ved hjelp av omrbring. Derefter separeres harpiksen fra den behandlede væsken. The pretreatment can be carried out in the following way. The material to be treated is successively passed through a column, which is filled with a previously described anion-exchange resin. Alternatively, the anion-exchange resin is added to the treatment tank, and the adsorption is carried out by means of circulation. The resin is then separated from the treated liquid.

Fremgangsmåten ifblge oppfinnelsen kan anvendes som en behandlings-metode for fjernelse av metaller fra gass- eller væske-fase, hvorved disse kan være av forskjellig sammen-setning og av såvel sur som alkalisk karakter. F.eks. kan fremgangsmåten ifblge oppfinnelsen anvendes for å fjerne Hg fra den konsentrerte, vandige kaustisk-alkaliske lbsningene, The method according to the invention can be used as a treatment method for removing metals from gas or liquid phase, whereby these can be of different composition and of both acidic and alkaline character. E.g. can the method according to the invention be used to remove Hg from the concentrated, aqueous caustic-alkaline solutions,

som erholdes fra kvikksblv-celle-metoden for elektrolyse av alkali-salter; ved å fjerne Hg fra hydrogengass, og som fås ved den nevnte elektrolyse; ved å fjerne Hg i syntetisk klorhydrogen-syre, som er syntetisert av nevnte hydrogengass og klorgass; dessuten ved å fjerne Hg fra forskjellige avgasser og avlbpsvann som fås ved kvikksblvmetoden for elektrolyse av alkali-salter; ved å fjerne Hg, Cd, Mn, Cr, Cu, Fe, etc, fra forskjellige avgasser og avlbpsvann som erholdes ved smelting av forskjellige metaller; ved å fjerne Cr og Cu fra avlbpsvann fra pletteringsindustrien; ved å fjerne Hg, Cd, Mn, Cr, Cu, Fe, etc, fra \ avf alls-lbsninger som inneholder katalysatorer eller spaltningsprodukter av disse, såvel som fra avgasser og avlbpsvann fra den syntetiske, kjemiske industrien; og ved å fjerne metaller som forekommer i en hel which is obtained from the mercury cell method of electrolysis of alkali salts; by removing Hg from hydrogen gas, and which is obtained by the aforementioned electrolysis; by removing Hg in synthetic hydrochloric acid, which is synthesized from said hydrogen gas and chlorine gas; moreover, by removing Hg from various exhaust gases and waste water obtained by the mercury method for the electrolysis of alkali salts; by removing Hg, Cd, Mn, Cr, Cu, Fe, etc, from various waste gases and waste water obtained by smelting various metals; by removing Cr and Cu from waste water from the plating industry; by removing Hg, Cd, Mn, Cr, Cu, Fe, etc, from waste solutions containing catalysts or decomposition products thereof, as well as from waste gases and waste water from the synthetic chemical industry; and by removing metals occurring in a whole

del gasser og losninger. separate gases and solutions.

Fblgende eksempler og kontroll-fasbk skal illustrere forskjellige utfbrelsesformer av nærværende oppfinnelse. The following examples and control tables shall illustrate different embodiments of the present invention.

EKSEMPEL 1 og kontroll 1 EXAMPLE 1 and Control 1

300 ml karbontetraklorid, hvori det ble lost 150 mg 2-merkaptobenzotiazol, fikk strdmme ned gjennom et glassrbr med 8 mm innvendig diameter, og som var fylt med 10 g silikagel. Dette resulterte i en adsorpsjon og en utfelling på silikagelen av 2-merkaptobenzotiazol. Mengden av adsorbert og utfelt 2-merkaptobenzotiazol var ca. 500 mg. Dette bære-materialet med adsorbert 2-merkaptobenzotiazol fikk stå 24 timer for at karbontetraklorid kunne fordampe. Derefter lot man en salt-lbsning, fremstilt av kvikksblvklorid og natriumklorid (kvikksolv 1,4 mg/l), strbmme ned gjennom nevnte ror med en hastighet på 130 cc pr. time. Dette forsbk ble gjentatt 10 ganger. 300 ml of carbon tetrachloride, in which 150 mg of 2-mercaptobenzothiazole was dissolved, was allowed to flow down through a glass tube with an internal diameter of 8 mm, which was filled with 10 g of silica gel. This resulted in an adsorption and a precipitation on the silica gel of 2-mercaptobenzothiazole. The amount of adsorbed and precipitated 2-mercaptobenzothiazole was approx. 500 mg. This support material with adsorbed 2-mercaptobenzothiazole was allowed to stand for 24 hours so that the carbon tetrachloride could evaporate. A salt solution, made from mercury chloride and sodium chloride (mercury 1.4 mg/l), was then allowed to flow down through the said tube at a rate of 130 cc per minute. hour. This experiment was repeated 10 times.

Hver gang var kvikksblv-konsentrasjonen i den utkommende væsken mindre enn 5 ppb. Videre ble vekten av bærematerialet og mengden av organisk forbindelse, som ved adsorpsjon ble festet til bære-materialet, og Hg-konsentrasjonen i materialet, som skal behandles variert. Each time the mercury concentration in the exiting liquid was less than 5 ppb. Furthermore, the weight of the carrier material and the amount of organic compound, which was attached to the carrier material by adsorption, and the Hg concentration in the material to be treated were varied.

Som kontroll ble forsbket utfort på eksakt samme måte som As a control, the experiment was carried out in exactly the same way as

angitt i eksempel 1, med den unntagelse at adsorpsjonen og utfellingen av 2-merkaptobenzotiazol på silikagel ikke ble foretatt (kontroll 1). Forsbkene ble gjentatt 10 ganger og hver gang var lbsningens kvikksolvinnhold ca. 13.000 ppb. stated in example 1, with the exception that the adsorption and precipitation of 2-mercaptobenzothiazole on silica gel was not carried out (control 1). The experiments were repeated 10 times and each time the solution's mercury content was approx. 13,000 ppb.

De erholdte resultater fra de foran nevnte forsbkene vises i tabell 1. The results obtained from the aforementioned experiments are shown in table 1.

Resultatene som vises i tabell 1.var helt uventede. The results shown in Table 1 were completely unexpected.

EKSEMPEL 2 EXAMPLE 2

100 mg tionalid opplost i 100 ml dikloretan fikk stromme gjennom et glassror med 8 mm innvendig diameter, og som var fylt med 5 g aktivkull, hvorved tionalidet ble adsorbert og fastholdt på aktivkull-skiktet. Ved å innblåse luft ble losningsmidlet fjernet. En losning, som inneholdt 5,6 mg pr. liter kvikksolv, fikk stromme gjennom dette tionalidholdige bærestoffet med en hastighet på 130 ml pr. ti me, hvorpå kvikksolvkonsentrasjonen i utkommende losningsmiddel var mindre enn 50 ppb. 100 mg of thionalid dissolved in 100 ml of dichloroethane was allowed to flow through a glass tube with an internal diameter of 8 mm, which was filled with 5 g of activated carbon, whereby the thionalid was adsorbed and retained on the activated carbon layer. By blowing in air, the solvent was removed. A solution, which contained 5.6 mg per liter of quicksilver, was allowed to flow through this thionalide-containing carrier at a rate of 130 ml per ti me, after which the mercury solution concentration in the exiting solvent was less than 50 ppb.

EKSEMPLENE 3- 24 EXAMPLES 3-24

Forsokene ble utfort som angitt i eksempel 2, ved at man. som kontaktmetode anvendte enten kolonnemetoden eller den satsvise metoden, som beskrives i eksempel 1, og med forskjellige kombinasjoner av organisk forbindelse og bærestoff, og hvorved metallene som skal fjernes var av forskjellige typer. De erholdte resultatene vises i tabell 2. The experiments were carried out as indicated in example 2, by man. as contact method used either the column method or the batch method, which is described in example 1, and with different combinations of organic compound and carrier, and whereby the metals to be removed were of different types. The results obtained are shown in table 2.

EKSEMPLENE 25 - 5Q og kontroll 2 EXAMPLES 25 - 5Q and control 2

Forsokene ble utfort med kvikksolv-holdige materialer, hvorved disse hadde sure eller alkaliske egenskaper. Som den først-nevnte ble det anvendt kvikksolv-holdige, konsentrerte, vandige saltsyre-losninger mens de sistnevnte besto av kvikksolv-holdige, vandige, kaustisk-alkaliske losninger. De erholdte resultatene fra kontrollforsok 2, hvorved forsoket ble utfort på eksakt samme måte som angitt i eksempel 48, med unntagelse av at den organiske forbindelsen ikke ble utfelt på aktiv-kullet. The experiments were carried out with mercury-containing materials, whereby these had acidic or alkaline properties. Like the first-mentioned, mercury-containing, concentrated, aqueous hydrochloric acid solutions were used, while the latter consisted of mercury-containing, aqueous, caustic-alkaline solutions. The results were obtained from control experiment 2, whereby the experiment was carried out in exactly the same way as stated in example 48, with the exception that the organic compound was not precipitated on the activated carbon.

EKSEMPLENE 51 - 61 og kontroll 3 EXAMPLES 51 - 61 and control 3

60 g 2-merkaptobenzotiazol ble opplost i 1,2 liter kaustisk soda-losning av 3% konsentrasjon, og derefter fikk losningen stromme ned gjennom 300 g aktiv-kull med partikkelstorrelse på 6 - 20 mesh, for derved å adsorbere det forstnevnte stoffet til aktivkull. Den adsorberte mengden var ca. 18 vekts-%, beregnet på aktivkull. 60 g of 2-mercaptobenzothiazole was dissolved in 1.2 liters of caustic soda solution of 3% concentration, and then the solution was allowed to flow down through 300 g of activated carbon with a particle size of 6 - 20 mesh, thereby adsorbing the aforementioned substance to activated carbon . The adsorbed amount was approx. 18% by weight, calculated on activated carbon.

Efter vasking med vann og luft-torking av. aktivkull-partiklene med adsorbert 2-merkaptobenzotiazol, ble de fylt i et akryl-harpiks-ror med 60 mm innvendig diameter og ca. 25 cm hoyde. Derefter fikk hydrogengass, som inneholdt 9,1 mg kvikksolv pr. kubikkmeter, gjennomstromme roret med en hastighet på 2500 l/t. ved romtemperatur, hvorefter kvikksolv-innholdet i hydrogengassen var 0,001 mg/m 3 6 timer senere, 0,002 mg/m 3 30 timer senere og 0,002 mg/m 3 90 timer senere. After washing with water and air drying. the activated carbon particles with adsorbed 2-mercaptobenzothiazole, they were filled in an acrylic resin tube with an internal diameter of 60 mm and approx. 25 cm high. Then got hydrogen gas, which contained 9.1 mg of mercury per cubic metres, flow through the rudder at a rate of 2500 l/h. at room temperature, after which the mercury solvate content in the hydrogen gas was 0.001 mg/m 3 6 hours later, 0.002 mg/m 3 30 hours later and 0.002 mg/m 3 90 hours later.

Forsokene ble utfort som ovenfor beskrevet i eksempel 51, hvorved man varierte den organiske forbindelsen og typen bærestoff. De erholdte resultater vises i tabell 4, sammen med resultatene fra eksempel 51. Her vises også resultatene av kontrollforsok 3, som også ble utfort på samme måte som angitt i eksempel 51, men uten utfelling av en organisk forbindelse på bærestoffet. The experiments were carried out as described above in example 51, whereby the organic compound and the type of carrier were varied. The results obtained are shown in table 4, together with the results from example 51. Here are also shown the results of control trial 3, which was also carried out in the same way as stated in example 51, but without precipitation of an organic compound on the carrier.

EKSEMPEL 62 EXAMPLE 62

Et akryl-harpiks-rbr med 80 mm innvendig diameter ble fylt med 3 g anion-bytter-harpiks. Hoyden av skiktet var ca. 1000 mm. Når avlbpsvann som inneholdt 13.700 ppb kvikksolv fikk gjennomstromme dette roret med en hastighet på 12 l/t., var kvikksblvkonsentrasjonen 20 timer senere 150 ppb og 120 timer senere 560 ppb. An acrylic resin tube of 80 mm internal diameter was filled with 3 g of anion exchange resin. The height of the layer was approx. 1000 mm. When waste water containing 13,700 ppb mercury was allowed to flow through this rudder at a rate of 12 l/h, the mercury concentration 20 hours later was 150 ppb and 120 hours later 560 ppb.

Når denne behandlede losningen fikk stromme ned gjennom et akrylharpiks-rbr med 120 mm innvendig diameter, og som var fylt til ren viss hbyde (skiktshbyde på 1050 mm) med et behandlingsmiddel bestående av 8,2 kg benkull med partikkel-stbrrelse 10 - 30 mesh, og på hvilken det ved hjelp av adsorpsjon var utfelt 0,7 kg 2-merkaptobenzotiazol, så var kvikksblv-konsentrasjonen 20 timer senere 2 ppb og 120 timer senere 5 ppb. When this treated solution was allowed to flow down through an acrylic resin tube with an internal diameter of 120 mm, which was filled to a certain height (layer height of 1050 mm) with a treatment agent consisting of 8.2 kg of bone coal with a particle size of 10 - 30 mesh , and on which 0.7 kg of 2-mercaptobenzothiazole had been precipitated by means of adsorption, the mercury concentration 20 hours later was 2 ppb and 120 hours later 5 ppb.

EKSEMPEL 63 EXAMPLE 63

En polyvinyl-kolonne med en innvendig diameter på 280 mm A polyvinyl column with an internal diameter of 280 mm

ble fylt med 52 kg anion-bytter-harpiks. Skiktshbyden var ca. 1200 mm. Når avlbpsvann, som inneholdt 9400 ppb kvikksolv, fikk stromme ned gjennom denne kolonnen med en hastighet på 10 l/t., var kvikksblvkonsentrasjonen 25 timer senere 120 ppb og 170 timer senere 860 ppb. Når denne behandlede losningen fikk stromme ned gjennom en polyvinyl-klorid-kolonne med en innvendig diameter på 600 mm, og som var fylt til en viss hbyde (fyllhbyde 950 mm) med et behandlingsmiddel bestående av 125 kg aktivkull med en partikkelstorrelse på 10 - 40 mesh, og på hvilken det ved hjelp av adsorpsjon var utfelt 22 kg 2-merkaptobenzotiazol, så was filled with 52 kg of anion exchange resin. The skitshbyden was approx. 1200 mm. When waste water, containing 9400 ppb mercury, was allowed to flow down through this column at a rate of 10 l/h, the mercury concentration 25 hours later was 120 ppb and 170 hours later 860 ppb. When this treated solution was allowed to flow down through a polyvinyl chloride column with an internal diameter of 600 mm, which was filled to a certain height (filling height 950 mm) with a treatment agent consisting of 125 kg of activated carbon with a particle size of 10 - 40 mesh, and on which 22 kg of 2-mercaptobenzothiazole had been precipitated by means of adsorption, then

var kvikksblv-konsentrasjonen 25 timer senere 2 ppb og 170 timer senere 3 ppb. the mercury concentration 25 hours later was 2 ppb and 170 hours later 3 ppb.

Når det adsorberte kvikksblvet nå ble desorbert og gjen-vunnet, og anion-bytter-harpiksen ble regenerert, men skiktet med behandlingsmiddel fikk være intakt og behandlingen av avlbpsvannet, som inneholdt 8200 ppb kvikksolv, ble utfort under i hovedsak samme betingelser som nevnt tidligere, så var kvikksblv-konsentrasjonen i avlbpsvannet efter 25 timers behandling med anion-bytter-harpiksen 340 ppb. Når dette avlbpsvannet ble behandlet videre med dette skikt med behandlingsmiddel, var kvikksblvkonsentrasjonen 3 ppb. På den annen side var kvikksblvkonsentrasjonen efter 170 timer 900 ppb efter behandling med anion-bytter-harpiks og 5 ppb efter behandling med behandlings-midlet. Ved behandling av avlbpsvann, som inneholdt 8000 - 10.000 ppb kvikksolv, When the adsorbed mercury was now desorbed and recovered, and the anion-exchange resin was regenerated, but the layer of treatment agent was left intact and the treatment of the waste water, which contained 8200 ppb of mercury, was carried out under essentially the same conditions as mentioned earlier, then the mercury concentration in the wastewater after 25 hours of treatment with the anion-exchange resin was 340 ppb. When this wastewater was treated further with this layer of treatment agent, the mercury concentration was 3 ppb. On the other hand, the mercury concentration after 170 hours was 900 ppb after treatment with anion exchange resin and 5 ppb after treatment with the treatment agent. When treating breeding water, which contained 8,000 - 10,000 ppb mercury,

under samme betingelser og med gjentatte desorpsjoner og gjenvinnelse av kvikksolv fra anion-bytter-harpiksen og dennes regenerering, var antall dager som behandlingsmidlet kunne anvendes, dvs. antall dager inntil kvikksblv-konsentrasjonen i avlbpsvannet efter behandlingen med behandlingsmidlet var IO ppb, 200 dager. under the same conditions and with repeated desorption and recovery of mercury from the anion-exchange resin and its regeneration, the number of days that the treatment agent could be used, i.e. the number of days until the mercury concentration in the breeding water after treatment with the treatment agent was 10 ppb, was 200 days.

EKSEMPLENE 64- 67 EXAMPLES 64-67

Forsbkene ble utfort i likhet med eksempel 62, hvorved man varierte bærematerialet, den organiske forbindelsen som var utfelt på dette og materialet som skulle behandles. De erholdte resultater vises i tabell 5. The experiments were carried out in the same way as in example 62, whereby the support material, the organic compound that was precipitated on this and the material to be treated were varied. The results obtained are shown in table 5.

EKSEMPLENE 68 - 72 og kontroll 4 EXAMPLES 68 - 72 and control 4

50 g tionalid, som var opplost i 150 ml diklormetan, fikk stromme gjennom en glasskolonne med 8 mm innvendig diameter, og som er fylt med 15 g bæremateriale, hvorved man ved hjelp av adsorpsjon fester tionalid til bærematerialet- Derefter tbrker man med luft og vasker bærematerialet med vann. En lbsning som inneholder 5600 ppb kvikksolv og 1500 ppb kobber fikk gjennomstrbmme foran: nevnte fylte kolonne, og derefter ble metall-konsentrasjonen målt. Resultatene vises i tabell 6. som det fremgår av resultatene i denne tabell, fikk man bedre resultater med kull, silikagel og zeolitt, sammenlignet med andre lett tilgjengelige bærematerialer som f.eks. aluminiumoksyd og magnesium. 50 g of thionalid, which had been dissolved in 150 ml of dichloromethane, was allowed to flow through a glass column with an internal diameter of 8 mm, which is filled with 15 g of carrier material, by means of which thionalid is attached to the carrier material by means of adsorption - Then one washes with air and washes the carrier material with water. A solution containing 5600 ppb mercury and 1500 ppb copper was passed through the front of said packed column, and then the metal concentration was measured. The results are shown in table 6. As can be seen from the results in this table, better results were obtained with coal, silica gel and zeolite, compared to other readily available carrier materials such as e.g. aluminum oxide and magnesium.

Claims (1)

Fremgangsmåte for fjerning av metaller, som f.eks. Hg, Au, Bi, Cd, Co, Cr, Cu, Ni, Pb, Zn, Ag, Mn, Fe, Mo, Ti, Mg og Al fra en gassfase eller væskefase fra hvilken metallet skal fjernes, og hvorved man bringer den metallholdige gass- eller væske-fasen i kontakt med et fast behandlingsmiddel, som består av et bæremateriale, hvilket f.eks. kan utvelges fra gruppen bestående av karbon, silikagel, silika-aluminiumoksyd-gel og minst 50 vekts-% silikagel og zeolitt, samt en ved hjelp av adsorpsjon p,å dette fastholdt forbindelse,karakterisert ved at nevnte forbindelse er valgt fra gruppen bestående av : (a) en organisk forbindelse som er i stand til å danne en merkaptid-forbindelse med et metall, hvor forbindelsen har -SH-radikal eller et alkalisalt av dette i molekylet, som også kan inneholde et strukturelement valgt fra gruppen bestående av -N=, -S-, -NH-, -N=N- og -NH-NH-radikaler i samme molekyl 5 (b) en organisk forbindelse som er i stand til å danne en merkaptid-f orbindelse med et metall, hvor forbindelsen har radikalet 2r^C=S i molekylet som også inneholder et strukturelement valgt fra gruppen bestående av -N=, -S-, -NH-, -N=N- med unntagelse for -N=N-^) og -NH-NH-radikaler med unntagelse for -NH-NH— i samme molekyl; og (c) en organisk forbindelse som kan danne en chelat-forbindelse med et metall, hvilken forbindelse er fri for alkylradikal og har -OH-radikalet i molekylet, som også inneholder et strukturelement valgt fra gruppen bestående av -N= og -NH2-radikaler i samme molekyl.Procedure for removing metals, such as Hg, Au, Bi, Cd, Co, Cr, Cu, Ni, Pb, Zn, Ag, Mn, Fe, Mo, Ti, Mg and Al from a gas phase or liquid phase from which the metal is to be removed, and by which the metal-containing the gas or liquid phase in contact with a solid treatment agent, which consists of a carrier material, which e.g. can be selected from the group consisting of carbon, silica gel, silica-alumina gel and at least 50% by weight silica gel and zeolite, as well as a compound retained on this by means of adsorption, characterized in that said compound is selected from the group consisting of: (a) an organic compound capable of forming a mercaptide compound with a metal, the compound having -SH radical or an alkali salt thereof in the molecule, which may also contain a structural element selected from the group consisting of -N= , -S-, -NH-, -N=N- and -NH-NH- radicals in the same molecule 5 (b) an organic compound capable of forming a mercaptide bond with a metal, where the compound has the radical 2r^C=S in the molecule which also contains a structural element selected from the group consisting of -N=, -S-, -NH-, -N=N- with the exception of -N=N-^) and -NH-NH -radicals with the exception of -NH-NH— in the same molecule; and (c) an organic compound capable of forming a chelate compound with a metal, which compound is free of alkyl radical and has the -OH radical in the molecule, which also contains a structural element selected from the group consisting of -N= and -NH2- radicals in the same molecule.
NO00425/71A 1970-02-05 1971-02-04 NO129384B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP1014670 1970-02-05
JP1735470 1970-02-26
JP45017353A JPS4918937B1 (en) 1970-02-26 1970-02-26
JP3141270A JPS4819793B1 (en) 1970-04-13 1970-04-13
JP6939870A JPS5116916B1 (en) 1970-08-07 1970-08-07

Publications (1)

Publication Number Publication Date
NO129384B true NO129384B (en) 1974-04-08

Family

ID=27519146

Family Applications (1)

Application Number Title Priority Date Filing Date
NO00425/71A NO129384B (en) 1970-02-05 1971-02-04

Country Status (6)

Country Link
CA (1) CA955035A (en)
DE (1) DE2105515C3 (en)
FR (1) FR2080451A5 (en)
GB (1) GB1336241A (en)
NL (1) NL158229B (en)
NO (1) NO129384B (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE349946B (en) * 1971-02-09 1972-10-16 Billingsfors Langed Ab
JPS5639358B2 (en) * 1973-01-30 1981-09-12
GB1482930A (en) * 1974-05-21 1977-08-17 Laporte Industries Ltd Removing metal ions from solution
NL7610396A (en) * 1976-09-17 1978-03-21 Akzo Nv PROCEDURE FOR DECLORATING AN ANATERY SOLUTION.
NO140408C (en) * 1977-09-19 1979-08-29 Johannes Dale PROCEDURE FOR TOTAL OR SELECTIVE REMOVAL OF SALTS FROM AQUATIC SOLUTION
JPS5750697A (en) * 1980-09-12 1982-03-25 Hitachi Ltd Method of treating radioactive liquid
EP0058468A1 (en) * 1981-02-06 1982-08-25 LONDON &amp; SCANDINAVIAN METALLURGICAL CO LIMITED Selective extraction agents
JPS57144080A (en) * 1981-02-27 1982-09-06 Hitachi Ltd Method and device for purification of liquid using oxine-stuck active carbon
US4594158A (en) * 1981-09-03 1986-06-10 Rohm And Haas Filter aid materials bearing anion exchange resins
GB2117752A (en) * 1982-03-29 1983-10-19 Secr Defence Metal ion extraction process
CA1213558A (en) * 1982-07-29 1986-11-04 Walter J. Wieczerniak Method of purifying trivalent chromium electroplating baths
US4659512A (en) * 1983-12-21 1987-04-21 Pedro B. Macedo Fixation of dissolved metal species with a complexing agent
DE3347165A1 (en) * 1983-12-27 1985-07-04 Skw Trostberg Ag, 8223 Trostberg METHOD FOR EXTRACTION OF PRECIOUS METALS
DE3531355A1 (en) * 1985-09-03 1987-03-12 Hoechst Ag TECHNETIUM 99M GENERATOR, ITS PRODUCTION AND USE
DE3604063A1 (en) * 1986-02-08 1987-08-13 Hoelter Heinz Gas purification downstream of waste incineration plants
US4814007A (en) * 1986-01-16 1989-03-21 Henkel Corporation Recovery of precious metals
DE3702306A1 (en) * 1987-01-27 1988-08-04 Hoelter Heinz Process for separating off heavy metals from the exhaust gases of furnaces
DE3703922A1 (en) * 1987-02-09 1988-08-18 Sonnenschein Accumulatoren METHOD FOR REMOVING HEAVY METALS FROM BOATS
FR2740361B1 (en) * 1995-10-31 1997-12-26 Rhone Poulenc Chimie HEAVY METAL REMOVAL AGENT COMPRISING A SULFUR COMPOUND
WO2006048746A2 (en) * 2004-11-02 2006-05-11 Pfizer Inc. Methods for the removal of heavy metals
GB0816378D0 (en) * 2008-09-08 2008-10-15 Johnson Matthey Plc Adsorbents
GB0816379D0 (en) * 2008-09-08 2008-10-15 Johnson Matthey Plc Adsorbents
WO2011162836A1 (en) * 2010-02-17 2011-12-29 Abs Materials, Inc Method for extracting a metal particulate from an aqueous solution using a sol-gel derived sorbent
US8496739B2 (en) 2010-08-30 2013-07-30 Corning Incorporated Organic antioxidant based filtration apparatus and method
US20130330257A1 (en) 2012-06-11 2013-12-12 Calgon Carbon Corporation Sorbents for removal of mercury
PL2922615T3 (en) * 2012-11-26 2020-05-18 Ecolab Usa Inc. Control of mercury emissions
EP3011064A4 (en) * 2013-06-19 2017-03-01 Calgon Carbon Corporation Methods for mitigating the leaching of heavy metals from activated carbon
FR3041272B1 (en) * 2015-09-17 2019-06-14 Arkema France THIOL ETHER STRUCTURE FLOTATION AGENT
CN115475480A (en) 2017-01-31 2022-12-16 卡尔冈碳素公司 Adsorbent device
US11975305B2 (en) 2017-02-10 2024-05-07 Calgon Carbon Corporation Sorbent and method of making
US11697580B2 (en) 2018-08-01 2023-07-11 Calgon Carbon Corporation Apparatus for hydrocarbon vapor recovery
WO2020028839A1 (en) 2018-08-02 2020-02-06 Calgon Carbon Corporation Sorbent devices
WO2020028845A1 (en) 2018-08-02 2020-02-06 Calgon Carbon Corporation Sorbent devices
CN113727774A (en) 2019-04-03 2021-11-30 卡尔冈碳素公司 Perfluoroalkyl and polyfluoroalkyl sorbent materials and methods of use
CN114364870B (en) 2019-08-08 2024-08-20 卡尔冈碳素公司 Sorbent device for air inlet
CN111545167B (en) * 2020-04-13 2021-11-05 南昌航空大学 Method for preparing silver ion selective adsorbent by using pasture
TW202218983A (en) 2020-08-31 2022-05-16 美商卡爾岡碳公司 Copper and nitrogen treated sorbent and method for making same
WO2022047499A2 (en) 2020-08-31 2022-03-03 Calgon Carbon Corporation Iron and nitrogen treated sorbent and method for making same
US12059668B2 (en) 2020-08-31 2024-08-13 Calgon Carbon Corporation Copper, iron, and nitrogen treated sorbent and method for making same
CN112934204A (en) * 2021-02-23 2021-06-11 上海交通大学 Heavy metal mercury adsorbent and preparation method thereof
CN113019325B (en) * 2021-03-15 2021-10-08 扬州工业职业技术学院 Magnetic adsorption material and preparation method thereof
CN114534694B (en) * 2022-03-07 2024-08-16 万华化学集团股份有限公司 Hydroxyquinoline filler and preparation method and application thereof

Also Published As

Publication number Publication date
DE2105515A1 (en) 1971-09-30
DE2105515B2 (en) 1978-01-19
GB1336241A (en) 1973-11-07
DE2105515C3 (en) 1978-09-21
CA955035A (en) 1974-09-24
NL158229B (en) 1978-10-16
FR2080451A5 (en) 1971-11-12
NL7101581A (en) 1971-08-09

Similar Documents

Publication Publication Date Title
NO129384B (en)
US4752397A (en) Process for removing heavy metal ions from solutions using adsorbents containing activated hydrotalcite
Turan et al. Lead removal in fixed-bed columns by zeolite and sepiolite
US5110480A (en) On-line rejuvenation of spent absorbents
US6113868A (en) Process for treating tungstate solutions to reduce molybdenum impurity and other impurity content
MXPA04001110A (en) Compositions for removing metal ions from aqueous process solutions and methods of use thereof.
JPS6215252B2 (en)
BR122014030670A2 (en) RESIN-IN-COCORRENT LEACHING AND CONTRACORRENT IN GOLD LEACHING PROCESSES
US3749761A (en) Process for the recovery of mercury from aqueous solution
CN108854994A (en) The preparation method and applications of ZIF-67@PMMA composite material of the one kind for adsorbing Cd (II)
US4775650A (en) Decontamination of contaminated streams
WO1991015559A2 (en) Mercury removal by dispersed-metal adsorbents
US3864327A (en) Removal of Mercury From Solutions
WO1996009884A1 (en) Chemically active ceramic compositions with an hydroxyquinoline moiety
JPS6042234A (en) Method for recovering gallium
US4060465A (en) Method of purifying the raw brine used in alkali salt electrolysis
IL45955A (en) Metal particularly gold recovery
JPH10500890A (en) Heavy metal cation scavengers containing silicate, aluminosilicate or carbonate type compounds
US3728257A (en) Methods and means for removing heavy metal ions from liquids containing such ions
JPH06157008A (en) Method for recovering iodine from waste liquor containing iodine and/or inorganic iodine compound
US4744825A (en) Removal and recovery of silver from waste stream
US3672125A (en) Nta solid support for hydrogen sulfide removal
Kadirvelu et al. Eco-friendly technologies for removal of hazardous heavy metal from water and industrial wastewater
SU1551241A3 (en) Method of purifying liquid from hydrogen sulfide
JPH01167203A (en) Collection of iodine in gas