NO126302B - - Google Patents

Download PDF

Info

Publication number
NO126302B
NO126302B NO00171028A NO17102867A NO126302B NO 126302 B NO126302 B NO 126302B NO 00171028 A NO00171028 A NO 00171028A NO 17102867 A NO17102867 A NO 17102867A NO 126302 B NO126302 B NO 126302B
Authority
NO
Norway
Prior art keywords
gases
roasting
arsenic
antimony
fluidized bed
Prior art date
Application number
NO00171028A
Other languages
Norwegian (no)
Inventor
Hans Andreas Larsen
Original Assignee
Larsen Hans A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Larsen Hans A filed Critical Larsen Hans A
Publication of NO126302B publication Critical patent/NO126302B/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/50Pipe mixers, i.e. mixers wherein the materials to be mixed flow continuously through pipes, e.g. column mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/763Devices for the addition of such compounds in gaseous form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2334Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer
    • B01F23/23341Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements provided with stationary guiding means surrounding at least partially the stirrer with tubes surrounding the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/43Mixing liquids with liquids; Emulsifying using driven stirrers
    • B01F23/431Mixing liquids with liquids; Emulsifying using driven stirrers the liquids being introduced from the outside through or along the axis of a rotating stirrer, e.g. the stirrer rotating due to the reaction of the introduced liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/205Moving, e.g. rotary, diffusers; Stationary diffusers with moving, e.g. rotary, distributors
    • C02F3/206Moving, e.g. rotary, diffusers; Stationary diffusers with moving, e.g. rotary, distributors with helical screw impellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23311Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a hollow stirrer axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • B01F23/23314Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements through a hollow stirrer element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Treating Waste Gases (AREA)

Description

Fremgangsmåte for utvinning av svoveldioksydholdige gasser ved hvirvelsjikt-røstning av materialer som inneholder røstbart svovel foruten arsen og/eller antimon. Process for extracting sulfur dioxide-containing gases by fluidized bed roasting of materials containing roastable sulfur in addition to arsenic and/or antimony.

I patent nr. 91 419 er det foreslått ved In patent no. 91 419 it is proposed wood

hvirvelsjiktrøstning av materialer som inneholder røstbart svovel foruten arsen og/ fluidized bed roasting of materials containing roastable sulfur in addition to arsenic and/

eller antimon, særlig pyritter, i det øyemed or antimony, especially pyrites, for that matter

å fremstille svoveldioksydholdige gasser to produce gases containing sulfur dioxide

under samtidig utvinning av praktisk talt while simultaneously extracting practically

arsen- og antimonfrie røsteresiduer, å gå arsenic- and antimony-free roasting residues, to go

frem på den måte at godset som skal røstes, forward in such a way that the goods to be voted,

underkastes en for-røsting i et første trinn, is submitted to a pre-voting in a first stage,

ved hvilket der fåes røstegasser med et innhold av 16 til 20 volumprosent svoveldioksyd og et røsteprodukt som foruten gang-arten består av ferrosulfid eller av ferrosulfid og dessuten ferroferrioksyd eller også which produces roasting gases with a content of 16 to 20 volume percent sulfur dioxide and a roasting product which, in addition to the gangue species, consists of ferrous sulphide or of ferrous sulphide and also ferroferric oxide or also

dessuten jerndisulfid. Dette røsteprodukt also iron disulfide. This voice product

ferdigrøstes i et annet trinn. Så vel tilfør-ingen av de for røstingen nødvendige sur-stoffholdige gasser for begge trinn som også finalized in another step. As well as the supply of the oxygen-containing gases necessary for roasting for both stages as well

bortføringen av de i begge trinn dannete the abduction of those formed in both stages

røstegasser finner herunder sted atskilt og Voice gases take place hereunder separately and

uavhengig av hverandre. independently of each other.

De fra for-røstetrinnet uttredende Those from the pre-voting stage exiting

støvholdige gasser ledes ved den nevnte dust-containing gases are led by the aforementioned

fremgangsmåte gjennom en utskiller, nor-malt en syklon, og renses i tilslutning hertil i et elektrisk gassrenseanlegg. Det i syklonen utskilte støv må, da det fremdeles process through a separator, normally a cyclone, and is subsequently purified in an electric gas purification plant. The dust released in the cyclone must, as it still is

inneholder arsen og/eller antimon, tilbake-føres til for-røstetrinnet. Holder man deri-mot syklonen på en temperatur av 600° contains arsenic and/or antimony, is returned to the pre-roasting step. If you hold it against the cyclone at a temperature of 600°

og høyere, så fåes det i syklonutskilleren and higher, then it is obtained in the cyclone separator

utskilte støv allerede så arsen- resp. anti-monfattig at det direkte kan tilføres det secreted dust already so arsenic- or anti-monpoor that it can be directly added to it

annet trinn i øyemed å bli etterrøstet. For second step in order to be re-voted. For

at også støvet, som fra syklonutskilleren that also the dust, as from the cyclone separator

går over til det elektriske gassrenseanlegg passes to the electric gas purification plant

og som i middel utgjør 6 % av den totale røstegodsmengde, i arsen- resp. antimon-fattig tilstand, kan underkastes direkte etterrøstingen, må den elektriske gassrensing gjennomføres ved en temperatur av 600°. and which, on average, make up 6% of the total quantity of cast iron, in terms of arsenic or antimony-poor state, can be subjected directly to post-roasting, the electric gas cleaning must be carried out at a temperature of 600°.

Uheldig ved denne fremgangsmåten er et visst innbyrdes avhengighetsforhold mellom temperaturen ved forrøstingen og temperaturen i det elektriske gassrenseanlegg, som er betinget av varmeborstrålin-gen fra gassledningene og syklonutskilleren. Holder man eksempelvis røstetempera-turen i hvirvelsjiktet som tjener til for-røstingen på 750 til 800°, så får man ved den vanlige bygningsmåte for apparaturen for det elektriske gassrenseanlegg tempera-turer som fremdeles andrar til ca. 700°. Herved er man tvunget til for bygningen av det elektriske gassrenseanlegg å anven-de spesielle materialer. Unfortunate with this method is a certain interdependence between the temperature at the pre-roasting and the temperature in the electric gas cleaning system, which is conditioned by the heat drill radiation from the gas lines and the cyclone separator. If, for example, you keep the roasting temperature in the swirling layer that serves for the pre-roasting at 750 to 800°, then with the usual construction method for the equipment for the electric gas purification plant, you get temperatures that still vary to approx. 700°. This means that you are forced to use special materials for the construction of the electric gas purification plant.

Det viste seg at denne ulempe kan unn-gåes, og det er mulig å oppheve den innbyrdes avhengighet av temperaturforhold-ene i hvirvelsjiktet og det elektriske gassrenseanlegg, uten at det ved den elektriske gassrensning erholdte støv utsettes for noen skadelig innvirkning med hensyn til de egenskaper som kreves for røstingen direkte i et etterrøstingstrinn under dan-nelse av en praktisk talt arsen- og antimonfri avbrann. Til dette øyemed under-kaster man de fra hvirvelsjiktet uttredende røstegasser som fører med seg arsen- og antimonholdig støv, en for-støvbefrielse ved en temperatur over 600°, forbrenner i tilslutning hertil den del av forbrennbart støv som fremdeles inneholdes i røstegas-sen med oksygen eller oksygenholdige gasser, avkjøler de på denne måte behandlete røstegasser i en varmeutveksler til tempe-raturer av 450 til 350° og fører dem til et elektrisk gassrenseanlegg med denne temperatur. It turned out that this disadvantage can be avoided, and it is possible to cancel the interdependence of the temperature conditions in the fluidized bed and the electric gas cleaning system, without the dust obtained by the electric gas cleaning being exposed to any harmful influence with regard to the properties which is required for the roasting directly in a post-roasting step during the formation of a practically arsenic- and antimony-free fire. To this end, the flue gases emerging from the vortex bed, which carry with them dust containing arsenic and antimony, are subjected to pre-dust removal at a temperature above 600°, and in connection with this, the part of combustible dust that is still contained in the flue gas is incinerated with oxygen or oxygen-containing gases, cools the flue gases treated in this way in a heat exchanger to temperatures of 450 to 350° and leads them to an electric gas cleaning plant at this temperature.

Hensiktsmessig gjennomfører man for-avstøvningen i en syklonutskillerinnretning og forbrenningen av den i røstegassene der-etter fremdeles inneholdte andel av brenn-bart støv utføres i et brennkammer, som er koblet etter syklonutskilleren. Appropriately, the pre-dedusting is carried out in a cyclone separator and the combustion of the portion of combustible dust still contained in the flue gases is carried out in a combustion chamber, which is connected after the cyclone separator.

I brennkammeret hvis dimensjoner hensiktsmessig holdes meget små, oksyde-res jern-, arsen- og antimoninnholdet av det fra syklonen uttredende støv til FesOa, AS2O3 og Sb^Oii. Fordelaktig avmåler man mengden av oksygenet eller de oksygenholdige gasser, som innføres i brennkammeret slik at den ved forbrenningen betin-gete temperaturforhøyelse når et maksi-mum. Avkjølingen av de på denne måte opphetete røstegasser kan finne sted i en variabel med avgreningsklapper («By-pass-Klappen») forsynt dampkjel. På denne måte kan i det elektriske gassrenseanlegg den ønskete temperatur av ca. 350 til 450° innstilles uavhengig av temperaturen i hvirvelsjiktet og av støvinnholdet i røste-gassene som dannes i dette hvirvelsjikt. In the combustion chamber, the dimensions of which are suitably kept very small, the iron, arsenic and antimony content of the dust emerging from the cyclone is oxidized to FesOa, AS2O3 and Sb^Oii. Advantageously, the quantity of the oxygen or oxygen-containing gases introduced into the combustion chamber is measured so that the temperature rise caused by the combustion reaches a maximum. The cooling of the flue gases heated in this way can take place in a variable steam boiler equipped with bypass flaps ("By-pass Flap"). In this way, the desired temperature of approx. 350 to 450° is set independently of the temperature in the fluidized bed and of the dust content of the flue gases that are formed in this fluidized bed.

Den lave støvkonsentrasjon i røstegas-sene som trer ut fra syklonen og den ube-tydelige oppholdstid av støvet i det lille brennkammer og den tilsluttede dampkjelen, gjør det mulig å føre bort støvet i praktisk talt arsen- og antimonfri form til dels fra dampkjelen og for en annen del fra det elektriske gassrenseanlegg. The low concentration of dust in the flue gases emerging from the cyclone and the negligible residence time of the dust in the small combustion chamber and the connected steam boiler make it possible to remove the dust in a practically arsenic- and antimony-free form partly from the steam boiler and for another part from the electric gas purification plant.

Det i hvirvelsjiktet dannete, praktisk talt arsen- og antimonfrie fastprodukt kan ferdigrøstes i et annet hvirvelsjikt ved hjelp av friskt tilførte oksygenholdige gasser. The practically arsenic- and antimony-free solid product formed in the fluidized bed can be roasted in another fluidized bed using freshly supplied oxygen-containing gases.

Eksempel: Gjennom en cyklonutskiller som holdes på 650°, ledes pr. time 3 000 Nm<:i> røste-gasser, som dannes i et hvirvelsjikt som tjener til for-røstingen av arsen- og antimonholdig pyritt og som inneholder ca. 20 volumprosent svoveldioksyd. Etter avstøv-ingen i syklonen inneholdes i røstegassene ved 650° fremdeles 15,2 g støv med 30,4 % sulfidisk bundet svovel, 1,8 g arsen og 0,39 g antimon pr. m<:i>.Disse røstegasser tilføres sammen med 330 Nm3 luft pr. time til et brennkammer, i hvilket der ved forbren-ning av de brennbare deler av støvet inn stilles en temperatur av 740°. Med denne temperatur ledes røstegassene i tilslutning hertil gjennom en dampkjel, i hvilken de bråkjøles til ca. 400°. De på denne måten avkjølte gasser utsettes for en rensing i et elektrisk gassrenseanlegg. I dampkjelen og 1 det elektriske gassrenseanlegg utfelles pr. time 142 kg støv. Fra det elektriske gassrenseanlegg trer der pr. time ut 3 300 Nm3 røstegasser med et innhold av 19,3 volumprosent svoveldioksyd. Example: Through a cyclone separator that is kept at 650°, per hour 3,000 Nm<:i> roasting gases, which are formed in a vortex bed that serves for the roasting of arsenic and antimony-containing pyrite and which contains approx. 20 volume percent sulfur dioxide. After dedusting in the cyclone, the flue gases at 650° still contain 15.2 g of dust with 30.4% sulphidic bound sulphur, 1.8 g of arsenic and 0.39 g of antimony per m<:i>. These flue gases are supplied together with 330 Nm3 of air per hour to a combustion chamber, in which by burning the combustible parts of the dust into a temperature of 740° is set. At this temperature, the flue gases are then led through a steam boiler, in which they are quenched to approx. 400°. The gases cooled in this way are subjected to purification in an electric gas purification plant. In the steam boiler and 1 the electric gas purification plant, per hour 142 kg of dust. From the electric gas purification plant, there are per hour out 3,300 Nm3 flue gases with a content of 19.3 volume percent sulfur dioxide.

Fra det amerikanske patentskrift nr. From US Patent No.

2 637 629 er det kjent en fremgangsmåte til 2 637 629 another method is known

røsting av svovelkis, ved hvilken røstingen gjennomføres trinnvis i hvirvelsjikt, og der et brennkammer og en varmeutveksler er innkoblet etter det første hvirvelsjikt. Denne fremgangsmåten atskiller seg prinsipielt fra arbeidsmåten i henhold til foreliggende oppfinnelse ved at ved den kjente fremgangsmåte i et første hvirvelsjikt finner der sted en distillasjon av fritt svovel under delvis oksydasjon av svovelkisen, det delvis oksyderte gods avrøstes i tilslutning hertil i vidtgående grad i et annet hvirvelsjikt og i et tredje hvirvelsjikt forbrennes de siste andeler av svovel i røstegodset. Den tanke som ligger til grunn for arbeidsmåten i henhold til foreliggende oppfinnelse, spiller herunder ingen rolle, da ved den beskrevne fremgangsmåte de svoveldioksydholdige gasser som forlater forbren-ningskammeret, ikke utsettes for noen rensing og føres bort fra prosessen, men til-ledes sammen med røstegodset fra det første hvirvelsjikt til det neste hvirvelsjikt. roasting pyrite, in which the roasting is carried out step by step in a fluidized bed, and where a combustion chamber and a heat exchanger are connected after the first fluidized bed. This method differs in principle from the working method according to the present invention in that, in the known method, a distillation of free sulfur takes place in a first fluidized bed during partial oxidation of the sulfur quartz, the partially oxidized material is subsequently descaled to a large extent in another fluidized bed and in a third fluidized bed the last portions of sulfur in the roasting material are burned. The idea underlying the method of working according to the present invention does not play any role here, since in the described method the sulfur dioxide-containing gases leaving the combustion chamber are not subjected to any purification and are led away from the process, but are fed together with the voting material from the first vortex layer to the next vortex layer.

Claims (1)

Fremgangsmåte for fremstilling av svoveldioksydholdige gasser og utvinning av praktisk talt arsen- og antimonfrie, faste røsteprodukter ved hvirvelsjiktrøst-ning av materialer, særlig pyritter som inneholder røstbart svovel foruten arsen og/ eller antimon, under for-avstøvning av de fra hvirvelsjiktet uttredende gasser ved forhøyet temperatur, avkjøling av de for-avstøvete gasser i en varmeutveksler og til-sluttende elektrisk gassrensing, karakterisert ved at for-avstøvningen utføres ved en temperatur over 600° C og før avkjølin-gen av gassene i en varmeutveksler til tem-peraturer av 450—350° C forbrennes den i gassene fremdeles inneholdte andel av forbrennbart støv med oksygen eller oksygenholdige gasser.Process for the production of sulfur dioxide-containing gases and the recovery of practically arsenic- and antimony-free, solid roasting products by fluidized bed roasting of materials, especially pyrites containing roastable sulfur in addition to arsenic and/or antimony, during pre-dusting of the gases emerging from the fluidized bed at elevated temperature, cooling of the pre-dusted gases in a heat exchanger and subsequent electrical gas cleaning, characterized in that the pre-dusting is carried out at a temperature above 600° C and before the cooling of the gases in a heat exchanger to temperatures of 450— At 350° C, the proportion of combustible dust still contained in the gases is burned with oxygen or oxygen-containing gases.
NO00171028A 1966-12-19 1967-12-18 NO126302B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DK656166A DK123146B (en) 1966-12-19 1966-12-19 Apparatus for introducing a first fluid into a second.

Publications (1)

Publication Number Publication Date
NO126302B true NO126302B (en) 1973-01-22

Family

ID=8148882

Family Applications (1)

Application Number Title Priority Date Filing Date
NO00171028A NO126302B (en) 1966-12-19 1967-12-18

Country Status (14)

Country Link
US (1) US3482520A (en)
JP (1) JPS4818527B1 (en)
AT (1) AT290412B (en)
BE (1) BE708121A (en)
CH (1) CH495162A (en)
DE (1) DE1557129A1 (en)
DK (1) DK123146B (en)
FI (1) FI45168C (en)
FR (1) FR1548931A (en)
GB (1) GB1214818A (en)
IL (1) IL29162A (en)
NL (1) NL6717263A (en)
NO (1) NO126302B (en)
SE (1) SE354789B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969446A (en) * 1974-06-03 1976-07-13 Franklin Jr Grover C Apparatus and method for aerating liquids
US4176157A (en) * 1974-11-14 1979-11-27 Bpb Industries Limited Calcining calcium sulphate dihydrate
DE2748160C2 (en) * 1977-10-27 1984-06-07 Brown Boveri Reaktor GmbH, 6800 Mannheim Device for gassing primary coolant in a water-cooled nuclear reactor plant
SE412011B (en) * 1978-03-31 1980-02-18 Sala International Ab DEVICE FOR MIXTURES AND EMISSIONS OF GASES IN WASTE MATERIALS WHICH ARE REQUIRED BY AN AXIAL PUMP WHEEL BY A VERTICAL RISK
NL7803906A (en) * 1978-04-12 1979-10-16 Noordvos Schroeven Bv METHOD, DEVICE AND PROPELLER FOR DISTRIBUTING A GAS, POWDER OR LIQUID MATERIAL IN A LIQUID.
FI62872C (en) * 1978-06-06 1983-03-10 Ahlstroem Oy ANORDNING FOER SILNING AV FIBERSUSPENSIONER
SE438273B (en) * 1980-08-19 1985-04-15 Kamyr Ab DEVICE FOR INHIBITION OF TREATMENT AGENTS IN SUSPENSIONS
DE3045383C2 (en) * 1980-12-02 1985-05-23 Deutsche Texaco Ag, 2000 Hamburg Device for mixing a concentrate with water
US4497750A (en) * 1982-09-17 1985-02-05 Edward Simonds Fuel impact device
SE445712B (en) * 1983-12-08 1986-07-14 Boliden Ab PROCEDURE FOR DISTRIBUTION OF A WATER PURIFICATION CHEMISTRY AND DEVICE FOR IMPLEMENTATION OF THE PROCEDURE
DE3633018A1 (en) * 1986-09-29 1988-04-07 Schneider Friedhelm Kunststoff MIXING DEVICE WITH ROTATING NOZZLE
JP2505525B2 (en) * 1988-04-08 1996-06-12 三菱重工業株式会社 Gas-liquid contact treatment device for slurry
US4985181A (en) * 1989-01-03 1991-01-15 Newa S.R.L. Centrifugal pump especially for aquariums
DE4029824A1 (en) * 1990-09-20 1992-03-26 Passavant Werke Device for mixing liq. with liq. flowing in pipe - has distribution head with outlet openings projecting into pipe, rotated by vanes attached to surface or by motor
HU207669B (en) * 1991-02-01 1993-05-28 Richter Gedeon Vegyeszet Complex mixing apparatus for dispersing gases in fluid
US5431860A (en) * 1991-02-01 1995-07-11 Richter Gedeon Vegyeszeti Gyar Rt. Complex mixing device for dispersion of gases in liquid
US5993670A (en) * 1996-10-09 1999-11-30 Knauer; Joachim Friedrich Apparatus for admixing of a flocculant liquid to a sludge stream and use of the apparatus
DE29909312U1 (en) * 1999-05-27 1999-08-12 Ekato Ruehr Mischtechnik Agitator
EP1247991B1 (en) * 2001-04-05 2005-10-12 Hitachi, Ltd. Centrifugal pump
GB0113674D0 (en) * 2001-06-05 2001-07-25 Withdeal Ltd Mixing apparatus
ATE552218T1 (en) * 2003-10-07 2012-04-15 Technocon Gmbh METHOD FOR BIOLOGICALLY PURIFYING WASTE WATER
EP1600205A1 (en) * 2004-05-28 2005-11-30 Sika Technology AG Mixing apparatus and method for adding an additive to a pumpable mixture
WO2008139417A2 (en) * 2007-05-14 2008-11-20 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Systems and methods for mixing fluids
US9194092B2 (en) * 2010-01-26 2015-11-24 Mark Kline Mechanism for automated mixing of liquid solutions and granular materials
US20120039146A1 (en) * 2010-08-16 2012-02-16 Zanti Kyriacos Dual tube gas diffusion system
KR101040927B1 (en) 2011-03-30 2011-06-16 (주)플록마스터 Mixing apparatus for sludge spallation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1264315A (en) * 1917-03-22 1918-04-30 Vacuum Machinery Co Combined aspirator and force-pump.
US1919847A (en) * 1933-04-04 1933-07-25 Adolph R Kunz Centripugal air or gas injector
US2319228A (en) * 1940-05-10 1943-05-18 Reynolds Allen Vacuum pressure pump
US2772863A (en) * 1954-08-30 1956-12-04 Pacific Pumps Inc Mixing pump
US2911137A (en) * 1955-11-18 1959-11-03 Edwards Miles Lowell Rotary aspirator pump
US2990779A (en) * 1956-12-27 1961-07-04 Obermaier & Cie High speed propeller pump
US3405865A (en) * 1966-10-18 1968-10-15 Lagelbauer Ernest Turbofan bladings

Also Published As

Publication number Publication date
CH495162A (en) 1970-08-31
FI45168C (en) 1972-04-10
DK123146B (en) 1972-05-23
DE1557129A1 (en) 1970-03-19
NL6717263A (en) 1968-06-20
AT290412B (en) 1971-06-11
IL29162A (en) 1972-07-26
SE354789B (en) 1973-03-26
US3482520A (en) 1969-12-09
FI45168B (en) 1971-12-31
BE708121A (en) 1968-05-02
GB1214818A (en) 1970-12-02
JPS4818527B1 (en) 1973-06-06
FR1548931A (en) 1968-12-06

Similar Documents

Publication Publication Date Title
NO126302B (en)
US1941592A (en) Roasting pryites fines
US2637629A (en) Roasting sulfide ores
US3689213A (en) Process for treating flue gases
JPS5852683B2 (en) gas
US1812397A (en) Process of and apparatus for oxidizing metal sulphides and making sulphur dioxide
US2040682A (en) Recovery of sulphur
US2978297A (en) Production of gases containing sulfur dioxide and of solid roasted products free from arsenic and antimony by fluidized layer roasting of materials containing roastable sulfur in addition to arsenic and/or antimony
US2889203A (en) Production of gases containing sulfur dioxide
US4080219A (en) Collateral drying process
EP0019443B1 (en) Method and apparatus for handling and utilizing system off-gas in a pyro-processing system
US2416044A (en) Process of treating zinc oxides
US2084697A (en) Process for the recovery of sulphur from sulphide ores
US1473723A (en) Method of producing elemental sulphur
US1939033A (en) Recovery of sulphur
US3864121A (en) Process in the roasting of ores for removing quantities of tin contained therein
US2030021A (en) Method and apparatus for the production of sulphur dioxide
US3617255A (en) Process for repressing sulfur trioxide formation in iron sulfide roasting
US2026775A (en) Process for sulphating the non-ferrous metals contained in ferruginous sulphide oresor roasts
US1992049A (en) Roasting of plumbiferous pyrites
US1832006A (en) Method of and apparatus for treating quicksilver ores
GB731527A (en) Improvements in or relating to the treatment of sulphides and sulphide minerals
US1985902A (en) Concentrate burner
GB888297A (en) Method for removing arsenic from arsenopyrite ores
US1061859A (en) Process of regenerating iron oxid used in gas purification.