NO119695B - - Google Patents
Download PDFInfo
- Publication number
- NO119695B NO119695B NO169239A NO16923967A NO119695B NO 119695 B NO119695 B NO 119695B NO 169239 A NO169239 A NO 169239A NO 16923967 A NO16923967 A NO 16923967A NO 119695 B NO119695 B NO 119695B
- Authority
- NO
- Norway
- Prior art keywords
- casting
- string
- plates
- strand
- cooling
- Prior art date
Links
- 238000005266 casting Methods 0.000 claims description 59
- 238000001816 cooling Methods 0.000 claims description 38
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 19
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 239000010949 copper Substances 0.000 claims description 19
- 239000002826 coolant Substances 0.000 claims description 6
- 229910000760 Hardened steel Inorganic materials 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 229910001385 heavy metal Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 238000009749 continuous casting Methods 0.000 claims description 2
- 230000007423 decrease Effects 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 230000001846 repelling effect Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 239000007921 spray Substances 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/049—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
- B22D11/1246—Nozzles; Spray heads
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
Innretning for kjøling og avstytting av støpestrenger ved strengestøping av tungmetaller eller deres legeringer. Device for cooling and supporting casting strands during strand casting of heavy metals or their alloys.
Ved strengestøping av tungmetaller, særlig stål eller stållegeringer, er det kjent å benytte glidekokiller av kobber som gjennomløpsstøpeform, hvilke kokiller enten er fremstilt av en kobberblokk eller sammensatt av kobberplater eller kobberrør og på innsiden blir påvirket av et strømmende flytende kjølemiddel. Alt etter diameteren eller kantlengden for støpestrengen er disse glidekokiller ca. 600-1000 mm lange, hvorved de omslutter støpestrengen over denne lengden med sine på innsiden kjølte glatte kobberflater. In string casting of heavy metals, especially steel or steel alloys, it is known to use sliding molds made of copper as a through-flow mold, which molds are either made from a copper block or composed of copper plates or copper tubes and are affected on the inside by a flowing liquid coolant. Depending on the diameter or edge length of the casting string, these sliding molds are approx. 600-1000 mm long, whereby they enclose the casting string over this length with their internally cooled smooth copper surfaces.
Ved benyttelsen av disse kobberglidekokillene har detBy using these copper slide molds it has
vist seg som ulempe at strengskallet allerede kort tid etter sin dannelse på grunn av sammenskrumpning fjerner seg fra kobberveggene proved to be a disadvantage that the string shell already shortly after its formation, due to shrinkage, removes itself from the copper walls
og at det følgelig i det nedre lengdeområdet av kokillen ikke mer finner sted en jevn kjøling. Man har forsøkt å ta med denne sammenskrumpning i beregningene ved at man utformer kokillen konisk, slik at de indre vegger som danner strengen følger sammenskrumpningen og på denne måten sikre et bedre anlegg mot strengskallet. Da imidlertid også et over hele lengden mot kokilleveggene anliggende streng-skall på grunn av sin naturlige overflateruhet bare muliggjør forholdsvis dårlig varmeovergang og varmebortledningsevne også derfor er begrenset, fordi den vidtgående er avhengig av varmeledningsevnen for kobbermaterialet, har det allerede i lang tid vært kjent og vanlig i tillegg å kjøle strengskallet direkte enten allerede inne i kobberkokillen, eller under-denne med et som oftest flytende kjøle-middel, særlig vann. 0 and that, consequently, uniform cooling no longer takes place in the lower length range of the mold. An attempt has been made to include this shrinkage in the calculations by designing the mold conically, so that the inner walls that form the string follow the shrinkage and in this way ensure a better fit against the string shell. Since, however, a string-shell that rests against the mold walls over its entire length due to its natural surface roughness only enables relatively poor heat transfer and heat dissipation capacity is also therefore limited, because it is largely dependent on the thermal conductivity of the copper material, it has already been known for a long time and it is also common to cool the string shell directly either already inside the copper mould, or underneath it with a liquid coolant, most often water. 0
De til dette formål kjente fremgangsmåter og innretninger er imidlertid ikke tilfredsstillende. Bortsett fra at besprøytningen av støpestrengoverflaten ved hjelp av vann gjennom dyser gir en ujevn kjøling av støpestrengskallet og en ujevn kjøling kan føre såvel til gjennombrudd som også til spenningsriss, består det innenfor glidekokillen utstrømmende kjølevann i forøket gråd .den fare at kjøle-vannet, ved for stort vanntrykk når frem til nærheten av -støpespeilet og der fører til en oppkokning av stålet. However, the methods and devices known for this purpose are not satisfactory. Apart from the fact that the spraying of the casting strand surface using water through nozzles results in uneven cooling of the casting strand shell and uneven cooling can lead to breakthroughs as well as to stress cracks, there is an increased risk of cooling water flowing out of the sliding mold within the sliding mold. excessive water pressure reaches the vicinity of the casting mirror and there leads to a boiling of the steel.
Ifølge resultater som er fremkommet ved foreliggende oppfinnelse skriver den ujevne og som oftest også utilstrekkelig kjøling av støpestrengskallet ved direkte kjøling ved hjelp av vann eller lignende seg fra at det umiddelbart under treffstedet på ytter-flaten til støpéstrengskallet vékkstrømmende kjølevann ifølge det kjente Leidenfrbst-fenomen blir isolert på grunn av dampsjiktdannelse, slik at det i disse områder - frem til høyden for den derpå følgende dyse - under visse omstendigheter til og. med kan inntre en gjenoppvarming av støpestrengskallet fra innsiden. According to the results obtained by the present invention, the uneven and often also insufficient cooling of the casting strand shell by direct cooling with the aid of water or the like is due to the cooling water flowing away immediately below the point of impact on the outer surface of the casting strand shell according to the well-known Leidenfrbst phenomenon isolated due to vapor layer formation, so that in these areas - up to the height of the following nozzle - under certain circumstances to and. with which a reheating of the casting string shell from the inside can occur.
Denne ulempe har også en kjent glidekokille, som i sitt nedre lengdeområde er utstyrt, med lengdespor gjennom hvilke det i området. v,ed sporene mot støpestrengen sprøytede kjølevann skal bli ført bort nedover langs overflaten. Mens det herved i det umiddelbare tréffområdet for sprøytestrålen opptrer en sterk kj.øle-ef fekt, er kjøleinnvirkningen i det nedenforværende område utilfredsstillende fordi det vann 'som preller tilbake fra strengoverflaten innenfor sporet ikke mer bidrar til en videre kjøling, men delvis på grunn av Leidenfrost-fenoménet og delvis på grunn av tilbakeprellingen strømmer Nedover og ut i det fri på den bort fra strengen vendte innside av sporet. Dette betyr at det etter et kjølestøt i høyde med dyse-ringen følger en mer eller mindre stor sone i hvilken støpestreng-skallet bare blir ufullstendig kjølt. At det herved til og med kan opptre en gjenoppvarming av skallet er blitt iakttatt ved, med varm saltsyre beisede strengskiver, ved hvilke det viste seg tett nedenfor overflaten, som årringer vekslende soner med tettere og løsere struktur. I området ved strengekantene har disse soner med løsere struktur riss..r.,.This disadvantage also has a known sliding mold, which in its lower longitudinal area is equipped with longitudinal grooves through which in the area. cooling water sprayed along the grooves towards the casting string must be carried away downwards along the surface. While a strong cooling effect occurs in the immediate impact area of the spray jet, the cooling effect in the area below is unsatisfactory because the water that bounces back from the strand surface within the groove no longer contributes to further cooling, but partly due to The Leidenfrost phenomenon and partly due to the rebound flows Down and out into the open on the inside of the track facing away from the string. This means that after a cooling shock at the height of the nozzle ring, there follows a more or less large zone in which the casting strand shell is only partially cooled. That a reheating of the shell can even occur in this way has been observed with string discs stained with hot hydrochloric acid, which showed alternating zones of denser and looser structure close below the surface. In the area near the string edges, these have zones with a looser structure riss..r.,.
Oppfinnelsen har til hensikt å forbedre de foran beskrevne anordninger til kjøling av støpestrenger ved unngåelse av de nevnte effekter og ulemper og å fremskaffe en jevn og intensiv kjøling av støpestrengen. For løsing av denne oppgaven er innret-ningen ifølge oppfinnelsen kjennetegnet ved at støtteristen består av med smalkantene mot støpestrengoverflaten anliggende smale plater av et egnet materiale, som utstrekker seg i et vertikalt plan og parallelt med støpestrengens akse og er anordnet med liten avstand fra hverandre rundt støpestrengens omkrets, hvorved de, i spaltområdene mellom de hosliggende plater anordnede stråledyser retter flate stråler mot støpestrengoverflaten, hvilke stråler utstrekker seg i vertikal retning sammenhengende over hele kjøle-strekningens lengde, hvilke strålers, i støpestrengens omkretsretning målte bredde i treffområdet på støpestrengoverflaten er mindre enn spaltbredden mellom platene i støtteristen og hvis kinetiske treffenergi mot støpestrengoverflaten er av størrelsesorden 5-20 kpm/min cm p. Det har ved forsøk, vist seg at det på denne måten er mulig å kjøle støpestrengen på en forholdsvis kort direkte kjøle-strekning så intensivt og jevnt at de ovenfor beskrevne ulemper og effekter ikke mer kunne iakttas. Da støpestrengens overflate i de tett ved siden av hverandre liggende spaltområder i kjøleristen blir direkte truffet med, over hele lengden av kjølestrekningen seg utstrekkende flate stråler med høy kinetisk energi, kan det ikke ved noe sted i kjølestrekningen danne seg et isolerende dampsjikt, idet det på grunn av de i forhold til spaltbredden smalere flatestråler, The invention aims to improve the above-described devices for cooling casting strings by avoiding the aforementioned effects and disadvantages and to provide uniform and intensive cooling of the casting string. To solve this task, the device according to the invention is characterized by the fact that the support grid consists of narrow plates of a suitable material with their narrow edges against the surface of the casting string, which extend in a vertical plane and parallel to the axis of the casting string and are arranged at a small distance from each other around the circumference of the casting strand, whereby the jet nozzles arranged in the gap areas between the adjacent plates direct flat jets towards the casting strand surface, which beams extend in a vertical direction continuously over the entire length of the cooling section, the width of which rays, measured in the circumferential direction of the casting strand in the impact area on the casting strand surface, is less than the gap width between the plates in the support grid and whose kinetic impact energy against the casting strand surface is of the order of 5-20 kpm/min cm p. It has been shown in experiments that in this way it is possible to cool the casting strand in a relatively short direct cooling section as intensively and evenly that those above described disadvantages and effects could no longer be observed. As the surface of the casting strand in the closely adjacent gap areas in the cooling grid is directly hit by flat jets with high kinetic energy extending over the entire length of the cooling section, an insulating vapor layer cannot form anywhere in the cooling section, as due to the narrower surface beams in relation to the gap width,
på den ene side blir oppnådd at disse treffer støpestrengoverflaten med full energi og på den annen side at det vann som preller bort eller bøyes bort fra støpestrengoverflaten føres forbi den flate stråle på grunn av adhesjon langs sideveggene til føringsliatene. on the one hand, it is achieved that these hit the casting string surface with full energy and, on the other hand, that the water that bounces away or is bent away from the casting string surface is led past the flat jet due to adhesion along the side walls of the guide liats.
Det har vist seg at på denne måte kan det bli oppnådd en optimal kjølevirkning når den kinetiske treffenergien for de flate strålene beløper seg til minst ca. 5>fortrinnsvis imidlertid inntil ca. It has been shown that in this way an optimal cooling effect can be achieved when the kinetic impact energy for the flat beams amounts to at least approx. 5> preferably, however, up to approx.
20 kp.m/min.cm p.20 kp.m/min.cm p.
Selv om det har vist seg hensiktsmessig å la de flate strålene som i spaltene mellom hver gang to hosliggende førings-lister treffer støpestrengoverflaten direkte over hele kjøle-strekningens lengde med den angitte kinetiske energi, bli frembragt av minst hver gang én, ved den side av spalten som vender bort fra støpestrengen anordnet flatestråledyse, er det også mulig for frem-bringelse av flatestråler som arbeider ifølge oppfinnelsen å benytte flere, over hele lengden av spalten fordelt anordnede flat- eller rundstråledyser, hvis stråler i treffområdet på støpestrengen danner en sammenhengende flat stråle. Although it has been shown to be appropriate to let the flat jets which in the gaps between each time two adjacent guide strips hit the casting strand surface directly over the entire length of the cooling section with the specified kinetic energy, be produced by at least one each time, on the side of the slot that faces away from the casting string is equipped with a flat jet nozzle, it is also possible to produce flat jets that work according to the invention to use several flat or circular jet nozzles distributed over the entire length of the slot, whose jets in the area of impact on the casting string form a continuous flat jet .
Herved er det i ethvert tilfelle hensiktsmessig, hvisHereby, it is appropriate in any case, if
de til hver spalte tilordnede dyser er slik utformet og innstilt at tettheten og/eller den kinetiske treffenergien til den over hele lengden av kjølestrekningen avtar fra den øvre til den nedre ende av kj ølestrekningen, fortrinnsvis.progressivt. Åpningstverrsnittene til dysen er derved valgt slik åt støpestrengoverflaten ved den gitte støpehastighet forblir i et temperaturområde mellom ca. 700 og maksimalt 1250°C the nozzles assigned to each slot are designed and adjusted in such a way that the density and/or the kinetic impact energy of it over the entire length of the cooling section decreases from the upper to the lower end of the cooling section, preferably progressively. The opening cross-sections of the die are thereby chosen so that the casting strand surface at the given casting speed remains in a temperature range between approx. 700 and a maximum of 1250°C
Ved forsøk med anordningen ifølge oppfinnelsen er det funnet at det på hver gang 100 mm omkretslengde for støpestrengen blir rettet hensiktsmessig mellom 3 og 9, fortrinnsvis 6 flatestråler. When testing the device according to the invention, it has been found that between 3 and 9, preferably 6 surface jets are directed appropriately on each 100 mm circumferential length of the casting strand.
For å muliggjøre dette med en enkel oppbygning, er føringslistene for kjøleristen dannet ikke ved hjelp av spor, men ved hjelp av i "planparallell avstand ved siden av hverandre forankrede plater av fortrinnvis herdet stål, f.eks. St.60, hvorved platen har en veggtykkelse på ca. 5-10 mm,, fortrinnsvis 6 mm, mens de av deres avstand bestemte spaltbredder ligger mellom 7,5 og 15 mm, fortrinnsvis 10 mm. Ved denne foretrukkede utførelsesform er platene ved benyttelsen av bare en til hver spalt tilordnet, i det øvre lengdeavsnitt av kjøleristen anbragt i bevegelsesretningen til støpestrengen skråttstilt flatestråledyse med en sprøytevinkel på In order to make this possible with a simple structure, the guide strips for the cooling grid are formed not by means of tracks, but by means of plates of preferably hardened steel, e.g. a wall thickness of approximately 5-10 mm, preferably 6 mm, while the gap widths determined by their distance are between 7.5 and 15 mm, preferably 10 mm. In this preferred embodiment, the plates are assigned to each gap when only one is used , in the upper longitudinal section of the cooling grate arranged in the direction of movement of the casting string, an inclined flat jet nozzle with a spray angle of
ca. 90°, i deres dybde for kjøleristen tilmålt så brede at lengden for flatestrålen i treffområdet mot støpestrengoverflaten omtrent tilsvarer lengden på kjøleristen. about. 90°, in their depth for the cooling grid measured so wide that the length of the surface jet in the impact area against the casting string surface roughly corresponds to the length of the cooling grid.
Kobberkokillen som indirekte kjøler støpestrengen ogThe copper mold which indirectly cools the casting string and
den til direkte kjøling tjenende kjølerist er fortrinnsvis fast,the cooling grid serving for direct cooling is preferably fixed,
men likevel løsbart forbundet med hverandre. Derved kan kobber- yet inextricably linked to each other. Thereby, copper can
kokillen bli så mye forkortet at den er kortere eller fortrinnsvis bare omtrent like lang som den dobbelte diameter eller den dobbelte sidelengde til støpestrengen. Lengden på den tilsluttede kjølerist kan vanligvis være omtrent like lang som kobberkokillen, imidlertid under visse omstendigheter også lenger enn denne. the mold be shortened so much that it is shorter or preferably only about as long as twice the diameter or twice the lateral length of the casting strand. The length of the connected heatsink can usually be approximately the same length as the copper mold, but in certain circumstances also longer than this.
Ved forsøk med kjøleanordningen ifølge oppfinnelsenWhen testing with the cooling device according to the invention
har det i forbindelse med en støpestreng med 160 mm kantlengde og ved benyttelsen av, til hver kant ni 6 mm tykke plater med et mellomrom på 10 mm og tilsammen førti flatstråledyser med et vann-forbruk på 8 m^/time vist seg at det selv ved meget store støpe-hastigheter inntrer en fullstendig jevn og intensiv kjøling. Herved kunne man kjøre med støpehastigheter på inntil 2,8 m/min., hvorved strengskallet under kjøleristen ikke på noe sted hadde en temperatur over 1000°C. in connection with a casting string with an edge length of 160 mm and by the use of, for each edge, nine 6 mm thick plates with a gap of 10 mm and a total of forty flat jet nozzles with a water consumption of 8 m^/hour, it has been shown that even at very high casting speeds, completely uniform and intensive cooling occurs. This made it possible to run with casting speeds of up to 2.8 m/min., whereby the string shell under the cooling grid did not have a temperature above 1000°C anywhere.
På tegningen er oppfinnelsen forklart ved hjelp av et foretrukket eksempel på utførelsen. Tegningen viser: Fig. 1 kobberkokillen og den tilsluttede kjølerist skjematisk i lengdesnitt, og In the drawing, the invention is explained by means of a preferred example of the embodiment. The drawing shows: Fig. 1 the copper mold and the connected cooling grid schematically in longitudinal section, and
fig. 2 et tverrsnitt langs linjen II-II i fig. 1.fig. 2 a cross-section along the line II-II in fig. 1.
På tegningen er støpestrengen betegnet med 1, kobberglidekokillen med 2 og den ved den nedre ende løsbart anbragte kjølerist med 3-In the drawing, the casting string is denoted by 1, the copper slide mold by 2 and the cooling grid, which is releasably placed at the lower end, by 3-
Som det i fig. 1 er skjematisk antydet har den av kobber bestående glidekokille 2 i sitt indre et nett av med hverandre forbundne kjølemiddelkanaler 4, som på den ene siden er forbundet med tilkoplingsstusser 5 og på den andre side med bortledningsstusser 6 for kjølemidlet, særlig vann. As shown in fig. 1 is schematically indicated, the sliding mold 2 consisting of copper has in its interior a network of interconnected coolant channels 4, which are connected on one side with connection connectors 5 and on the other side with outlet connectors 6 for the coolant, especially water.
Ved 7 dannes profilformen for støpestrengen 1 ved hjelp av fra innsiden kjølte kobberglideflater som er tilpasset støpe-strengen og ligger an mot dens overflate. At 7, the profile shape for the casting strand 1 is formed with the help of internally cooled copper sliding surfaces which are adapted to the casting strand and rest against its surface.
Som det fremgår av fig. 1 og 2 består kjøleristen 3 av herdede stålplater 8 som ved hjelp av ankerstaver 9 og på disse påskjøvede distansehylser 10 er forankret planparallelt og i en bestemt avstand fra hverandre. Ved det viste utføreleeseksemplet har platene 8 en veggtykkelse på 6 mm, mens avstanden mellom hver av to hosliggende plater, dvs. spaltbredden, er 10 mm. Som man ser av fig. 2 tjener den fremre smalkant 8a til platen 8 som føringskant for de allerede faste støpestrengskall. As can be seen from fig. 1 and 2, the cooling grid 3 consists of hardened steel plates 8 which are anchored parallel to the plane and at a certain distance from each other by means of anchor rods 9 and distance sleeves 10 pushed onto them. In the design example shown, the plates 8 have a wall thickness of 6 mm, while the distance between each of two adjacent plates, i.e. the gap width, is 10 mm. As can be seen from fig. 2, the front narrow edge 8a of the plate 8 serves as a guide edge for the already solid casting string shells.
Med 11 er betegnet et, kjøleristen 3 i det øvre lengde- With 11 is denoted a, the cooling grid 3 in the upper longitudinal
område utvendig omgivende, som ringledning utformet vannkammer,external surrounding area, as ring pipe designed water chamber,
til hvilket det under høyt trykk stående kjølemiddel blir ledet over tilkoplingsstussen lia. På innsiden av vannkammeret er i en viss vinkel i bevegelsesretningen av støpestrengen 1 anordnet skråttstilte flatestråledyser 12 slik at de med en i vertikalplanet målt sprøytevinkel på ca. 90° frembringer en i treffområdet på to which the refrigerant under high pressure is led via the connecting piece lia. On the inside of the water chamber, inclined flat jet nozzles 12 are arranged at a certain angle in the direction of movement of the casting strand 1 so that with a spray angle measured in the vertical plane of approx. 90° produces one in the hit area of
overflaten til støpestrengen over hele lengden av kjøleristen seg utstrekkende flatestråle 13 med høy kinetisk energi, hvis bredde - the surface of the casting string over the entire length of the cooling grid extending surface jet 13 with high kinetic energy, the width of which -
som det fremgår av fig. 2 - er vesentlig smalere enn spaltbredden.as can be seen from fig. 2 - is significantly narrower than the gap width.
På grunn av helningen til flatestråledysene 12 i bevegelsesretningenDue to the inclination of the surface jet nozzles 12 in the direction of movement
til støpestrengen bevirker sprøytevinkelen på 90°C, at den ved den øvre ende av kjøleristen innenfor spalten på støpestrengoverflaten treffende stråle har en større tetthet og kinetisk treffenergi enn i det nedre området. to the casting strand, the spray angle of 90°C causes the jet hitting the upper end of the cooling grid within the slot on the casting strand surface to have a greater density and kinetic impact energy than in the lower area.
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP0040221 | 1966-08-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO119695B true NO119695B (en) | 1970-06-22 |
Family
ID=7377003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO169239A NO119695B (en) | 1966-08-20 | 1967-08-01 |
Country Status (10)
Country | Link |
---|---|
US (1) | US3515202A (en) |
AT (1) | AT289311B (en) |
BE (1) | BE702578A (en) |
CH (1) | CH463708A (en) |
DE (1) | DE1508931A1 (en) |
ES (1) | ES344254A1 (en) |
FI (1) | FI47288C (en) |
GB (1) | GB1201315A (en) |
NO (1) | NO119695B (en) |
SE (1) | SE326802B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH528939A (en) * | 1968-11-12 | 1972-10-15 | Vaw Ver Aluminium Werke Ag | Device for the fully continuous casting of metallic strands of thin cross-section, such as strips, wires or the like |
CH505659A (en) * | 1969-04-15 | 1971-04-15 | Concast Ag | Process for cooling billets during continuous casting |
US3693352A (en) * | 1970-09-22 | 1972-09-26 | Demag Ag | Method and apparatus for cooling wide continuous metal castings, particularly steel castings |
US3765472A (en) * | 1971-02-11 | 1973-10-16 | I Rossi | Improvements in supporting slabs during continuous casting |
US3766963A (en) * | 1971-04-23 | 1973-10-23 | Innocenti Santeustacchio Spa | Continuous casting methods and apparatus |
US3805878A (en) * | 1972-02-16 | 1974-04-23 | V Bashkov | Mold with a turning mechanism for continuous casting of metals |
US3757849A (en) * | 1972-04-28 | 1973-09-11 | Koppers Co Inc | Strand cooling support system |
US3882924A (en) * | 1972-12-18 | 1975-05-13 | Mitsubishi Heavy Ind Ltd | Cast piece supporting apparatus for a continuous casting machine |
US3794108A (en) * | 1973-05-30 | 1974-02-26 | Urban Reclamation Technologies | High speed continuous casting system |
FR2270035B1 (en) * | 1974-03-08 | 1979-01-26 | Fives Cail Babcock | |
DE2444613B1 (en) * | 1974-09-16 | 1976-01-29 | Mannesmann Ag | PROCESS FOR SPRAYING COOLANT DURING CONTINUOUS STEEL SLABS, AND DEVICE FOR CARRYING OUT THE PROCESS |
US4129175A (en) * | 1977-08-01 | 1978-12-12 | Gladwin Floyd R | Continuous slab casting mold |
US4235280A (en) * | 1979-01-22 | 1980-11-25 | Concast Incorporated | Spray nozzle for cooling a continuously cast strand |
FR2787359B1 (en) * | 1998-12-18 | 2001-10-12 | Aster | PLURIANGULAR LINGOTIERE OF CONTINUOUS CASTING IN CHARGE OF A METALLURGICAL PRODUCT |
US10082032B2 (en) * | 2012-11-06 | 2018-09-25 | Howmet Corporation | Casting method, apparatus, and product |
WO2017187665A1 (en) * | 2016-04-28 | 2017-11-02 | Mkテクノコンサルティング株式会社 | Continuous casting device for steel |
CN107020359A (en) * | 2017-05-10 | 2017-08-08 | 攀钢集团攀枝花钢钒有限公司 | The construction technology of casting blank surface temperature can uniformly be reduced |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3124855A (en) * | 1964-03-17 | Baier | ||
DE1055763B (en) * | 1954-12-29 | 1959-04-23 | Ver Deutsche Metallwerke Ag | Device for the continuous casting of heavy metals or heavy metal alloys |
BE560271A (en) * | 1956-08-27 | |||
US3098269A (en) * | 1960-05-09 | 1963-07-23 | American Smelting Refining | Mold for continuous casting |
AT233186B (en) * | 1961-09-13 | 1964-04-25 | Concast Ag | Device for cooling continuously cast material |
-
1966
- 1966-08-20 DE DE19661508931 patent/DE1508931A1/en active Pending
-
1967
- 1967-07-17 AT AT667567A patent/AT289311B/en not_active IP Right Cessation
- 1967-07-19 CH CH1027467A patent/CH463708A/en unknown
- 1967-08-01 NO NO169239A patent/NO119695B/no unknown
- 1967-08-03 FI FI672114A patent/FI47288C/en active
- 1967-08-11 BE BE702578D patent/BE702578A/xx unknown
- 1967-08-16 GB GB37586/67A patent/GB1201315A/en not_active Expired
- 1967-08-16 US US661503A patent/US3515202A/en not_active Expired - Lifetime
- 1967-08-17 SE SE11571/67A patent/SE326802B/xx unknown
- 1967-08-19 ES ES344254A patent/ES344254A1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
SE326802B (en) | 1970-08-03 |
CH463708A (en) | 1968-10-15 |
DE1508931A1 (en) | 1970-03-05 |
US3515202A (en) | 1970-06-02 |
AT289311B (en) | 1971-04-13 |
FI47288C (en) | 1973-11-12 |
GB1201315A (en) | 1970-08-05 |
FI47288B (en) | 1973-07-31 |
ES344254A1 (en) | 1968-12-16 |
BE702578A (en) | 1968-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO169239B (en) | PHOSPHATE-FREE, NON-WATER, LIQUID, EXTREMELY POWERFUL TOUCH DETERGENT MIXTURE | |
NO119695B (en) | ||
CA1102850A (en) | Apparatus for providing a curtain of cooling liquid | |
US20160305010A1 (en) | Evaporation crucible and evaporation device | |
CN101534971A (en) | Method of cooling hot-rolled steel strip | |
US3590904A (en) | Method and appratus for cooling graphite molds | |
US2946100A (en) | Block graphite mold for continuous casting | |
US3399716A (en) | Method for cooling hot metal, especially continuously cast metal | |
US3693352A (en) | Method and apparatus for cooling wide continuous metal castings, particularly steel castings | |
US9630244B2 (en) | Double-jet cooling device for semicontinuous vertical casting mould | |
US2414269A (en) | Method for cooling ingots in continuous casting | |
US2496235A (en) | Method for the continuous casting of metal slabs | |
US2564723A (en) | Apparatus for the continuous casting of metal slab | |
NO123142B (en) | ||
US2996771A (en) | Method and appartus for horizontal pouring of metals | |
NO154380B (en) | HORIZONTAL STRUCTURE DEVICE. | |
US20180036794A1 (en) | Mold for continuous casting | |
KR102043784B1 (en) | skirt device for converter | |
CN216838076U (en) | Efficient water mist quenching device with uniform and controllable cooling speed | |
US3616844A (en) | Apparatus for continuous casting of metal ingots | |
US20020170700A1 (en) | Metal-casting method and apparatus, casting system and cast-forging system | |
US1794840A (en) | Hot top | |
US2281718A (en) | Method of casting metal ingots and apparatus therefor | |
ES378888A1 (en) | Billet cooling method for continuous casting | |
KR101353695B1 (en) | Apparatus for removing gas and cooler having thereof for high temperature plate |