JPH01167203A - Collection of iodine in gas - Google Patents

Collection of iodine in gas

Info

Publication number
JPH01167203A
JPH01167203A JP62325382A JP32538287A JPH01167203A JP H01167203 A JPH01167203 A JP H01167203A JP 62325382 A JP62325382 A JP 62325382A JP 32538287 A JP32538287 A JP 32538287A JP H01167203 A JPH01167203 A JP H01167203A
Authority
JP
Japan
Prior art keywords
iodine
gas
column
collection
solid adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62325382A
Other languages
Japanese (ja)
Inventor
Kiyoharu Nagase
長瀬 清春
Teruo Takiguchi
滝口 照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62325382A priority Critical patent/JPH01167203A/en
Publication of JPH01167203A publication Critical patent/JPH01167203A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/13Iodine; Hydrogen iodide
    • C01B7/14Iodine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To easily produce iodine useful in iodine-production industry, pharmaceutical industry, etc., in high efficiency, by contacting an acidic solution with a gas in the presence of a solid adsorbent. CONSTITUTION:An iodine-collecting agent (C) is produced by compounding (A) a solid adsorbent such as an anion-exchange resin having spherical form of 0.1-1.0mmphi in diameter and capable of adsorbing 0.1-1.2g of organic or inorganic molecular iodine (in terms of I2 based on 1g of the adsorbent) and (B) acidic solution of a mineral acid such as HCl having a pH of <=3 and a concentration of 0.1-2.0N at a volume ratio (A:B) of 1:10-2. The component C is packed in the 1st-3rd columns 2-4 and an iodine-containing gas 1 is supplied to the bottom of the 1st column 2 at an average flow rate of about 36$1/h to collect iodine in each column. The collected iodine is desorbed with an NaOH solution containing NaNO3, etc., and recovered.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は気体中のヨウ素の捕集方法に関するものであり
、さらに詳しくは、分子状ヨウ素を含む気体を、固体吸
着剤か共存する酸性溶液に接触させることにより、ヨウ
素を効率的に捕集する方法に関するものである。従って
、ヨウ素製造工業を初めとする、ヨウ素を使用する多く
の化学工業、医薬品二1−業窩で利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for collecting iodine in a gas, and more specifically, the present invention relates to a method for collecting iodine in a gas. The present invention relates to a method for efficiently collecting iodine by bringing it into contact with iodine. Therefore, it is used in many chemical and pharmaceutical industries that use iodine, including the iodine manufacturing industry.

[従来の技術] ヨウ素の工業的な資源としては、チリ硝石の原鉱石、油
…かん水、天然ガスかん水等が挙げられるが、我が国で
は、コスト的に天然ガスかん水を主な原料としている。
[Prior Art] Industrial sources of iodine include Chilean saltpeter ore, oil brine, natural gas brine, etc. In Japan, natural gas brine is the main raw material due to cost.

ヨウ素の製造方法は原料によって異なり、天然ガスかん
水を用いる場合には、活性炭法、調法、追い出し法等が
ある。このうち活性炭法は経済的および技術的問題から
現在ではイオン交換樹脂法に置き換えられている。
Iodine production methods vary depending on the raw material, and when using natural gas brine, there are activated carbon methods, preparation methods, expulsion methods, etc. Of these, the activated carbon method has now been replaced by the ion exchange resin method due to economic and technical problems.

調法の概要は、かん水に硫酸銅と硫酸第一鉄の混合溶液
を加え、ヨウ素イオンをヨウ化第−銅の形で沈澱させ濃
縮したスラッジを燃焼炉で加熱、酸化して分子状ヨウ素
を得る。
The outline of the preparation method is to add a mixed solution of copper sulfate and ferrous sulfate to brine, precipitate iodine ions in the form of cupric iodide, and then heat and oxidize the concentrated sludge in a combustion furnace to produce molecular iodine. obtain.

追い出し法は、微アルカリ性のかん水に硫酸を加えて中
性もしくは微酸性にした後、塩素ガスを添加してヨウ素
イオンを遊離ヨウ素に酸化し、このヨウ素を空気で追い
出して(昇華させて)亜硫酸溶液に吸収させる。この吸
収液中のヨウ化水素を再度塩素で酸化して分子状ヨウ素
を得る。
The expulsion method involves adding sulfuric acid to slightly alkaline brine to make it neutral or slightly acidic, then adding chlorine gas to oxidize iodine ions to free iodine, and expelling (sublimating) this iodine with air to form sulfurous acid. Absorb into solution. Hydrogen iodide in this absorption liquid is oxidized again with chlorine to obtain molecular iodine.

イオン交換樹脂法はヨウ素イオンを塩素により部分的に
分子状ヨウ素まで酸化した後、陰イオン交換樹脂に吸着
濃縮させる。この樹脂から水酸化ナトリウム溶液および
塩化ナトリウム溶液を用いてヨウ素を溶離し、硫酸酸性
にして酸化剤を加えて分子状ヨウ素を製造している。
In the ion exchange resin method, iodine ions are partially oxidized to molecular iodine using chlorine, and then adsorbed and concentrated on an anion exchange resin. Iodine is eluted from this resin using a sodium hydroxide solution and a sodium chloride solution, the resin is acidified with sulfuric acid, and an oxidizing agent is added to produce molecular iodine.

従来気体中のヨウ素を捕集する方法として次のものが挙
げられる。
Conventional methods for collecting iodine in gases include the following.

気体をアルカリ性溶液で洗浄する方法は、分子状ヨウ素
が次式により、イオンとなって効率良く捕集される。
In the method of washing gas with an alkaline solution, molecular iodine is efficiently collected as ions according to the following formula.

12 +  [1Na011;=!5Nal + Na
103 +3H20(1)しかし共存する炭酸ガスも同
時に捕集され、CO2+  2NaOH:Na2 CO
3+ H20(2)Na2CO3+CO2+  H20
=2Nat(CO3(3)となり、アルカリ性溶液の効
力を失わせることになる。
12 + [1Na011;=! 5Nal + Na
103 +3H20 (1) However, the coexisting carbon dioxide gas is also collected at the same time, CO2+ 2NaOH:Na2 CO
3+ H20 (2) Na2CO3+CO2+ H20
=2Nat(CO3(3)), which makes the alkaline solution lose its effectiveness.

気体を酸性溶液で洗浄する方法は、炭酸ガスの吸収はな
くなるものの、ヨウ素の溶解度に限度があり、かつ、通
過するガスと同伴して気化(昇華)するため、捕集量、
捕集効率共に減少する結果となる。従って、この方法を
実用化するためには特開昭48−31180の様に、ヨ
ウ素の揮発することのない15.3Mというような非常
に高い濃度の硝酸の使用を余儀なくされることになる。
Although the method of cleaning gas with an acidic solution eliminates the absorption of carbon dioxide gas, there is a limit to the solubility of iodine, and since it vaporizes (sublimates) along with the passing gas, the amount of collected
This results in a decrease in both collection efficiency. Therefore, in order to put this method into practical use, it is necessary to use nitric acid with a very high concentration of 15.3 M, which does not cause iodine to volatilize, as disclosed in Japanese Patent Application Laid-Open No. 48-31180.

また、原子力関係の施設ではIodox法と呼ばれる方
法が採用されており、気体をHg (NO3) 2−H
NO3溶液で洗浄した後、銀ゼオライトで吸着すること
により、ヨウ素の捕集を行っているが、コストが非常に
高くなる上、回収されたヨウ素にl1gイオンか混入す
る恐れがあり、医薬品、食品添加、飼料混入の用途に使
用することは適当てはない。
In addition, nuclear power related facilities use a method called the Iodox method, which converts gas into Hg (NO3) 2-H
Iodine is collected by washing with NO3 solution and adsorbing it with silver zeolite, but this method is very expensive and there is a risk that 11g ions may be mixed in with the recovered iodine, making it difficult to use in pharmaceuticals and food products. It is not appropriate to use it as an additive or as a feed mixer.

更に、固体吸着剤を用いた気体中のヨウ素の捕集方法が
数多く知られているが、それらは気体中の相対湿度や酸
化窒素濃度の様な諸条件によって捕集量や捕集効率に大
きな影響を受ける欠点かある。
Furthermore, there are many known methods for capturing iodine in gases using solid adsorbents, but the amount and efficiency of these methods vary greatly depending on various conditions such as relative humidity and nitrogen oxide concentration in the gas. There are some drawbacks that can be affected.

[発明が解決しようとする問題点1 分子状ヨウ素は非常に昇華性が強く、空気中に揮散しや
すい物質であるため、上記のいずれの製造方法において
も、完全にヨウ素を回収し、利用することは困難である
。特にかん水を酸性にする場合には、共存する重炭酸イ
オンが炭酸ガスとして発生し、またヨウ素イオンを塩素
で酸化する場合には、塩素の過剰部分がガスとして揮散
し、共にヨウ素の担体として昇華を助けるため、−層空
気中に揮散して生産量のロスとなる。
[Problem to be solved by the invention 1 Molecular iodine has a very strong sublimation property and is a substance that easily volatilizes in the air. Therefore, in any of the above production methods, iodine must be completely recovered and used. That is difficult. In particular, when brine is made acidic, coexisting bicarbonate ions are generated as carbon dioxide gas, and when iodine ions are oxidized with chlorine, excess chlorine is volatilized as a gas and sublimated as an iodine carrier. To help this, it volatilizes into the -layer air, resulting in a loss of production.

またヨウ素ガスは塩素ガスと同様に酸化性が強く有害で
あるため、工場内の空気中から完全に除去すべきである
Also, like chlorine gas, iodine gas is highly oxidizing and harmful, so it should be completely removed from the air inside the factory.

この様な問題を解決するために、気体中のヨー 5 = つ素を効率良く捕集する方法を開発することが必要であ
った。
In order to solve these problems, it was necessary to develop a method for efficiently collecting io 5 =trisium in gases.

[問題点を解決するための手段] 本発明者らは、安全かつ安価で、捕集量および捕集効率
の高い方法を開発するため、鋭意努力した結果本発明を
完成するに至った。
[Means for Solving the Problems] The present inventors have completed the present invention as a result of their earnest efforts to develop a method that is safe, inexpensive, and has a high collection amount and collection efficiency.

即ち、本発明は、固体吸着剤の存在下で酸性溶液と気体
を接触させる気体中のヨウ素の捕集方法であり、具体的
には固体吸着剤を含む酸性溶液中に、ヨウ素を含む気体
を導入して接触させることにより、ヨウ素を非常に効率
よく捕集し、回収する方法である。
That is, the present invention is a method for collecting iodine in a gas in which an acidic solution and a gas are brought into contact in the presence of a solid adsorbent, and specifically, a gas containing iodine is brought into contact with an acidic solution containing a solid adsorbent. This is a method of very efficiently capturing and recovering iodine by introducing it and bringing it into contact.

従来、気体中のヨウ素を捕集する方法として酸性溶液あ
るいはアルカリ性溶液で洗浄する方法、あるいは、吸着
剤に吸着させる方法が知られているが本発明者らは、固
体吸着剤を含む酸性溶液にヨウ素を含む気体を接触させ
る事により、従来に見られない高い捕集量と捕集効率が
得られる事を発見し、本発明に至った。
Conventionally, methods for collecting iodine in gases include washing with an acidic or alkaline solution, or adsorbing it to an adsorbent. It was discovered that by contacting with a gas containing iodine, a higher amount of collection and collection efficiency than previously seen could be obtained, leading to the present invention.

本発明のすぐれた効果は、次のようなサイクルによって
発揮されると考えられる。即ち、固体吸着剤を含む酸性
溶液中に、ヨウ素を含む気体を接触させることにより、
ヨウ素は気液平衡により酸性溶液中に溶解し、このヨウ
素が更に固液平衡により固体吸着剤に速やかに吸着され
、溶液中のヨウ素濃度を低下させ、これは、ヨウ素の酸
性溶液への溶解を促すことになる。このように、ヨウ素
は気体中から溶液中に、更に固体吸着剤中に速やかに移
動し、これは固体吸着剤の吸着容量か飽和するまで続く
ことになる。
It is believed that the excellent effects of the present invention are exhibited through the following cycle. That is, by bringing a gas containing iodine into contact with an acidic solution containing a solid adsorbent,
Iodine is dissolved in acidic solution due to gas-liquid equilibrium, and this iodine is further rapidly adsorbed by solid adsorbent due to solid-liquid equilibrium, reducing the iodine concentration in the solution, which reduces the dissolution of iodine into acidic solution. It will encourage you. In this way, iodine will rapidly move from the gas to the solution and then into the solid adsorbent until the adsorption capacity of the solid adsorbent is saturated.

本発明の著しい効果は、次のような現象によってもたら
されていると推測される。即ち、固体吸着剤の分散する
酸性溶液にヨウ素を含む気体を導入すると、気体の導入
による液相の流動・撹拌が起こり、この液の流動・撹拌
は液相に分散している固体吸着剤の存在によって極めて
円滑に行われる。これは気体の導入によって起こる比較
的スケールの大きい巨視的な液の移動・混合とともに、
固体吸着剤粒子の回転、分散、合一なとによって微視的
な液の撹拌が起こり、これによって気−液および液−固
界面が常に更新され、これによって気−液間のガス吸着
および液相−固体吸着剤中の物質移動が極めて、円滑に
進行するためと考えられる。この結果、従来に見られな
い高い捕集量と捕集効率が達成されたと推測される。
It is presumed that the remarkable effects of the present invention are brought about by the following phenomenon. That is, when a gas containing iodine is introduced into an acidic solution in which a solid adsorbent is dispersed, fluidization and stirring of the liquid phase occurs due to the introduction of the gas, and this fluidization and stirring of the liquid causes the solid adsorbent dispersed in the liquid phase to flow and stir. Existence makes this process extremely smooth. This occurs along with relatively large-scale macroscopic movement and mixing of liquid caused by the introduction of gas.
The rotation, dispersion, and coalescence of solid adsorbent particles cause microscopic agitation of the liquid, which constantly renews the gas-liquid and liquid-solid interfaces, thereby increasing gas adsorption between the gas and liquid. This is thought to be because the mass transfer in the phase-solid adsorbent proceeds extremely smoothly. As a result, it is presumed that a higher collection amount and collection efficiency than ever seen before was achieved.

更に高い捕集効率が要求される場合は、このプロセスを
直列に接続することにより達成される。
If even higher collection efficiency is required, this can be achieved by connecting the processes in series.

本発明において使用する固体吸着剤としては、活性炭、
陰イオン交換樹脂、MR型樹脂の様に耐酸性でかつ酸性
溶液中でヨウ素の吸着性能の良いものであれば制限はな
い。その固体吸着剤としては下記のものが挙げられる。
The solid adsorbents used in the present invention include activated carbon,
There are no limitations as long as it is acid resistant and has good iodine adsorption performance in acidic solutions, such as anion exchange resins and MR type resins. Examples of the solid adsorbent include the following.

即ち、活性炭としては果実殻系、木材系、石炭系、石油
系、カーボンブラック系、陰イオン交換樹脂としては、
スチレン−ジビニルベンゼン系の強塩基性樹脂および弱
塩基性樹脂、更にMR樹脂としては、スチレン−ジビニ
ルベンゼン系およびアクリルエステル系で交換基を有す
るもの、または交換基を有しないもの等である。それら
の固体吸着剤の粒径としては、液体中の固体の流動・撹
拌等を考えると 0.1〜1.Ommφが、形状として
はできるだけ球形に近いことが好ましく、その吸着性能
としては0.1〜1.2 (g−12/g−吸着剤)程
度のヨウ素吸着量を有するものが好ましい。
That is, activated carbon includes fruit shell-based, wood-based, coal-based, petroleum-based, carbon black-based, and anion exchange resin includes:
Examples of styrene-divinylbenzene-based strong basic resins and weakly basic resins, as well as MR resins, include styrene-divinylbenzene-based and acrylic ester-based resins having exchange groups or those having no exchange groups. The particle size of these solid adsorbents is 0.1 to 1.0, considering the flow and stirring of the solid in the liquid. It is preferable that the shape of Ommφ is as close to a spherical shape as possible, and the adsorption performance is preferably one that has an iodine adsorption amount of about 0.1 to 1.2 (g-12/g-adsorbent).

本発明において使用する酸性溶液は、硝酸、硫酸、塩酸
等の鉱酸の水溶液が好ましい。また酸の濃度としては分
子状ヨウ素を安定に保つために、pH3以下で通常容易
に扱える濃度であれば特に制限はないが、濃度が高くな
ることは経済的でないことから0.1〜2.0規定程度
の濃度が使用されている。
The acidic solution used in the present invention is preferably an aqueous solution of a mineral acid such as nitric acid, sulfuric acid, or hydrochloric acid. The concentration of the acid is not particularly limited as long as it can be easily handled at pH 3 or below in order to keep molecular iodine stable, but it is 0.1 to 2.0 as it is not economical to increase the concentration. A concentration of about 0 normal is used.

本発明において使用する固体吸着剤は酸性溶液中を自由
に移動できることが必要である。そのためには、固体吸
着剤と酸性溶液の比率が容積比でに10から1=2まで
の範囲であることが好ましい。
The solid adsorbent used in the present invention must be able to move freely in the acidic solution. For this purpose, it is preferable that the ratio of the solid adsorbent to the acidic solution is in the range of 10 to 1=2 by volume.

本発明の方法は、ヨウ素製造工程において気体中に揮散
するヨウ素を捕集し、回収再使用することにより、資源
を有効に活用するために開発されたものであるか、例え
ば先に述べたヨウ素製造方法の一つである追い出し法の
亜硫酸吸収液の代替としても使用することができる。こ
の場合、ヨウ素を捕集したのち、吸着剤だけを取り出し
てヨウ素を回収し、再生再使用すればよく、酸性溶液は
pH3以下であれば再度使用することが可能であり、経
済的である。また、捕集効率が良く、かつ安全で安価な
ヨウ素の捕集方法として、放射性のヨウ素の捕集にも適
用が可能である。
The method of the present invention has been developed to effectively utilize resources by collecting, collecting and reusing iodine that volatilizes in the gas during the iodine production process. It can also be used as a substitute for the sulfite absorption liquid in the expulsion method, which is one of the manufacturing methods. In this case, after collecting the iodine, it is sufficient to take out only the adsorbent, recover the iodine, and regenerate and reuse it, and the acidic solution can be used again as long as it has a pH of 3 or less, which is economical. Furthermore, it can be applied to the collection of radioactive iodine as a safe and inexpensive iodine collection method with good collection efficiency.

[実施例コ 次に本発明を実施例および比較例によって具体的に説明
する。
[Examples] Next, the present invention will be specifically explained using Examples and Comparative Examples.

実施例1 内径19nu++φ、高さ80mmのカラムを第1図の
様に接続し、各々のカラムに0.1mo115を硝酸1
0m1と陰イオン交換樹脂(Dowcx lx 8.5
0〜100mcsh)1gを入れ、カラムの下方から、
1.2ppmのI2を=  10 − 含む空気を平均流速3.8A/hで2709供給した。
Example 1 Columns with an inner diameter of 19 nu++φ and a height of 80 mm were connected as shown in Figure 1, and each column was filled with 0.1 mo115 of nitric acid.
0ml and anion exchange resin (Dowcx lx 8.5
0-100mcsh) 1g from the bottom of the column.
2709 air containing 1.2 ppm I2 = 10- was supplied at an average flow rate of 3.8 A/h.

各カラムに捕集されたヨウ素をNaNO32mol/1
1を含むO,1mol/ 9. N a OH溶液で洗
い出し、JIS  K−01吋のヨウ素の分析方法で分
析した。結果は第1カラムの捕集量が160mg、第2
カラムが150mg、第3カラムが7.5mgであった
。第1カラムの値は飽和の捕集量であり、第2と第3カ
ラムの捕集量から、次の近似式を用いて捕集率を算定す
ると 捕集率(%) = fl (7,5/1.50)] X
 100 = 95.0(%)であった。
The iodine collected in each column is NaNO32mol/1
O containing 1, 1 mol/9. It was washed out with a NaOH solution and analyzed using the JIS K-01 inch iodine analysis method. The results show that the amount collected in the first column was 160 mg, and the amount collected in the second column was 160 mg.
The column weighed 150 mg, and the third column weighed 7.5 mg. The value of the first column is the saturated amount of collection, and the collection rate is calculated from the amount of collection of the second and third columns using the following approximate formula: Collection rate (%) = fl (7, 5/1.50)]
100 = 95.0 (%).

比較例1 内径19mmφ、高さ80mmのカラムを第1図の様に
接続し、各々のカラムに0.1mo1151硝酸10m
1を入れ、カラムの下方から、4.2ppmの12を含
む空気を平均流速3.6111/hで3.5A供給した
Comparative Example 1 Columns with an inner diameter of 19 mmφ and a height of 80 mm were connected as shown in Figure 1, and 10 m of 0.1 mo1151 nitric acid was added to each column.
1, and air containing 4.2 ppm of 12 was supplied at 3.5 A from the bottom of the column at an average flow rate of 3.6111/h.

各カラムに捕集されたヨウ素を0.1mo1151Na
OH溶液で洗い出し、J I S  K−01(11の
ヨウ素の分析方法で分析した。結果は第1カラムの捕集
量が1.55mg、第2カラムが1.50mg、第3カ
ラムが0.75mgであった。第1カラムの値は飽和の
捕集量であり、第2と第3のカラムの捕集量から、次の
近似式を用いて捕集率を算定すると、 捕集率(%;) = +1− (0,75/1..50
)l +1.00= 50.5(%) であった。
The iodine collected in each column is 0.1mol1151Na
It was washed out with an OH solution and analyzed using the iodine analysis method of JIS K-01 (11).The results showed that the amount collected in the first column was 1.55 mg, the second column was 1.50 mg, and the third column was 0. The value of the first column is the saturated amount of collection, and when the collection rate is calculated from the amount of collection of the second and third columns using the following approximate formula, the collection rate ( %;) = +1- (0,75/1..50
)l +1.00=50.5(%).

比較例2 内径19mmφ、高さ80mm0カラムを第1図の様に
接続し、各々のカラムに陰イオン交換樹脂(Dovex
 lx 8.50〜1.00mesh> Igを入れ、
カラムの下方から1.2ppmのI2を含む空気を平均
流速3.69/hで3709供給する。
Comparative Example 2 Columns with an inner diameter of 19 mm and a height of 80 mm were connected as shown in Figure 1, and each column was coated with anion exchange resin (Dovex).
lx 8.50~1.00mesh> Insert Ig,
Air containing 1.2 ppm of I2 is supplied from the bottom of the column at an average flow rate of 3.69/h.

各カラムに捕集されたヨウ素をNaNO32mo115
1を含む0.1mol/ 51  N a OH溶液で
洗い出し、JIS  I(−0101のヨウ素の分析方
法で分析した。結果は第1カラムの捕集量が160mg
、第2カラムか1.’aOmg、第3カラムが9Jmg
であった。第1カラムの値は飽和の捕集量であり、第2
と第3カラムの捕集量がら、次の近似式を用いて捕集率
を算定すると、 捕集率(%) −11−(91/130)l X 10
0−30.0(%)であった。
The iodine collected in each column is NaNO32mo115
It was washed out with a 0.1 mol/51 NaOH solution containing 1 and analyzed using the JIS I (-0101) iodine analysis method.The results showed that the amount collected in the first column was 160 mg.
, the second column or 1. 'aOmg, 3rd column is 9Jmg
Met. The value in the first column is the saturated amount of collection;
The collection rate is calculated using the following approximate formula based on the amount of collection in the third column and the collection rate (%) -11-(91/130)l
It was 0-30.0 (%).

実施例2〜4 内径L9nvφ、高さ80mmのカラムを第1図の様に
接続し、各のカラムにスチレン−ジビニルベンゼン系M
R樹脂(試作品、無極性、100〜150mesh) 
Igおよび硝酸でpHを4に調整した水溶液10m1を
入れ、カラムの下方がら、1.2ppmのI2を含む空
気を平均流速3.8U/hで40〜280 交供給した
Examples 2 to 4 Columns with an inner diameter of L9nvφ and a height of 80mm were connected as shown in Figure 1, and each column was filled with styrene-divinylbenzene M.
R resin (prototype, non-polar, 100-150 mesh)
10 ml of an aqueous solution whose pH had been adjusted to 4 with Ig and nitric acid was charged, and air containing 1.2 ppm of I2 was exchanged from the bottom of the column at an average flow rate of 3.8 U/h at 40 to 280 ml.

また、同様の条件で、硝酸水溶液のpHが3および1の
各々10m1を使用した。
Further, under the same conditions, 10 ml each of nitric acid aqueous solutions having pHs of 3 and 1 were used.

各カラムに捕集されたヨウ素を0.1mo115゜Na
OH溶液で洗い出し、J r S  K−0101のヨ
ウ素の分析方法で分析した。結果は実施例1と同様に評
価すると表1の通りであった。
The iodine collected in each column was 0.1mol115°Na
It was washed out with an OH solution and analyzed using the iodine analysis method of J r S K-0101. The results were evaluated in the same manner as in Example 1 and were as shown in Table 1.

表1 [発明の効果] 以上説明したように、本発明の方法によって、気体中の
ヨウ素を比較的簡単に、かつ、効率よく捕集することが
できる。
Table 1 [Effects of the Invention] As explained above, by the method of the present invention, iodine in gas can be collected relatively easily and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第一図は実施例および比較例に使用したヨウ素の捕集装
置の一例を示す工程図である。 ■・・・ヨウ素含有気体、2・・・第1カラム、訃・・
第2カラム、4・・・第3カラム、5・・・ガス置針。
FIG. 1 is a process diagram showing an example of an iodine collection device used in Examples and Comparative Examples. ■...Iodine-containing gas, 2...1st column, death...
2nd column, 4... 3rd column, 5... gas indicator needle.

Claims (4)

【特許請求の範囲】[Claims] (1)固体吸着剤の存在下で酸性溶液と気体を接触させ
ることを特徴とする気体中のヨウ素の捕集方法。
(1) A method for collecting iodine in a gas, which comprises bringing the gas into contact with an acidic solution in the presence of a solid adsorbent.
(2)固体吸着剤が耐酸性の有機または無機の分子状ヨ
ウ素の吸着剤である特許請求の範囲1記載の方法。
(2) The method according to claim 1, wherein the solid adsorbent is an acid-resistant organic or inorganic molecular iodine adsorbent.
(3)酸性溶液が鉱酸で、かつ、そのpHを3以下に保
持する特許請求範囲1または2記載の方法。
(3) The method according to claim 1 or 2, wherein the acidic solution is a mineral acid and its pH is maintained at 3 or less.
(4)固体吸着剤と酸性溶液の容積比率が1:10から
1:2までの範囲である特許請求の範囲1ないし3の何
れかに記載の方法。
(4) The method according to any one of claims 1 to 3, wherein the volume ratio of the solid adsorbent to the acidic solution is in the range of 1:10 to 1:2.
JP62325382A 1987-12-24 1987-12-24 Collection of iodine in gas Pending JPH01167203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62325382A JPH01167203A (en) 1987-12-24 1987-12-24 Collection of iodine in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62325382A JPH01167203A (en) 1987-12-24 1987-12-24 Collection of iodine in gas

Publications (1)

Publication Number Publication Date
JPH01167203A true JPH01167203A (en) 1989-06-30

Family

ID=18176209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62325382A Pending JPH01167203A (en) 1987-12-24 1987-12-24 Collection of iodine in gas

Country Status (1)

Country Link
JP (1) JPH01167203A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037279A1 (en) * 1995-05-25 1996-11-28 Baker Hughes Incorporated Treatments to reduce aldol condensation and subsequent polymerization in caustic acid gas scrubbers
JP2002200481A (en) * 2000-12-28 2002-07-16 Op Energy Kk Water obtained by purifying water containing water- soluble natural gas and its purifying method and system
JP2010029833A (en) * 2008-07-31 2010-02-12 Daikin Ind Ltd Method for removing and recovering halogen ion using adsorbent
US20110085959A1 (en) * 2008-04-25 2011-04-14 Straitmark Holding Ag Method for the manufacture of concentrated phosphorus acid
WO2017134789A1 (en) * 2016-02-04 2017-08-10 セントラルケミカル株式会社 Iodine recovery method and recovery apparatus
CN111346484A (en) * 2020-03-13 2020-06-30 深圳市兴能保环境科技有限公司 Comprehensive waste gas treatment device and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037279A1 (en) * 1995-05-25 1996-11-28 Baker Hughes Incorporated Treatments to reduce aldol condensation and subsequent polymerization in caustic acid gas scrubbers
JP2002200481A (en) * 2000-12-28 2002-07-16 Op Energy Kk Water obtained by purifying water containing water- soluble natural gas and its purifying method and system
US20110085959A1 (en) * 2008-04-25 2011-04-14 Straitmark Holding Ag Method for the manufacture of concentrated phosphorus acid
US8728427B2 (en) * 2008-04-25 2014-05-20 Straitmark Holding Ag Method for the manufacture of concentrated phosphorus acid
JP2010029833A (en) * 2008-07-31 2010-02-12 Daikin Ind Ltd Method for removing and recovering halogen ion using adsorbent
WO2017134789A1 (en) * 2016-02-04 2017-08-10 セントラルケミカル株式会社 Iodine recovery method and recovery apparatus
CN111346484A (en) * 2020-03-13 2020-06-30 深圳市兴能保环境科技有限公司 Comprehensive waste gas treatment device and method

Similar Documents

Publication Publication Date Title
US4874525A (en) Purification of fluid streams containing mercury
US4876232A (en) Supported heteropolycyclic compounds in the separation and removal of late transition metals
Xu et al. Precise separation and efficient enrichment of palladium from wastewater by amino-functionalized silica adsorbent
Ma et al. Preparation of novel polysulfone capsules containing zirconium phosphate and their properties for Pb2+ removal from aqueous solution
JP2012025995A (en) Selective recovery method for rare metal
JPS59160534A (en) Adsorbent for mercury vapor and treatment of mercury vapor-containing gas
JPH01167203A (en) Collection of iodine in gas
JPH0159009B2 (en)
WO1996030299A1 (en) Method of regeneration of iron chelates in nitric oxide scrubbing
JPH0626661B2 (en) Granular lithium adsorbent and lithium recovery method using the same
US4980335A (en) Acidic gas adsorber having a metal phthalocyanine on an ion exchanger
Maeda et al. Selective Adsorption of Arsenic (V) lon by Use of Iron (III) Hydroxide-Loaded Coral Limestone
JPS63130137A (en) Composite adsorbent and its preparation
CN110280213B (en) Nano magnetic composite iron-copper oxide dearsenization adsorbent and preparation method and application thereof
Nakahiro et al. Recovery of gold with ion exchange resin from leaching solution by acidothioureation
JP2539413B2 (en) Adsorbent for gallium recovery
US3862292A (en) Recovery of rhenium
CN108031438B (en) Application of magnetic adsorbent in separation of trace elements from combustion flue gas
Cho et al. Regeneration of heat stable salts-loaded anion exchange resin by a novel zirconium pentahydroxide [Zr (OH) 5−] displacement technique in CO2 absorption process
JP2002126543A (en) Processing method of ion-containing water
JPH08206432A (en) Gas treatment method and gas treatment agent
JP3412003B2 (en) Novel lithium adsorbent and method for producing the same
JPS6036831B2 (en) Treatment method for water containing arsenic and silica
Sarwar et al. Adsorption studies of gold on copper sulphide
Tong et al. Preconcentration of trace metals with 1-phenyl-3-methyl-4-stearoyl-5-pyrazolone loaded on silica gel