WO2017187665A1 - Continuous casting device for steel - Google Patents

Continuous casting device for steel Download PDF

Info

Publication number
WO2017187665A1
WO2017187665A1 PCT/JP2017/000014 JP2017000014W WO2017187665A1 WO 2017187665 A1 WO2017187665 A1 WO 2017187665A1 JP 2017000014 W JP2017000014 W JP 2017000014W WO 2017187665 A1 WO2017187665 A1 WO 2017187665A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
pressure gas
continuous casting
steel
spray
Prior art date
Application number
PCT/JP2017/000014
Other languages
French (fr)
Japanese (ja)
Inventor
守彦 久保田
Original Assignee
Mkテクノコンサルティング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mkテクノコンサルティング株式会社 filed Critical Mkテクノコンサルティング株式会社
Priority to ATA9085/2017A priority Critical patent/AT526023B1/en
Priority to JP2018514106A priority patent/JP6570738B2/en
Publication of WO2017187665A1 publication Critical patent/WO2017187665A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads

Definitions

  • the present invention relates to a continuous casting apparatus for steel that can prevent corrosion and wear from occurring on the inner peripheral surface of the lower end side of a mold by cooling water and water mist (spray water) used for cooling a cast piece continuously cast. .
  • the slab is cooled by spraying cooling water or water mist (water or water mixed with air, spray water) from a plurality of spray nozzles disposed on the lower outer side of the mold.
  • a surface treatment layer is formed on the inner surface of the mold by a thermal spray coating such as Co-Ni plating or cermet, etc. to extend the service life.
  • a thermal spray coating such as Co-Ni plating or cermet, etc. to extend the service life.
  • the inner surface of the mold is damaged, it is repaired by cutting, grinding, and surface treatment, and is generally used repeatedly 3 to 10 times (3 to 10 campaign).
  • the spray water contains a component that corrodes metals such as sulfuric acid and hydrochloric acid, and fluorine in the mold powder used for casting reacts with cooling water or high-temperature steam to react with hydrogen fluoride or the like. Since a strong corrosive liquid and a high-temperature gas are generated, it causes a reduction in the life of the surface treatment layer on the inner surface of the mold. That is, the cooling water and its high-temperature steam enter the air gap generated between the solidified shell of the slab and the inner surface of the mold, causing corrosion and wear of the surface treatment layer of the mold.
  • This casting method can prevent fine cracks on the surface of the slab generated in the mold and prevent internal corrosion at the bottom of the mold in a steel type sensitive to cracking. This has been proven in practice. However, in the majority of parallel plate mold operations, even with high-speed casting, it is not possible to sufficiently suppress the occurrence of air gaps at the corners of the short and long sides of the mold. Compared with, there are few air gaps and very little corrosion in high speed casting.) Secondly, even if there are some air gaps, if there is no hot water (or high-temperature steam accompanying spraying of spray water), the corrosion phenomenon does not occur or is greatly suppressed. This is the principle of the corrosion phenomenon.
  • Patent Document 1 discloses a continuous casting mold in which a cooling water shield is provided on at least a lower end surface on the long side of a mold base.
  • Patent Document 2 discloses a continuous casting mold in which a gas ejection portion is provided in the corner portion of the inner lower portion of the mold main body forming the mold space or in the vicinity thereof.
  • the continuous casting mold of (Patent Document 1) is premised on slab casting, and is provided with a spray guard between the lower end surface of the mold base and the uppermost support roller. Since cooling water is applied mainly to the long side of the lower end surface, a spray guard must be provided on the lower end surface of the long side of the base, and the cooling water is scattered on the short side. A spray guard is preliminarily provided on the end face. That is, the spray guard of (patent document 1) guides the cooling water sprayed from the nozzle and prevents the cooling water from directly entering the inner surface of the mold base.
  • the air gap generated between the surface of the slab and the inner surface of the mold is particularly that of the long side slab.
  • the solidified shell is pressed against the inner surface of the mold by the static pressure of the molten steel and hardly occurs.
  • high-speed slab casting there are data on operations in Japan and the United States of 2 to 2.3 m / min and 3.5 m / min. In both cases, the life of the surface treatment film on the long side of the mold per surface treatment exceeds 2000 charges of (Patent Document 1) and achieves 2000 to 3000 charges without any special measures against corrosion and wear.
  • Patent Document 1 This partly has the effect of reducing wear due to the decrease in hardness of the solidified shell in high-speed casting, but the decrease in strength of the solidified shell on the long side increases the bulging effect due to the static pressure of the molten steel, so that almost no air gap is generated. This is considered to indicate that corrosion and wear are greatly reduced.
  • Patent Document 1 is exactly carried out under such casting conditions. However, it has been found that even under this casting condition, an air gap is generated on the short side and the corner. The majority of continuous casting machines are medium and low speed casting operations, and an air gap is likely to occur between the surface of the slab and the inner surface of the mold.
  • Patent Document 2 is based on the premise of bloom casting, and gas is formed at or near the inner corner portion of the mold body through which the corner portion of the slab passes at the lower portion inside the mold body forming the mold space.
  • the present invention solves the above-mentioned problems, and by using an existing mold effectively, the spray guard prevents the high-pressure steam from rising, and a high-pressure gas injection part is added to prevent the high-temperature steam from entering the air gap. It can effectively prevent corrosion and wear that occurs on the inner peripheral surface of the lower end side of the mold, and can cope with mold width changing operation, and is excellent in versatility, long life, and resource saving.
  • An object of the present invention is to provide a continuous casting apparatus for steel that is excellent in workability, maintainability, disassembly and assembly workability.
  • the steel continuous casting apparatus of the present invention has the following configuration.
  • a continuous casting apparatus for steel comprising a mold having a pair of short sides and long sides, and continuous while being supported on a lower outer side of the mold by a support roller. And a plurality of spray nozzles for injecting water onto the slab to be drawn, and a short side on the inner peripheral side of the mold from a jet port disposed at a lower end side peripheral edge of the mold And a high pressure gas jetting part for jetting high pressure gas toward the long side part.
  • the high-pressure gas jetting portion having a plurality of jetting ports is simply configured to be disposed on the lower edge of the lower end of the mold, the existing mold can be used effectively, saving resources, disassembling and assembling. Excellent workability.
  • the high-pressure gas ejection portion having a plurality of ejection ports can be formed as a separate member and disposed on the lower end side periphery of the mold, the high-pressure gas ejection portion is corroded by sulfuric acid, hydrofluoric acid, or the like. If this occurs, only the high-pressure gas ejection part can be easily removed from the mold for repair or replacement, and the mold can be used for a long period of time, saving resources, maintenance, and handling. Excellent in properties.
  • the steel continuous casting apparatus manufactures slabs such as slabs, blooms, billets, and beam blanks depending on the type of mold.
  • the present invention is employed for slab, bloom and beam blank casting except high speed casting and billet casting which does not use mold powder.
  • the high-pressure gas ejection part ejects high-pressure gas from a plurality of ejection ports toward the short side and long side on the inner peripheral side of the mold, but the corners of the short side and long side where corrosion and wear are likely to occur. It is sufficient that the high-pressure gas can be ejected in a range of at least 250 mm from the portion.
  • a plate-like or block-like member having a flow path formed therein and a jet outlet communicating with the flow path are desirable, but as a simplified type, a jet outlet may be formed in a pipe-shaped flow path.
  • the high-pressure gas ejection part is disposed on the lower end side periphery of the mold, the arrangement of the flow path, the number of divisions, and the like can be appropriately selected. Even when the flow path is divided into a plurality of parts, by supplying high pressure gas from a common high pressure gas supply source to the plurality of flow paths, it is possible to reliably supply the required amount of high pressure gas at a predetermined pressure simultaneously from each jet outlet. It can be ejected and has excellent stability and reliability.
  • the number and arrangement of the nozzles can be selected as appropriate according to the shape and size of the mold, but by arranging the nozzles at least at the corners of the mold, the surface of the slab and the mold High pressure gas is jetted around the corner where a particularly large air gap is likely to occur between the surface and high temperature steam can be prevented from entering the air gap, effectively preventing corrosion and wear.
  • the shape of the jet port may be circular or a horizontally long slit.
  • air is advantageous in terms of cost, but nitrogen or other inert gas may be used.
  • the injection pressure and injection amount of the high-pressure gas need only be able to prevent high temperature steam from entering the air gap.
  • the high-pressure gas ejection part can also have a spray guard function for preventing cooling water ejected from the spray nozzle from entering the air gap between the surface of the slab and the inner surface of the mold.
  • the material of the high-pressure gas ejection part is preferably a stainless steel, and SUS316 is particularly desirable from the viewpoint of corrosion resistance against hydrofluoric acid.
  • invention of Claim 2 is the continuous casting apparatus of steel of Claim 1, Comprising:
  • template has a copper plate part and the backplate arrange
  • the high-pressure gas ejection part is fixed to the lower end surface of the back plate of the mold.
  • the mold has a copper plate portion and a back plate disposed outside each copper plate portion, and the high-pressure gas ejection portion is fixed to the lower end surface of the back plate of the mold, thereby
  • the high-pressure gas jet part can be installed at this part where the pressure is limited, the attachment / detachment work is easy, and the workability and maintenance of assembly and disassembly are excellent.
  • the fixing method of the high-pressure gas ejection part can be selected as appropriate, but by fixing with bolts, it is excellent in fixing reliability and can be easily attached and detached as necessary. Excellent handleability.
  • the high-pressure gas ejection portion may be fixed to the lower end surface on the non-consumable side of the copper plate.
  • the Invention of Claim 3 is the continuous casting apparatus of steel of Claim 2, Comprising:
  • the said high pressure gas ejection part is the said back plate of the said short side part of each said mold, and the said long side part. It has the structure divided
  • High-pressure gas can be ejected from the slab, and it is possible to handle slab width changing operations, and it is possible to reliably protect the required part of the inner surface on the lower end side of the mold from cooling water and its high-temperature steam. It is excellent in preventing corrosion and abrasion of the surface treatment layer.
  • the high-pressure gas ejection portion can be reliably ejected to each side of the mold by being disposed on the lower end surface of each back plate disposed outside the copper plate portion of the mold. it can.
  • the number and arrangement (interval) of the ejection ports formed in each of the divided high-pressure gas ejection portions can be appropriately selected according to the length of each side of the mold.
  • Invention of Claim 4 is the continuous casting apparatus of steel of Claim 2, Comprising:
  • the said high-pressure-gas ejection part is divided
  • template It has the structure arranged. With this configuration, in addition to the operation obtained in the second aspect, the following operation can be obtained. (1) The high-pressure gas ejection part is divided and disposed on the lower end surface of the back plate of the pair of short sides of the mold, thereby making the short side of the mold movable and producing slabs having different widths.
  • the high-pressure gas ejection part is moved together with the back plate of the short side part, the high-pressure gas can be reliably ejected from the corner part on the inner peripheral side of the mold toward the short side part and the long side part. Excellent reliability and corrosion / wear prevention.
  • the high-pressure gas ejection part has a substantially U-shaped flow path, and a jet port is formed at each corner part of the flow path and directly above the uppermost spray nozzle. Those are preferably used. Even when the short side of the mold is moved by slab casting, the corner of the flow path becomes the position of the corner on the inner peripheral side of the mold, and corrosion and wear occur on the inner surface of the mold with a simple structure. Can be effectively prevented.
  • a fifth aspect of the present invention is the continuous casting apparatus for steel according to any one of the first to fourth aspects, wherein the jet port of the high-pressure gas jet part is added to a corner part of the mold. And a structure arranged immediately above each of the spray nozzles arranged on the lower outer side of the mold.
  • the following action is obtained. (1) Cooling sprayed from each spray nozzle by disposing the jet outlet of the high-pressure gas ejection section directly above each spray nozzle disposed on the lower outer side of the mold in addition to the corner portion of the mold. Effectively prevent water / water mist and its high temperature steam from entering the air gap between the surface of the slab and the inner surface of the mold, and protect the inner surface of the mold from corrosion and wear. And has a long mold life.
  • the air gap tends to occur between the inner peripheral surface of the lower end side of the mold and the surface of the slab, particularly at the corner portion, and there is a tendency for corrosion and wear to increase. It is easily affected by the cooling water sprayed from the nozzle and its high-temperature steam, and corrosion and wear are observed. Therefore, in addition to the corners of the mold, the high-pressure gas is ejected by disposing a high-pressure gas ejection part directly above each spray nozzle, so that the cooling water and its high-temperature steam ejected from the spray nozzle are injected into the mold. Intrusion into the interior can be reliably prevented, the occurrence of corrosion and wear can be prevented over the entire circumference of the inner peripheral surface of the lower end side of the mold, and the long life of the mold can be improved.
  • Invention of Claim 6 is a continuous casting apparatus of steel of any one of Claim 1 thru
  • the said high pressure gas ejection part is formed with a plate-shaped member,
  • the said plate-shaped member A flow path formed in parallel to the longitudinal direction, the spout formed in the end surface of the plate-shaped member and communicating with the flow path, and the uppermost spray formed on the lower surface of the plate-shaped member And a spray guard having an inclined surface for guiding cooling water sprayed from the nozzle downward from the horizontal direction.
  • the high-pressure gas ejection portion is formed of a plate-like member, and has a channel formed in the plate-like member in parallel with the longitudinal direction, and a jet port that is drilled in the end surface of the plate-like member and communicates with the channel.
  • a spray guard formed on the lower surface of the plate-like member and having an inclined surface that guides cooling water and water mist ejected from the uppermost spray nozzle downward from the horizontal direction, and is ejected from the spray nozzle.
  • the spray guard can effectively prevent cooling water from entering the air gap between the surface of the slab and the inner surface of the mold, greatly reducing the corrosion and wear generated on the inner surface of the mold. it can.
  • the spray guard is formed on the lower surface of the plate-like member constituting the high-pressure gas ejection portion, the limited space between the lower end of the mold and the uppermost support roller is effectively utilized, and spraying is performed.
  • a high-pressure gas ejection part with a guard function can be easily installed, and it excels in space saving and reliability of corrosion and wear reduction.
  • the spray guard is formed integrally with the high-pressure gas ejection part, the number of parts can be reduced, and the workability of disassembly and assembly can be improved.
  • the spray guard only needs to be able to guide the cooling water sprayed from the spray nozzle downward from the horizontal direction.
  • the spray guard has an inclined surface inclined downward from the outer peripheral side to the inner peripheral side of the copper plate portion of the mold. What has is used suitably.
  • the inclination angle of the inclined surface of the spray guard is preferably 10 degrees or more with respect to the horizontal plane. As the inclination angle of the inclined surface of the spray guard becomes smaller, it becomes difficult for the cooling water sprayed from the spray nozzle to be guided downward from the horizontal direction, and a part of the cooling water sprayed from the spray nozzle and diffused becomes the surface of the slab.
  • the height of the high-pressure gas ejection part is limited by the space of the installation position. If the inclination angle of the inclined surface of the spray guard is too large, the cooling water tends to be hindered by the spray guard, and it is pulled out from the outlet of the mold. There is a tendency that sufficient cooling water injection is hindered against the cast slab, and the cooling effect by the spray nozzle tends to be lowered.
  • the position and angle (cooling water injection direction) of the uppermost spray nozzle is selected according to the installation space of the high-pressure gas injection section, and the upper limit of the inclination angle of the inclined surface is within a range that does not impede the cooling water injection. Need to be set.
  • the center line (injection direction) of the cooling water sprayed from the uppermost spray nozzle passes through the central part of the gap between the inclined surface of the spray guard of the high-pressure gas ejection part and the upper surface of the uppermost support roller. It is preferable that the uppermost spray nozzle is inclined.
  • the slab can be reliably cooled by the cooling water sprayed from the spray nozzle without being obstructed by the spray guard and the support roller, and the cooling water / water mist and its high-temperature steam can be cooled on the surface of the slab and the mold. It is possible to reliably prevent the air gap between the inner surface and the inner surface of the steel from entering and to significantly reduce the occurrence of corrosion and wear.
  • the high-pressure gas can be jetted from the jet port toward the inner peripheral surface of the mold. Moreover, the compactness and productivity of a high-pressure gas ejection part are excellent by forming the flow path connected to each ejection port inside the plate-like member.
  • the air gap generated between the solidified shell of the slab and the inner surface of the mold is injected from the spray nozzle to cool the slab by injecting high-pressure gas from the outlet of the high-pressure gas injection part. This effectively prevents the cooling water / water mist and its high-temperature steam from entering the air gap, and high-temperature steam containing sulfuric acid, hydrochloric acid, etc. contained in the cooling water enters the mold and fluorine in the mold powder.
  • the length of the mold that prevents corrosion and wear of the surface treatment layer of the mold by preventing the generation of strong corrosive liquids and gases such as hydrogen fluoride by reacting with cooling water, water mist and high-temperature steam It is possible to provide a continuous casting apparatus for steel having excellent life.
  • a structure that moves the hot gas ejection part together with the back plate of the short side part even if the short side part of the mold is movable and slabs with different widths are manufactured, the corner on the inner peripheral side of the mold It is possible to provide a versatile steel continuous casting apparatus capable of reliably preventing corrosion and wear of the surface treatment layer by ejecting high-pressure gas from the portion toward the short side portion and the long side portion. .
  • Sectional schematic side view of the main part of the continuous casting apparatus for steel according to Embodiment 1 Schematic bottom view taken along line AA in FIG.
  • Sectional enlarged schematic side view of the main part of the high-pressure gas ejection part in the continuous casting apparatus for steel according to Embodiment 1 Main part schematic top view which shows the high pressure gas ejection part of the continuous casting apparatus of steel of Embodiment 2
  • the principal part schematic plan view which shows the high pressure gas ejection part of the continuous casting apparatus of steel of Embodiment 3
  • FIG. 1 is a schematic cross-sectional side view of a main part of the continuous casting apparatus for steel according to Embodiment 1
  • FIG. 2 is a schematic bottom view taken along the line AA in FIG.
  • 1 is a continuous casting apparatus for steel according to the first embodiment
  • 2 is a mold of the continuous casting apparatus 1 for steel
  • 2a is an outlet on the lower end side of the mold 2
  • 5 is disposed on the lower outer side of the mold 2.
  • a plurality of spray nozzles 6 for injecting cooling water or water mist onto the slab continuously drawn out from the outlet 2a of 2 and 6 are disposed below the mold 2 at a predetermined interval and support the slab discharged from the mold 2 It is a support roller.
  • reference numeral 3a denotes a copper plate portion disposed on the long side portion of the mold 2 in which the outlet 2a is formed in a rectangular shape
  • 4a denotes a mold 2 disposed on and fixed to the outside of each copper plate portion 3a.
  • the back plate 7a is a high-pressure gas jetting part disposed on the lower end surface of each back plate 4a at the long side of the mold 2, and 8 is formed on the lower surface of the high-pressure gas jetting part 7a. It is a spray guard which guides the cooling water injected below from the horizontal direction.
  • 3 b is a copper plate portion disposed on the short side of the mold 2
  • 4 b is a back plate of the mold 2 disposed and fixed outside each copper plate portion 3 b
  • 7 b is a short side portion of the mold 2.
  • 9a is a plurality of jets formed in each of the high-pressure gas jets 7a and 7b
  • 9d is each high-pressure gas.
  • High-pressure gas supply pipes 10 disposed in the ejection portions 7a and 7b are fixing bolts that detachably fix the main points of the high-pressure gas ejection portions 7a and 7b to the back plates 4a and 4b.
  • FIG. 3 is an enlarged schematic sectional side view of a main part of a high-pressure gas ejection part in the continuous casting apparatus for steel according to the first embodiment.
  • 5a is cooling water sprayed from the spray nozzle 5
  • 8a is an inclined surface of the spray guard 8 inclined downward from the outer peripheral side to the inner peripheral side of the copper plate portion 3a of the mold 2
  • 9 is a high-pressure gas jet
  • 9b is a high-pressure gas ejection portion that is formed in a groove shape along the longitudinal direction inside the plate-like member 9 and communicates with the plurality of ejection ports 9a through the air passage 9b ′ 7a (7b)
  • 9c is a cover part of the channel 9b
  • 9e is an air gap.
  • the uppermost spray nozzle 5 is installed to be inclined downward by 3 to 8 degrees, preferably about 5 degrees from the horizontal, and the center line (injection direction) of the injected cooling water 5a is the high-pressure gas ejection. It passes through the central part of the gap between the inclined surface 8a of the spray guard 8 of the part 7a (7b) and the upper surface of the uppermost support roller 6. Accordingly, the slab 20 can be reliably cooled by the cooling water 5a sprayed from the spray nozzle 5 without being obstructed by the spray guard 8 and the support roller 6, and the cooling water 5a and its high-temperature steam can be cooled. Intrusion into the air gap 9e between the surface of the mold 2 and the inner surface of the mold 2 can be reliably prevented.
  • the spout 9a is formed in a circular shape having a diameter of about 5 mm, but may be formed in a slit shape having a height of about 3 mm and a width of about 6 mm.
  • the injection pressure and the injection amount of the high-pressure gas injected from the injection port 9a are within a range in which they can be prevented from entering the air gap 9e according to the injection amount of the cooling water 5a, the injection pressure, the generation amount of high-temperature steam, etc. Can be appropriately selected.
  • the inclination angle ⁇ of the inclined surface 8a of the spray guard 8 is 10 degrees with respect to the horizontal plane.
  • the cooling water 5a ejected from the spray nozzle 5 becomes difficult to be guided by the spray guard 8, and a part of the cooling water 5a is cast into the slab 20. This is because it has been found that the effect of reducing corrosion and wear tends to be reduced due to easy entry into the gap between the surface of the mold 2 and the inner surface of the mold 2.
  • the inclination angle ⁇ is too large, the cooling water 5a is easily blocked by the spray guard 8, and it becomes difficult to supply sufficient cooling water 5a to the slab 20 drawn from the outlet 2a of the mold 2.
  • the position and angle of the uppermost spray nozzle 5 are selected, and cooling with the cooling water 5a is performed.
  • the upper limit of the inclination angle ⁇ is preferably about 30 to 40 degrees.
  • the high pressure gas ejection part 7a is divided into two parts with respect to the long side part of the mold 2, but the longitudinal dimension and the number of divisions of the high pressure gas ejection part 7a should be selected as appropriate.
  • a necessary number of high-pressure gas ejection portions 7a can be installed.
  • the number and arrangement interval of the ejection ports 9a of the high pressure gas ejection part 7a can be appropriately selected according to the lengths of the long side part and the short side part of the mold 2. In particular, for the long side portion of the mold 2, as shown in FIG.
  • the cooling water sprayed from each spray nozzle 5 is provided by arranging the jet outlet 9 a in accordance with the position of each spray nozzle 5.
  • a supply pipe 9d communicating with an internal flow path 9b is formed in each of the high pressure gas ejection portions 7a and 7b, and is connected to a high pressure gas supply source (not shown).
  • High-pressure air or nitrogen or other inert gas supplied from the high-pressure gas supply source is distributed and ejected from the supply pipe 9d to the plurality of jet outlets 9a through the flow path 9b.
  • the number and arrangement of the supply pipes 9d can be selected as appropriate.
  • the high-pressure gas jetting portion having a plurality of jetting ports is simply configured to be disposed on the lower edge of the lower end of the mold, the existing mold can be used effectively, saving resources, disassembling and assembling. Excellent workability.
  • the high pressure gas jetting portion having a plurality of jetting ports can be formed as a separate member and disposed on the lower end side periphery of the mold, if the high pressure gas jetting portion is damaged or malfunctioned,
  • the high-pressure gas ejection part can be easily removed from the mold for repair or replacement, and the mold can be used for a long period of time, resulting in excellent resource saving, maintenance and handling.
  • the mold has a copper plate portion and a back plate disposed outside each copper plate portion, and the high-pressure gas ejection portion is fixed to the lower end surface of the back plate of the mold, thereby providing a space.
  • the high-pressure gas jet part can be installed at this part where the pressure is limited, the attachment / detachment work is easy, and the workability and maintenance of assembly and disassembly are excellent.
  • the high-pressure gas ejection part is divided into the short side part of each mold and the lower end surface of the back plate of the long side part, so that each high-pressure gas ejection part with respect to each side of the mold.
  • High-pressure gas can be ejected from the slab, and it is possible to handle slab width changing operations, and it is possible to reliably protect the required part of the inner surface on the lower end side of the mold from cooling water and its high-temperature steam. It is excellent in preventing corrosion and abrasion of the surface treatment layer.
  • Cooling sprayed from each spray nozzle by disposing the jet outlet of the high-pressure gas ejection section directly above each spray nozzle disposed on the lower outer side of the mold in addition to the corner portion of the mold. Effectively prevent water / water mist and its high temperature steam from entering the air gap between the surface of the slab and the inner surface of the mold, and protect the inner surface of the mold from corrosion and wear. And has a long mold life.
  • the high-pressure gas ejection portion is formed of a plate-like member and is formed in parallel with the longitudinal direction of the plate-like member, and a jet port that is formed in an end surface of the plate-like member and communicates with the flow passage.
  • a cooling guard that is formed on the lower surface of the plate-like member and sprayed from the uppermost spray nozzle and a spray guard having an inclined surface that guides the water mist downward from the horizontal direction.
  • the spray guard can effectively prevent the air gap between the surface of the slab and the inner surface of the mold from entering, and the corrosion and wear generated on the inner surface of the mold can be greatly reduced.
  • a spray guard By forming a spray guard on the lower surface of the plate-like member constituting the high-pressure gas ejection part, the limited space between the lower end of the mold and the uppermost support roller can be effectively used to spray
  • a high-pressure gas ejection part with a guard function can be easily installed, and it excels in space saving and reliability of corrosion and wear reduction.
  • the spray guard Since the spray guard is formed integrally with the high-pressure gas ejection part, the number of parts can be reduced, and the workability of disassembly and assembly can be improved.
  • FIG. 4 is a schematic plan view of an essential part showing a high-pressure gas ejection portion of the continuous casting apparatus for steel according to the second embodiment.
  • the continuous casting apparatus 1A for steel in the second embodiment is for bloom casting.
  • the high-pressure gas ejection portion 7c is divided into a long side portion and a short side portion of the mold 2. It is a point arranged.
  • the fixing bolt 10 is omitted.
  • FIG. 4 is a schematic plan view of an essential part showing a high-pressure gas ejection portion of the continuous casting apparatus for steel according to the second embodiment.
  • the continuous casting apparatus 1A for steel in the second embodiment is for bloom casting.
  • the high-pressure gas ejection portion 7c is divided into a long side portion and a short side portion of the mold 2. It is a point arranged.
  • the fixing bolt 10 is omitted.
  • each supply pipe 9 d is connected to a high-pressure gas supply source (not shown), and air or nitrogen or other inert gas supplied from the high-pressure gas supply source passes through the flow path inside the plate-like member 9 from the supply pipe 9 d. It is distributed and ejected to a plurality of jet outlets 9a.
  • the number and arrangement of the ejection ports 9a formed at portions other than the corners of the mold 2 can be appropriately selected according to the dimensions of the mold 2. Further, the number and arrangement of the supply pipes 9d can be appropriately selected.
  • the high-pressure gas jetting portion 7c that is divided and arranged on each side of the mold 2 can also be applied to beam blank casting. As described above, since the steel continuous casting apparatus according to the second embodiment of the present invention is configured, the same operations as (1) to (9) of the first embodiment can be obtained.
  • FIG. 5 is a schematic plan view of an essential part showing a high-pressure gas ejection part of the continuous casting apparatus for steel according to the third embodiment.
  • the high-pressure gas ejection part 7d of the steel continuous casting apparatus 1B in the third embodiment is employed in the case of high-speed slab casting, and the difference from the second embodiment is the plate shape of the high-pressure gas ejection part 7d.
  • the member 9 is formed in a substantially U-shape and is divided and disposed on the lower end surfaces of the pair of back plates 4b on the short side portion of the mold 2.
  • the fixing bolt 10 is omitted.
  • the ejection ports 9a are formed at five locations on each plate-like member 9 in accordance with the position corresponding to the corner portion of the mold 2 and the position corresponding to the position immediately above the spray nozzle at the center of the short side portion. Thereby, the high pressure gas can be ejected from the short side portion and the long side corner portion on the inner peripheral side of the mold 2 to a range of at least 250 mm and a position directly above the spray nozzle of the short side portion.
  • the steel continuous casting apparatus according to the third embodiment of the present invention is configured, the same operations as in the first embodiment (1) to (4) and (6) to (8) are performed. In addition, the following effects can be obtained.
  • the high-pressure gas ejection part is divided and disposed on the lower end surface of the back plate of the pair of short sides of the mold, thereby making the short side of the mold movable and producing slabs having different widths. Even when the high-pressure gas ejection part is moved together with the back plate of the short side part, the high-pressure gas can be reliably ejected from the corner part on the inner peripheral side of the mold toward the short side part and the long side part. Excellent reliability and corrosion / wear prevention.
  • the drawing speed is 0.9 to 1.2 m / min in the low speed casting region
  • the water pressure of the spray nozzle is 5 to 8 kg / cm 2
  • the amount of water is 5 to 20 L / min / nozzle.
  • the mold was used while visually checking the condition of the mold.
  • the surface coating used Co—Ni plating, but was subsequently replaced with a thermal spray coating. In either case, the service life was limited to 800 to 900 charges (chs) due to corrosion and wear, and the mold life was reached.
  • Example 1 An experiment was conducted in the same manner as in Comparative Example 1 except that a spray guard without a high-pressure gas injection part was attached between the lower end of the mold of the conventional continuous casting apparatus for steel and the first-stage support roller (reference: FIG. 1). FIG. 2 and FIG. 3). During the use, the experiment was continued while observing the details on-line and visually at the time of mold change. The mold life was 1,000 to 1,300 charges in three tests. The conditions for determining the mold life were all the use limits due to corrosion and wear. In particular, what differs from the corrosion and wear of (Comparative Example 1) is the generation position and form.
  • the semicircular corrosion / wear is greatly reduced.
  • the expected life of the mold is expected to be 1,500 to 1,800 chs / campaign in the currently used film.
  • the thermal spray coatings that are not applicable due to inferior corrosion resistance in particular, and that are resistant to mechanical impact and mechanical shock, It is expected to contribute to further life extension and cost reduction.
  • the present invention effectively utilizes the existing mold, prevents the high-pressure steam from rising by the spray guard, and prevents the high-temperature steam from entering the air gap by adding a high-pressure gas jetting portion, thereby lowering the lower end side of the mold. Corrosion and wear generated on the inner peripheral surface can be effectively prevented, and productivity can be improved. In addition, it can easily cope with changes in the width of the mold, has excellent versatility and long life, and if damage or malfunction occurs, repair or replace only the high-pressure gas ejection section and use the mold. It is possible to provide a continuous casting apparatus of steel that is excellent in resource saving, maintenance, handling, disassembly and assembly workability, and can extend the life of the mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

Provided is a continuous casting device for steel, said device being capable of: effectively using existing molds; preventing the rise of cooling water by means of a spray guard; effectively preventing high-temperature vapor from entering an air gap and thereby preventing corrosion and abrasion from occurring on the lower-end inner peripheral surface of the mold via the addition of a high-pressure gas discharge unit; and accommodating mold width-changing operations. The continuous casting device for steel also has excellent versatility, a long operating life, and excellent resource-saving characteristics, maintainability, and easy of assembly and disassembly. The continuous casting device is provided with: a mold having a pair of short edges and a pair of long edges; and a plurality of spray nozzles which are provided to the lower outer area of the mold and from which water is shot towards semi-finished casting products that are continuously pulled out from the mold while being supported by support rollers. The present invention is provided with a high-pressure gas discharge unit which injects high-pressure gas toward the short and long edges on the inner periphery side of the mold from a discharge port provided on the lower-end periphery of the mold.

Description

鋼の連続鋳造装置Steel continuous casting equipment
 本発明は、連続鋳造される鋳片の冷却に用いられる冷却水や水ミスト(スプレー水)により、鋳型の下端側内周面に腐食・摩耗が発生することを防止できる鋼の連続鋳造装置に関する。 The present invention relates to a continuous casting apparatus for steel that can prevent corrosion and wear from occurring on the inner peripheral surface of the lower end side of a mold by cooling water and water mist (spray water) used for cooling a cast piece continuously cast. .
 鋼の連続鋳造において、モールド寿命(chs/campaign)を決定する最大要因は、モールド下部の内面に発生する腐食(現実には摩耗にも影響を及ぼすため本文では腐食・摩耗と表記している)である。
 従来、鋼の連続鋳造を行う連続鋳造装置では、鋳型の上方から溶鋼が注がれ、鋳型から出た鋳片がサポートローラー等により支持されながら連続的に引き抜かれる。このとき、モールド内では凝固シェルと呼ばれる凝固層が形成されているが、内部は未凝固状態となっている。そこで、鋳型の下方外側に配設された複数のスプレーノズルから冷却水や水ミスト(水或いは水に空気を混ぜたもの、スプレー水)を噴射することにより、鋳片を冷却している。
 鋳型の内表面は高温にさらされ、また溶鋼との摩擦等により損傷を受けるため、Co-Niメッキやサーメット等の溶射皮膜等により鋳型の内表面に表面処理層を形成して長寿命化を図ると共に、鋳型の内表面が損傷した場合は、切削や研削及び表面処理による補修を行って一般的には3~10回(3~10campaign)程度繰り返し使用している。
 しかし、上記スプレー水には硫酸、塩酸等の金属を腐食させる成分が含有されており、また、鋳込みに使用されるモールドパウダー中のフッ素が冷却水若しくは高温蒸気と反応してフッ化水素等の強腐食性液体及び高温ガスを発生するため、鋳型の内表面における表面処理層の寿命低下の原因となっている。つまり、冷却水やその高温蒸気が鋳片の凝固シェルと鋳型の内表面との間に生成されるエアーギャップに侵入して、鋳型の表面処理層の腐蝕・摩耗を発生させている。
In continuous casting of steel, the biggest factor that determines the mold life (chs / campaign) is the corrosion that occurs on the inner surface of the lower part of the mold (in reality, it is also referred to as corrosion / wear because it also affects wear) It is.
2. Description of the Related Art Conventionally, in a continuous casting apparatus that performs continuous casting of steel, molten steel is poured from above a mold, and a cast piece coming out of the mold is continuously drawn while being supported by a support roller or the like. At this time, a solidified layer called a solidified shell is formed in the mold, but the inside is in an unsolidified state. Therefore, the slab is cooled by spraying cooling water or water mist (water or water mixed with air, spray water) from a plurality of spray nozzles disposed on the lower outer side of the mold.
Because the inner surface of the mold is exposed to high temperatures and damaged by friction with molten steel, a surface treatment layer is formed on the inner surface of the mold by a thermal spray coating such as Co-Ni plating or cermet, etc. to extend the service life. In addition, when the inner surface of the mold is damaged, it is repaired by cutting, grinding, and surface treatment, and is generally used repeatedly 3 to 10 times (3 to 10 campaign).
However, the spray water contains a component that corrodes metals such as sulfuric acid and hydrochloric acid, and fluorine in the mold powder used for casting reacts with cooling water or high-temperature steam to react with hydrogen fluoride or the like. Since a strong corrosive liquid and a high-temperature gas are generated, it causes a reduction in the life of the surface treatment layer on the inner surface of the mold. That is, the cooling water and its high-temperature steam enter the air gap generated between the solidified shell of the slab and the inner surface of the mold, causing corrosion and wear of the surface treatment layer of the mold.
 この課題を解決するため、近年、鋼の連続鋳造装置におけるモールドの腐食・摩耗対策として以下の方法が行われている。
 第1にモールド下部でエアーギャップの発生を防止できれば、上記腐食は阻止できる。このエアーギャップの発生を抑えるには、凝固に伴うシェルの収縮をモールドの適正なテーパーでサポートする必要がある。
 このエアーギャップの発生を抑える代表例が、高速鋳造である。中でもファンネル型モールド(Funnel Mold)を使った薄スラブ鋳造(引抜速度Vc:4~6.5m/min,モールドパウダー中のフッ素含有量:20%)は、エアーギャップの発生を抑えるという観点から見れば非常に優れたスラブ鋳造方法である。
 この鋳造方法は、割れに敏感な鋼種において、モールド内で発生する鋳片の表層微細割れを防止すると共に、モールド下部の内面腐食を防止できる。このことは実操業において証明されている。
 ただし、大多数の並行平板モールド操業においては、高速鋳造と言えども、モールドの短辺および長辺のコーナー部では、エアーギャップの発生を十分に抑えることはできない(もちろん、中・低速域の操業に比べれば、高速鋳造においてはエアーギャップの発生は少なく、腐食の発生も非常に少なくなる。)。
 第2にエアーギャップが多少存在していても、熱水(若しくはスプレー水の噴射に伴う高温蒸気)が存在しなければ、腐食現象は発生しないか、或いは大幅に抑制される。これは腐食現象の原理である。
 上記モールド下部の内面に発生する腐食は、この熱水(若しくは高温蒸気)がモールド下部に発生するエアーギャップに侵入することにより発生する現象である。(この熱水若しくは高温蒸気がモールドパウダー中に含まれるフッ素と反応し、強腐食性のフッ酸となり、またスプレー水中に蓄積される硫酸及び塩酸と共に非常に強い腐食環境を醸成している。)
 これらの問題点を解決するために、例えば(特許文献1)には、鋳型基体の少なくとも長辺側下端面に冷却水遮蔽体を具備した連続鋳造用鋳型が開示されている。
 また、(特許文献2)には、鋳型空間を形成する鋳型本体の内側下部のコーナー部又はその近傍にガス噴出部が設けられた連続鋳造用鋳型が開示されている。
In order to solve this problem, in recent years, the following methods have been performed as countermeasures against mold corrosion and wear in a continuous casting apparatus for steel.
First, if the generation of an air gap at the lower part of the mold can be prevented, the corrosion can be prevented. In order to suppress the generation of the air gap, it is necessary to support the shrinkage of the shell accompanying solidification with an appropriate taper of the mold.
A typical example that suppresses the occurrence of this air gap is high-speed casting. Among them, thin slab casting using a funnel mold (drawing speed Vc: 4 to 6.5 m / min, fluorine content in mold powder: 20%) can be seen from the viewpoint of suppressing the occurrence of an air gap. This is a very good slab casting method.
This casting method can prevent fine cracks on the surface of the slab generated in the mold and prevent internal corrosion at the bottom of the mold in a steel type sensitive to cracking. This has been proven in practice.
However, in the majority of parallel plate mold operations, even with high-speed casting, it is not possible to sufficiently suppress the occurrence of air gaps at the corners of the short and long sides of the mold. Compared with, there are few air gaps and very little corrosion in high speed casting.)
Secondly, even if there are some air gaps, if there is no hot water (or high-temperature steam accompanying spraying of spray water), the corrosion phenomenon does not occur or is greatly suppressed. This is the principle of the corrosion phenomenon.
The corrosion generated on the inner surface of the lower part of the mold is a phenomenon that occurs when this hot water (or high-temperature steam) enters the air gap generated at the lower part of the mold. (This hot water or high-temperature steam reacts with fluorine contained in the mold powder to form highly corrosive hydrofluoric acid, and also creates a very strong corrosive environment together with sulfuric acid and hydrochloric acid accumulated in spray water.)
In order to solve these problems, for example, (Patent Document 1) discloses a continuous casting mold in which a cooling water shield is provided on at least a lower end surface on the long side of a mold base.
In addition, (Patent Document 2) discloses a continuous casting mold in which a gas ejection portion is provided in the corner portion of the inner lower portion of the mold main body forming the mold space or in the vicinity thereof.
特開2005-103619号公報JP 2005-103619 A 特開2003-326338号公報JP 2003-326338 A
 しかしながら、上記従来の技術は以下のような課題を有していた。
(1)(特許文献1)の連続鋳造用鋳型は、スラブ鋳造を前提としたもので鋳型基体下端面と最上段のサポートローラーとの間にスプレーガードを設けたものであるが、基体の鋳型下端面の主に長辺側に冷却水がかかるため、基体の長辺側下端面には必ずスプレーガードを設け、短辺側にも冷却水が飛散するという理由から、基体の短辺側下端面にも予備的にスプレーガードを設けている。つまり、(特許文献1)のスプレーガードは、ノズルから噴射される冷却水をガイドし、冷却水が直接、鋳型基体の内面に侵入することを防止するものである。
 しかし、実際には、鋳片の引抜速度が2m/min以上の高速鋳造域では、鋳片の表面と鋳型の内表面との間に生成されるエアーギャップは、特に長辺側の鋳片の凝固シェルが溶鋼の静圧により鋳型の内表面に押付けられ、ほとんど発生していない。
 スラブ高速鋳造の事例として、日本とアメリカでの2~2.3m/min及び3.5m/min操業のデータがある。いずれも特別の腐食・摩耗対策無しで、表面処理1回当りの鋳型の長辺側の表面処理皮膜寿命は、(特許文献1)の2000チャージを超え、2000~3000チャージを達成している。このことは、高速鋳造における凝固シェルの硬度の低下による摩耗低減の効果も一部あるが、長辺側の凝固シェルの強度低下が溶鋼静圧によるバルジング効果を高めることでエアーギャップがほとんど発生せず腐食・摩耗が大幅に低減することを示しているものと考えられる。上記(特許文献1)は、まさにこのような鋳造条件下で実施されているものである。
 しかし、この鋳造条件下でも短辺側及びコーナー部にはエアーギャップが発生することがわかっている。また、大多数の連続鋳造機は、中・低速鋳造操業であり、鋳片の表面と鋳型の内表面との間にエアーギャップが発生し易い。
 よって、エアーギャップが発生し易い高速鋳造域の短辺側及びコーナー部並びに中・低速鋳造域の長辺側及び短辺側における腐蝕・摩耗対策が重要であるが、冷却水の多くは高温蒸気となっており、鋳型の下端面に突起状のスプレーガードを設けるだけでは、その高温蒸気のエアーギャップへの侵入を防止することは不可能であり、十分な効果が得られないという課題を有していた。
(2)(特許文献2)は、ブルーム鋳造を前提にしたもので、鋳型空間を形成する鋳型本体の内側下部で、鋳片のコーナー部が通過する鋳型本体の内側コーナー部又はその近傍にガス噴出部を設け、鋳型空間と鋳片との間にガスを充満させることで、鋳型空間内への蒸気や水の浸入を防止し、鋳型本体の内側下部で、内側角部及びその近傍での鋳型本体の腐食・摩耗を防止し、長寿命化を図ろうとするものである。
 しかし、鋳型内部にガス噴出部があるため、ガス噴出部に高温のモールドパウダーが堆積し、閉塞を発生しやすいという課題を有しており、実用化されていない。
(3)さらに、従来の連続鋳造装置では、鋳型の下端側から連続して引抜かれる鋳片を速やかに冷却するために、最上段のスプレーノズルは冷却水の噴射方向が水平よりもやや上向きに設定されている。しかし、このことにより、スプレーノズルから噴射される冷却水やその高温蒸気が鋳片の表面と鋳型の内表面との間に形成されるエアーギャップに進入し易く、腐蝕・摩耗の発生の大きな原因となっている。
(4)本願は鋼の連続鋳造装置におけるモールドの腐食・摩耗対策として、現場での諸実験をベースとして発明されたものである。
However, the above conventional technique has the following problems.
(1) The continuous casting mold of (Patent Document 1) is premised on slab casting, and is provided with a spray guard between the lower end surface of the mold base and the uppermost support roller. Since cooling water is applied mainly to the long side of the lower end surface, a spray guard must be provided on the lower end surface of the long side of the base, and the cooling water is scattered on the short side. A spray guard is preliminarily provided on the end face. That is, the spray guard of (patent document 1) guides the cooling water sprayed from the nozzle and prevents the cooling water from directly entering the inner surface of the mold base.
However, in actuality, in the high speed casting area where the drawing speed of the slab is 2 m / min or more, the air gap generated between the surface of the slab and the inner surface of the mold is particularly that of the long side slab. The solidified shell is pressed against the inner surface of the mold by the static pressure of the molten steel and hardly occurs.
As an example of high-speed slab casting, there are data on operations in Japan and the United States of 2 to 2.3 m / min and 3.5 m / min. In both cases, the life of the surface treatment film on the long side of the mold per surface treatment exceeds 2000 charges of (Patent Document 1) and achieves 2000 to 3000 charges without any special measures against corrosion and wear. This partly has the effect of reducing wear due to the decrease in hardness of the solidified shell in high-speed casting, but the decrease in strength of the solidified shell on the long side increases the bulging effect due to the static pressure of the molten steel, so that almost no air gap is generated. This is considered to indicate that corrosion and wear are greatly reduced. The above (Patent Document 1) is exactly carried out under such casting conditions.
However, it has been found that even under this casting condition, an air gap is generated on the short side and the corner. The majority of continuous casting machines are medium and low speed casting operations, and an air gap is likely to occur between the surface of the slab and the inner surface of the mold.
Therefore, it is important to take measures against corrosion and wear on the short side and corner of the high speed casting area where air gaps are likely to occur, and on the long side and short side of the medium and low speed casting areas. Therefore, it is impossible to prevent the high-temperature steam from entering the air gap only by providing a protruding spray guard on the lower end surface of the mold, and there is a problem that a sufficient effect cannot be obtained. Was.
(2) (Patent Document 2) is based on the premise of bloom casting, and gas is formed at or near the inner corner portion of the mold body through which the corner portion of the slab passes at the lower portion inside the mold body forming the mold space. By providing a jet part and filling gas between the mold space and the slab, intrusion of steam and water into the mold space is prevented, and at the inner lower part of the mold main body, at the inner corner and in the vicinity thereof. It is intended to prevent the corrosion and wear of the mold body and extend the service life.
However, since there is a gas ejection part inside the mold, there is a problem that high-temperature mold powder is deposited on the gas ejection part, and clogging is likely to occur, and it has not been put into practical use.
(3) Further, in the conventional continuous casting apparatus, in order to quickly cool the slab drawn continuously from the lower end side of the mold, the spray nozzle of the uppermost stage has the cooling water injection direction slightly upward from the horizontal. Is set. However, due to this, the cooling water sprayed from the spray nozzle and its high temperature steam easily enter the air gap formed between the surface of the slab and the inner surface of the mold, which is a major cause of corrosion and wear. It has become.
(4) This application was invented on the basis of various on-site experiments as a countermeasure against mold corrosion and wear in a continuous casting apparatus for steel.
 本発明は上記課題を解決するもので、既存の鋳型を有効に利用して、スプレーガードで高圧蒸気の上昇を防ぐと共に、高圧ガス噴出部を追加することで高温蒸気のエアーギャップへの侵入を防止して鋳型の下端側内周面に発生する腐食・摩耗を効果的に防ぐことができ、鋳型の幅変更操業にも対応することが可能で、汎用性、長寿命性に優れ、省資源性、メンテナンス性、分解及び組立の作業性に優れる鋼の連続鋳造装置の提供を目的とする。 The present invention solves the above-mentioned problems, and by using an existing mold effectively, the spray guard prevents the high-pressure steam from rising, and a high-pressure gas injection part is added to prevent the high-temperature steam from entering the air gap. It can effectively prevent corrosion and wear that occurs on the inner peripheral surface of the lower end side of the mold, and can cope with mold width changing operation, and is excellent in versatility, long life, and resource saving. An object of the present invention is to provide a continuous casting apparatus for steel that is excellent in workability, maintainability, disassembly and assembly workability.
 上記従来の課題を解決するために本発明の鋼の連続鋳造装置は、以下の構成を有している。
 本発明の請求項1に記載の鋼の連続鋳造装置は、各一対の短辺部及び長辺部を有する鋳型と、前記鋳型の下方外側に配設され前記鋳型からサポートローラーにより支持されながら連続して引抜かれる鋳片に水を噴射する複数のスプレーノズルと、を備えた連続鋳造装置であって、前記鋳型の下端側周縁に配設された噴出口から前記鋳型の内周側の短辺部及び長辺部に向かって高圧ガスを噴出する高圧ガス噴出部を備えた構成を有している。
 この構成により、以下のような作用が得られる。
(1)鋳型の下端側周縁に配設された噴出口から鋳型の内周側の短辺部及び長辺部に向かって高圧ガスを噴出する高圧ガス噴出部を備えるので、鋳片の凝固シェルと鋳型の内表面との間に生成されるエアーギャップに対し、高圧ガス噴出部の噴出口から高圧ガスを噴出することにより、鋳片を冷却するためにスプレーノズルから噴射される冷却水・水ミストやその高温蒸気がエアーギャップに侵入することを効果的に防ぐことができる。これにより、水に含まれる硫酸、塩酸等を含む高温蒸気が鋳型の内周側のエアーギャップに侵入することやモールド内において、モールドパウダー中のフッ素が冷却水と反応してフッ化水素等の強腐食性液体や高温ガスが発生することを防止して、鋳型の表面処理層の腐蝕・摩耗を防ぐことができ、鋳型の長寿命性に優れる。
(2)複数の噴出口を有する高圧ガス噴出部を鋳型の下端側周縁に配設するだけの簡単な構成なので、既存の鋳型を有効に利用することができ、省資源性、分解及び組立の作業性に優れる。
(3)複数の噴出口を有する高圧ガス噴出部を別部材で形成して鋳型の下端側周縁に配設することができるので、高圧ガス噴出部が硫酸やフッ酸等で腐蝕したり、不具合等が発生したりした場合には、高圧ガス噴出部のみを鋳型から容易に取外して修理や交換を行うことができ、鋳型を長期間にわたって使い続けることができ、省資源性、メンテナンス性、取扱い性に優れる。
In order to solve the above conventional problems, the steel continuous casting apparatus of the present invention has the following configuration.
According to a first aspect of the present invention, there is provided a continuous casting apparatus for steel, comprising a mold having a pair of short sides and long sides, and continuous while being supported on a lower outer side of the mold by a support roller. And a plurality of spray nozzles for injecting water onto the slab to be drawn, and a short side on the inner peripheral side of the mold from a jet port disposed at a lower end side peripheral edge of the mold And a high pressure gas jetting part for jetting high pressure gas toward the long side part.
With this configuration, the following effects can be obtained.
(1) A solidified shell of a slab since it includes a high-pressure gas jetting part that jets high-pressure gas from a jet nozzle disposed on the lower edge of the mold toward the short side and long side on the inner circumference of the mold. Cooling water / water injected from the spray nozzle to cool the slab by injecting high-pressure gas from the outlet of the high-pressure gas injection section against the air gap generated between the mold and the inner surface of the mold It is possible to effectively prevent mist and its high temperature steam from entering the air gap. As a result, high-temperature steam containing sulfuric acid, hydrochloric acid, etc. contained in the water enters the air gap on the inner peripheral side of the mold, and fluorine in the mold powder reacts with the cooling water in the mold, such as hydrogen fluoride. The generation of strong corrosive liquid and high temperature gas can be prevented, and the surface treatment layer of the mold can be prevented from being corroded and worn, and the mold has a long life.
(2) Since the high-pressure gas jetting portion having a plurality of jetting ports is simply configured to be disposed on the lower edge of the lower end of the mold, the existing mold can be used effectively, saving resources, disassembling and assembling. Excellent workability.
(3) Since the high-pressure gas ejection portion having a plurality of ejection ports can be formed as a separate member and disposed on the lower end side periphery of the mold, the high-pressure gas ejection portion is corroded by sulfuric acid, hydrofluoric acid, or the like. If this occurs, only the high-pressure gas ejection part can be easily removed from the mold for repair or replacement, and the mold can be used for a long period of time, saving resources, maintenance, and handling. Excellent in properties.
 ここで、鋼の連続鋳造装置は、鋳型の種類によって、スラブ、ブルーム、ビレット、ビームブランク等の鋳片を製造するものである。
 本発明は、高速鋳造でかつ、モールドパウダーを使用しないビレット鋳造を除く、スラブ、ブルーム及びビームブランク鋳造に採用されるものである。
 高圧ガス噴出部は、複数の噴出口から鋳型の内周側の短辺部及び長辺部に向かって高圧ガスを噴出するが、腐蝕・摩耗が発生し易い短辺部及び長辺部のコーナー部から少なくとも250mmの範囲に高圧ガスを噴出することができればよい。例えば内部に流路が成された板状やブロック状の部材に流路と連通する噴出口を形成したものが望ましいが、簡略型として、パイプ状の流路に噴出口を形成しても良い。
 また、高圧ガス噴出部は鋳型の下端側周縁に配設されるが、その流路の配置や分割数等は適宜、選択することができる。流路が複数に分割されている場合でも、共通の高圧ガス供給源から複数の流路に高圧ガスを供給することにより、各々の噴出口から同時に所定の圧力で必要量の高圧ガスを確実に噴出させることができ、動作の安定性、確実性に優れる。
 噴出口の数や配置は、鋳型の形状や大きさ等に応じて、適宜、選択することができるが、鋳型の少なくともコーナー部に噴出口を配置することにより、鋳片の表面と鋳型の内表面との間で特に大きなエアーギャップが発生し易いコーナー部を中心に高圧ガスを噴出して、エアーギャップへの高温蒸気の侵入を防止し、腐蝕・摩耗の発生を効果的に防ぐことができる。尚、噴出口の形状は円形状でもよいし、横長のスリット状でもよい。
 高圧ガス噴出部から噴出するガスとしては、コスト的に空気が有利だが、窒素やその他の不活性ガスを用いてもよい。
 尚、高圧ガスの噴射圧力及び噴射量はエアーギャップへの高温蒸気の侵入を防止できればよいが、噴射圧力は、気水冷却(スプレーノズル)に用いられている3~5気圧程度で十分であると考えられる。
 また、高圧ガス噴出部は、スプレーノズルから噴射される冷却水が、鋳片の表面と鋳型の内表面とのエアーギャップに侵入することを防止するスプレーガードの機能を併せ持つこともできる。その場合、高圧ガス噴出部の材質としてはステンレス材が好ましく、特にフッ酸に対する耐蝕性の観点からSUS316が望ましい。
Here, the steel continuous casting apparatus manufactures slabs such as slabs, blooms, billets, and beam blanks depending on the type of mold.
The present invention is employed for slab, bloom and beam blank casting except high speed casting and billet casting which does not use mold powder.
The high-pressure gas ejection part ejects high-pressure gas from a plurality of ejection ports toward the short side and long side on the inner peripheral side of the mold, but the corners of the short side and long side where corrosion and wear are likely to occur. It is sufficient that the high-pressure gas can be ejected in a range of at least 250 mm from the portion. For example, a plate-like or block-like member having a flow path formed therein and a jet outlet communicating with the flow path are desirable, but as a simplified type, a jet outlet may be formed in a pipe-shaped flow path. .
Moreover, although the high-pressure gas ejection part is disposed on the lower end side periphery of the mold, the arrangement of the flow path, the number of divisions, and the like can be appropriately selected. Even when the flow path is divided into a plurality of parts, by supplying high pressure gas from a common high pressure gas supply source to the plurality of flow paths, it is possible to reliably supply the required amount of high pressure gas at a predetermined pressure simultaneously from each jet outlet. It can be ejected and has excellent stability and reliability.
The number and arrangement of the nozzles can be selected as appropriate according to the shape and size of the mold, but by arranging the nozzles at least at the corners of the mold, the surface of the slab and the mold High pressure gas is jetted around the corner where a particularly large air gap is likely to occur between the surface and high temperature steam can be prevented from entering the air gap, effectively preventing corrosion and wear. . The shape of the jet port may be circular or a horizontally long slit.
As the gas ejected from the high-pressure gas ejection section, air is advantageous in terms of cost, but nitrogen or other inert gas may be used.
The injection pressure and injection amount of the high-pressure gas need only be able to prevent high temperature steam from entering the air gap. However, the injection pressure of about 3 to 5 atmospheres used for air-water cooling (spray nozzle) is sufficient. it is conceivable that.
Further, the high-pressure gas ejection part can also have a spray guard function for preventing cooling water ejected from the spray nozzle from entering the air gap between the surface of the slab and the inner surface of the mold. In that case, the material of the high-pressure gas ejection part is preferably a stainless steel, and SUS316 is particularly desirable from the viewpoint of corrosion resistance against hydrofluoric acid.
 請求項2に記載の発明は、請求項1に記載の鋼の連続鋳造装置であって、前記鋳型が、銅板部と、各々の前記銅板部の外側に配設されたバックプレートとを有し、前記高圧ガス噴出部が、前記鋳型の前記バックプレートの下端面に固定された構成を有している。
この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)鋳型が、銅板部と、各々の銅板部の外側に配設されたバックプレートと、を有し、高圧ガス噴出部が、鋳型のバックプレートの下端面に固定されることにより、スペースが限定されたこの部位に高圧ガス噴出部の設置が可能であり、着脱作業が容易で組立て及び分解の作業性、メンテナンス性に優れる。
Invention of Claim 2 is the continuous casting apparatus of steel of Claim 1, Comprising: The said casting_mold | template has a copper plate part and the backplate arrange | positioned on the outer side of each said copper plate part. The high-pressure gas ejection part is fixed to the lower end surface of the back plate of the mold.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) The mold has a copper plate portion and a back plate disposed outside each copper plate portion, and the high-pressure gas ejection portion is fixed to the lower end surface of the back plate of the mold, thereby The high-pressure gas jet part can be installed at this part where the pressure is limited, the attachment / detachment work is easy, and the workability and maintenance of assembly and disassembly are excellent.
 ここで、高圧ガス噴出部の固定方法は適宜、選択することができるが、ボルト止めで固定することにより、固定の確実性に優れると共に、必要に応じて容易に着脱作業を行うことができ、取扱い性に優れる。
 尚、特殊な例として、モールド銅板が非常に厚い場合は、銅板の非消耗側の下端面に高圧ガス噴出部を固定してもよい。
Here, the fixing method of the high-pressure gas ejection part can be selected as appropriate, but by fixing with bolts, it is excellent in fixing reliability and can be easily attached and detached as necessary. Excellent handleability.
As a special example, when the molded copper plate is very thick, the high-pressure gas ejection portion may be fixed to the lower end surface on the non-consumable side of the copper plate.
 請求項3に記載の発明は、請求項2に記載の鋼の連続鋳造装置であって、前記高圧ガス噴出部が、前記鋳型の各々の前記短辺部及び前記長辺部の前記バックプレートの下端面に分割されて配設された構成を有している。
 この構成により、請求項2で得られる作用に加え、以下のような作用が得られる。
(1)高圧ガス噴出部が、鋳型の各々の短辺部及び長辺部のバックプレートの下端面に分割されて配設されることにより、鋳型の各辺に対して各々の高圧ガス噴出部から高圧ガスを噴出させることができ、スラブの幅変更操業にも対応可能であり、鋳型の下端側の内表面の必要な部分に対して、冷却水やその高温蒸気から確実に保護することができ、表面処理層の腐蝕・摩耗防止に優れる。
Invention of Claim 3 is the continuous casting apparatus of steel of Claim 2, Comprising: The said high pressure gas ejection part is the said back plate of the said short side part of each said mold, and the said long side part. It has the structure divided | segmented and arrange | positioned at the lower end surface.
With this configuration, in addition to the operation obtained in the second aspect, the following operation can be obtained.
(1) The high-pressure gas ejection portion is divided and disposed on each of the short side portion of the mold and the lower end surface of the back plate of the long side portion. High-pressure gas can be ejected from the slab, and it is possible to handle slab width changing operations, and it is possible to reliably protect the required part of the inner surface on the lower end side of the mold from cooling water and its high-temperature steam. It is excellent in preventing corrosion and abrasion of the surface treatment layer.
 ここで、高圧ガス噴出部は、鋳型の銅板部の外側に配設された各々のバックプレートの下端面に配設することにより、鋳型の各辺に対して確実に高圧ガスを噴出することができる。分割された各々の高圧ガス噴出部に形成する噴出口の数や配置(間隔)は、鋳型の各辺の長さに応じて、適宜、選択することができる。 Here, the high-pressure gas ejection portion can be reliably ejected to each side of the mold by being disposed on the lower end surface of each back plate disposed outside the copper plate portion of the mold. it can. The number and arrangement (interval) of the ejection ports formed in each of the divided high-pressure gas ejection portions can be appropriately selected according to the length of each side of the mold.
 請求項4に記載の発明は、請求項2に記載の鋼の連続鋳造装置であって、前記高圧ガス噴出部が、前記鋳型の一対の前記短辺部の前記バックプレートの下端面に分割されて配設された構成を有している。
 この構成により、請求項2で得られる作用に加え、以下のような作用が得られる。
(1)高圧ガス噴出部が、鋳型の一対の短辺部のバックプレートの下端面に分割されて配設されることにより、鋳型の短辺部を可動式にし、幅の異なる鋳片を製造する場合でも、短辺部のバックプレートと共に高圧ガス噴出部を移動させ、鋳型の内周側のコーナー部から短辺部及び長辺部に向かって確実に高圧ガスを噴出することができ、汎用性及び腐蝕・摩耗防止の確実性に優れる。
Invention of Claim 4 is the continuous casting apparatus of steel of Claim 2, Comprising: The said high-pressure-gas ejection part is divided | segmented into the lower end surface of the said backplate of a pair of said short side part of the said casting_mold | template. It has the structure arranged.
With this configuration, in addition to the operation obtained in the second aspect, the following operation can be obtained.
(1) The high-pressure gas ejection part is divided and disposed on the lower end surface of the back plate of the pair of short sides of the mold, thereby making the short side of the mold movable and producing slabs having different widths. Even when the high-pressure gas ejection part is moved together with the back plate of the short side part, the high-pressure gas can be reliably ejected from the corner part on the inner peripheral side of the mold toward the short side part and the long side part. Excellent reliability and corrosion / wear prevention.
 ここで、高速鋳造のスラブ鋳造の場合、高圧ガス噴出部は、略コ字型の流路を有し、流路の各々のコーナー部及び最上段のスプレーノズルの直上位置に噴出口を形成したものが好適に用いられる。スラブ鋳造で鋳型の短辺部を移動させた際にも、流路の角部の位置が鋳型の内周側のコーナー部の位置となり、簡素な構造で鋳型の内表面における腐蝕・摩耗の発生を効果的に防止できる。 Here, in the case of high-speed casting slab casting, the high-pressure gas ejection part has a substantially U-shaped flow path, and a jet port is formed at each corner part of the flow path and directly above the uppermost spray nozzle. Those are preferably used. Even when the short side of the mold is moved by slab casting, the corner of the flow path becomes the position of the corner on the inner peripheral side of the mold, and corrosion and wear occur on the inner surface of the mold with a simple structure. Can be effectively prevented.
 請求項5に記載の発明は、請求項1乃至4の内いずれか1項に記載の鋼の連続鋳造装置であって、前記高圧ガス噴出部の前記噴出口が、前記鋳型のコーナー部に加え、前記鋳型の下方外側に配設される各々の前記スプレーノズルの直上に配置された構成を有している。
 この構成により、請求項1乃至4の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)高圧ガス噴出部の噴出口が、鋳型のコーナー部に加え、鋳型の下方外側に配設される各々のスプレーノズルの直上に配置されることにより、各々のスプレーノズルから噴射される冷却水・水ミストやその高温蒸気が、鋳片の表面と鋳型の内表面とのエアーギャップに侵入することを効果的に防止して、鋳型の内表面を全周にわたって腐蝕・摩耗から保護することができ、鋳型の長寿命性に優れる。
A fifth aspect of the present invention is the continuous casting apparatus for steel according to any one of the first to fourth aspects, wherein the jet port of the high-pressure gas jet part is added to a corner part of the mold. And a structure arranged immediately above each of the spray nozzles arranged on the lower outer side of the mold.
With this configuration, in addition to the action obtained in any one of claims 1 to 4, the following action is obtained.
(1) Cooling sprayed from each spray nozzle by disposing the jet outlet of the high-pressure gas ejection section directly above each spray nozzle disposed on the lower outer side of the mold in addition to the corner portion of the mold. Effectively prevent water / water mist and its high temperature steam from entering the air gap between the surface of the slab and the inner surface of the mold, and protect the inner surface of the mold from corrosion and wear. And has a long mold life.
 ここで、鋳型の下端側内周面のうち、特にコーナー部で鋳片の表面との間にエアーギャップが発生し易く、腐蝕・摩耗が大きくなる傾向があるが、スプレーノズルの直上では、スプレーノズルから噴射される冷却水やその高温蒸気の影響を受け易く、腐蝕・摩耗の発生が見られる。よって、鋳型のコーナー部に加え、各々のスプレーノズルの直上に高圧ガス噴出部の噴出口を配置して高圧ガスを噴出することにより、スプレーノズルから噴射される冷却水やその高温蒸気が鋳型の内部へ侵入することを確実に防止することができ、鋳型の下端側内周面の全周にわたって腐蝕・摩耗の発生を防ぐことができ、鋳型の長寿命性を向上させることができる。 Here, the air gap tends to occur between the inner peripheral surface of the lower end side of the mold and the surface of the slab, particularly at the corner portion, and there is a tendency for corrosion and wear to increase. It is easily affected by the cooling water sprayed from the nozzle and its high-temperature steam, and corrosion and wear are observed. Therefore, in addition to the corners of the mold, the high-pressure gas is ejected by disposing a high-pressure gas ejection part directly above each spray nozzle, so that the cooling water and its high-temperature steam ejected from the spray nozzle are injected into the mold. Intrusion into the interior can be reliably prevented, the occurrence of corrosion and wear can be prevented over the entire circumference of the inner peripheral surface of the lower end side of the mold, and the long life of the mold can be improved.
 請求項6に記載の発明は、請求項1乃至5の内いずれか1項に記載の鋼の連続鋳造装置であって、前記高圧ガス噴出部が、板状部材で形成され、前記板状部材の内部に長手方向と平行に形成された流路と、前記板状部材の端面に穿設され前記流路と連通する前記噴出口と、前記板状部材の下面に形成され最上段の前記スプレーノズルから噴射される冷却水を水平方向より下方に案内する傾斜面を有するスプレーガードと、を備えた構成を有している。
 この構成により、請求項1乃至3の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)高圧ガス噴出部が、板状部材で形成され、板状部材の内部に長手方向と平行に形成された流路と、板状部材の端面に穿設され流路と連通する噴出口と、板状部材の下面に形成され最上段のスプレーノズルから噴射される冷却水や水ミストを水平方向より下方に案内する傾斜面を有するスプレーガードと、を有するので、スプレーノズルから噴射される冷却水が、鋳片の表面と鋳型の内表面とのエアーギャップに侵入することをスプレーガードで効果的に防ぐことができ、鋳型の内表面に発生する腐蝕・摩耗を大幅に低減することができる。
(2)高圧ガス噴出部を構成する板状部材の下面にスプレーガードが形成されることにより、鋳型の下端と最上段のサポートローラーとの間の限られた空間を有効に利用して、スプレーガード機能を備えた高圧ガス噴出部を容易に取付けることができ、省スペース性及び腐蝕・摩耗低減の確実性に優れる。
(3)高圧ガス噴出部にスプレーガードが一体に形成されているので、部品点数を削減することができ、分解及び組立の作業性を向上させることができる。
Invention of Claim 6 is a continuous casting apparatus of steel of any one of Claim 1 thru | or 5, Comprising: The said high pressure gas ejection part is formed with a plate-shaped member, The said plate-shaped member A flow path formed in parallel to the longitudinal direction, the spout formed in the end surface of the plate-shaped member and communicating with the flow path, and the uppermost spray formed on the lower surface of the plate-shaped member And a spray guard having an inclined surface for guiding cooling water sprayed from the nozzle downward from the horizontal direction.
With this configuration, in addition to the action obtained in any one of claims 1 to 3, the following action is obtained.
(1) The high-pressure gas ejection portion is formed of a plate-like member, and has a channel formed in the plate-like member in parallel with the longitudinal direction, and a jet port that is drilled in the end surface of the plate-like member and communicates with the channel. And a spray guard formed on the lower surface of the plate-like member and having an inclined surface that guides cooling water and water mist ejected from the uppermost spray nozzle downward from the horizontal direction, and is ejected from the spray nozzle. The spray guard can effectively prevent cooling water from entering the air gap between the surface of the slab and the inner surface of the mold, greatly reducing the corrosion and wear generated on the inner surface of the mold. it can.
(2) Since the spray guard is formed on the lower surface of the plate-like member constituting the high-pressure gas ejection portion, the limited space between the lower end of the mold and the uppermost support roller is effectively utilized, and spraying is performed. A high-pressure gas ejection part with a guard function can be easily installed, and it excels in space saving and reliability of corrosion and wear reduction.
(3) Since the spray guard is formed integrally with the high-pressure gas ejection part, the number of parts can be reduced, and the workability of disassembly and assembly can be improved.
 ここで、スプレーガードはスプレーノズルから噴射される冷却水を水平方向より下方に案内できるものであればよいが、鋳型の銅板部の外周側から内周側に向かって下方に傾斜した傾斜面を有するものが好適に用いられる。
 スプレーガードの傾斜面の傾斜角度は水平面に対して10度以上であることが好ましい。スプレーガードの傾斜面の傾斜角度が小さくなるにつれ、スプレーノズルから噴射される冷却水が水平方向より下方に案内され難くなり、スプレーノズルから噴射されて拡散する冷却水の一部が鋳片の表面と鋳型の内表面との間のエアーギャップに侵入し易くなって、腐蝕・摩耗の低減効果が低下し易くなる傾向があり、好ましくない。但し、高圧ガス噴出部の高さはその設置位置のスペースから制限されており、スプレーガードの傾斜面の傾斜角度があまり大きすぎると冷却水がスプレーガードで妨げられ易くなり、鋳型の出口から引抜かれる鋳片に対して十分な冷却水の噴射が阻害され、スプレーノズルによる冷却効果が低下し易くなる傾向がある。従って、高圧ガス噴出部の設置スペースに応じて、最上段のスプレーノズルの位置及び角度(冷却水の噴射方向)を選定すると共に、冷却水の噴射を阻害しない範囲で傾斜面の傾斜角度の上限を設定する必要がある。
Here, the spray guard only needs to be able to guide the cooling water sprayed from the spray nozzle downward from the horizontal direction. However, the spray guard has an inclined surface inclined downward from the outer peripheral side to the inner peripheral side of the copper plate portion of the mold. What has is used suitably.
The inclination angle of the inclined surface of the spray guard is preferably 10 degrees or more with respect to the horizontal plane. As the inclination angle of the inclined surface of the spray guard becomes smaller, it becomes difficult for the cooling water sprayed from the spray nozzle to be guided downward from the horizontal direction, and a part of the cooling water sprayed from the spray nozzle and diffused becomes the surface of the slab. It tends to enter the air gap between the mold and the inner surface of the mold, and the effect of reducing corrosion and wear tends to decrease, which is not preferable. However, the height of the high-pressure gas ejection part is limited by the space of the installation position. If the inclination angle of the inclined surface of the spray guard is too large, the cooling water tends to be hindered by the spray guard, and it is pulled out from the outlet of the mold. There is a tendency that sufficient cooling water injection is hindered against the cast slab, and the cooling effect by the spray nozzle tends to be lowered. Therefore, the position and angle (cooling water injection direction) of the uppermost spray nozzle is selected according to the installation space of the high-pressure gas injection section, and the upper limit of the inclination angle of the inclined surface is within a range that does not impede the cooling water injection. Need to be set.
 特に、最上段のスプレーノズルから噴射される冷却水の中心線(噴射方向)が高圧ガス噴出部のスプレーガードの傾斜面と、最上段のサポートローラーの上面との隙間の中央部を通過するように最上段のスプレーノズルを傾斜させて配置することが好ましい。これにより、スプレーガードやサポートローラーに妨げられることなくスプレーノズルから噴射される冷却水で鋳片を確実に冷却することができると共に、冷却水・水ミストやその高温蒸気が鋳片の表面と鋳型の内表面との間のエアーギャップに侵入することを確実に防止して、腐蝕・摩耗の発生を大幅に低減できる。
 端面に噴出口が穿設された板状部材をバックプレート側から鋳型の内周面側にかけて配設することにより、噴出口から鋳型の内周面に向かって高圧ガスを噴出させることができる。また、板状部材の内部に各々の噴出口と連通する流路を形成することにより、高圧ガス噴出部のコンパクト性、生産性に優れる。
In particular, the center line (injection direction) of the cooling water sprayed from the uppermost spray nozzle passes through the central part of the gap between the inclined surface of the spray guard of the high-pressure gas ejection part and the upper surface of the uppermost support roller. It is preferable that the uppermost spray nozzle is inclined. As a result, the slab can be reliably cooled by the cooling water sprayed from the spray nozzle without being obstructed by the spray guard and the support roller, and the cooling water / water mist and its high-temperature steam can be cooled on the surface of the slab and the mold. It is possible to reliably prevent the air gap between the inner surface and the inner surface of the steel from entering and to significantly reduce the occurrence of corrosion and wear.
By disposing a plate-like member having a jet port formed in the end surface from the back plate side to the inner peripheral surface side of the mold, the high-pressure gas can be jetted from the jet port toward the inner peripheral surface of the mold. Moreover, the compactness and productivity of a high-pressure gas ejection part are excellent by forming the flow path connected to each ejection port inside the plate-like member.
 本発明の鋼の連続鋳造装置によれば、以下のような有利な効果が得られる。
 鋳片の凝固シェルと鋳型の内表面との間に生成されるエアーギャップに対し、高圧ガス噴出部の噴出口から高圧ガスを噴出することにより、鋳片を冷却するためにスプレーノズルから噴射される冷却水・水ミストやその高温蒸気がエアーギャップに侵入することを効果的に防ぎ、冷却水に含まれる硫酸、塩酸等を含む高温蒸気が鋳型の内に侵入することやモールドパウダー中のフッ素が冷却水・水ミストや高温蒸気と反応してフッ化水素等の強腐食性液体やガスが発生することを防止して、鋳型の表面処理層の腐蝕・摩耗を防ぐことができる鋳型の長寿命性に優れた鋼の連続鋳造装置を提供することができる。
 また、短辺部のバックプレートと共に高温ガス噴出部を移動させる構造とすることにより、鋳型の短辺部を可動式にし、幅の異なる鋳片を製造する場合でも、鋳型の内周側のコーナー部から短辺部及び長辺部に向かって高圧ガスを噴出して、表面処理層の腐蝕・摩耗を確実に防止することができる汎用性に優れた鋼の連続鋳造装置を提供することができる。
According to the continuous casting apparatus for steel of the present invention, the following advantageous effects can be obtained.
The air gap generated between the solidified shell of the slab and the inner surface of the mold is injected from the spray nozzle to cool the slab by injecting high-pressure gas from the outlet of the high-pressure gas injection part. This effectively prevents the cooling water / water mist and its high-temperature steam from entering the air gap, and high-temperature steam containing sulfuric acid, hydrochloric acid, etc. contained in the cooling water enters the mold and fluorine in the mold powder. The length of the mold that prevents corrosion and wear of the surface treatment layer of the mold by preventing the generation of strong corrosive liquids and gases such as hydrogen fluoride by reacting with cooling water, water mist and high-temperature steam It is possible to provide a continuous casting apparatus for steel having excellent life.
In addition, by adopting a structure that moves the hot gas ejection part together with the back plate of the short side part, even if the short side part of the mold is movable and slabs with different widths are manufactured, the corner on the inner peripheral side of the mold It is possible to provide a versatile steel continuous casting apparatus capable of reliably preventing corrosion and wear of the surface treatment layer by ejecting high-pressure gas from the portion toward the short side portion and the long side portion. .
実施の形態1の鋼の連続鋳造装置の要部断面模式側面図Sectional schematic side view of the main part of the continuous casting apparatus for steel according to Embodiment 1 図1におけるA-A線矢視模式底面図Schematic bottom view taken along line AA in FIG. 実施の形態1の鋼の連続鋳造装置における高圧ガス噴出部の要部断面拡大模式側面図Sectional enlarged schematic side view of the main part of the high-pressure gas ejection part in the continuous casting apparatus for steel according to Embodiment 1 実施の形態2の鋼の連続鋳造装置の高圧ガス噴出部を示す要部模式平面図Main part schematic top view which shows the high pressure gas ejection part of the continuous casting apparatus of steel of Embodiment 2 実施の形態3の鋼の連続鋳造装置の高圧ガス噴出部を示す要部模式平面図The principal part schematic plan view which shows the high pressure gas ejection part of the continuous casting apparatus of steel of Embodiment 3
 以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。尚、本発明の技術的範囲はこれらの実施の形態に限定されるものではない。
 (実施の形態1)
 図1は実施の形態1の鋼の連続鋳造装置の要部断面模式側面図であり、図2は図1におけるA-A線矢視模式底面図である。
 図1中、1は実施の形態1の鋼の連続鋳造装置、2は鋼の連続鋳造装置1の鋳型、2aは鋳型2の下端側の出口、5は鋳型2の下方外側に配設され鋳型2の出口2aから連続して引抜かれる鋳片に冷却水や水ミストを噴射する複数のスプレーノズル、6は鋳型2の下方に所定の間隔で配設され鋳型2から出た鋳片を支持するサポートローラーである。
 図1及び図2中、3aは出口2aが長方形状に形成された鋳型2の長辺部に配設された銅板部、4aは各々の銅板部3aの外側に配設され固定された鋳型2のバックプレート、7aは鋳型2の長辺部の各々のバックプレート4aの下端面に配設された高圧ガス噴出部、8は高圧ガス噴出部7aの下面に形成され最上段のスプレーノズル5から噴射される冷却水を水平方向より下方に案内するスプレーガードである。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. The technical scope of the present invention is not limited to these embodiments.
(Embodiment 1)
1 is a schematic cross-sectional side view of a main part of the continuous casting apparatus for steel according to Embodiment 1, and FIG. 2 is a schematic bottom view taken along the line AA in FIG.
In FIG. 1, 1 is a continuous casting apparatus for steel according to the first embodiment, 2 is a mold of the continuous casting apparatus 1 for steel, 2a is an outlet on the lower end side of the mold 2, and 5 is disposed on the lower outer side of the mold 2. A plurality of spray nozzles 6 for injecting cooling water or water mist onto the slab continuously drawn out from the outlet 2a of 2 and 6 are disposed below the mold 2 at a predetermined interval and support the slab discharged from the mold 2 It is a support roller.
1 and 2, reference numeral 3a denotes a copper plate portion disposed on the long side portion of the mold 2 in which the outlet 2a is formed in a rectangular shape, and 4a denotes a mold 2 disposed on and fixed to the outside of each copper plate portion 3a. The back plate 7a is a high-pressure gas jetting part disposed on the lower end surface of each back plate 4a at the long side of the mold 2, and 8 is formed on the lower surface of the high-pressure gas jetting part 7a. It is a spray guard which guides the cooling water injected below from the horizontal direction.
 図2中、3bは鋳型2の短辺部に配設された銅板部、4bは各々の銅板部3bの外側に配設され固定された鋳型2のバックプレート、7bは鋳型2の短辺部の各々のバックプレート4bの下端面に配設された連続鋳造装置1の高圧ガス噴出部、9aは各々の高圧ガス噴出部7a,7bに形成された複数の噴出口、9dは各々の高圧ガス噴出部7a,7bに配設された高圧ガスの供給管、10は高圧ガス噴出部7a,7bの要所をバックプレート4a,4bに着脱自在に固定する固定ボルトである。 In FIG. 2, 3 b is a copper plate portion disposed on the short side of the mold 2, 4 b is a back plate of the mold 2 disposed and fixed outside each copper plate portion 3 b, and 7 b is a short side portion of the mold 2. Of the continuous casting apparatus 1 disposed on the lower end surface of each back plate 4b, 9a is a plurality of jets formed in each of the high- pressure gas jets 7a and 7b, and 9d is each high-pressure gas. High-pressure gas supply pipes 10 disposed in the ejection portions 7a and 7b are fixing bolts that detachably fix the main points of the high-pressure gas ejection portions 7a and 7b to the back plates 4a and 4b.
 次に、実施の形態1の鋼の連続鋳造装置における高圧ガス噴出部の詳細について説明する。
 図3は実施の形態1の鋼の連続鋳造装置における高圧ガス噴出部の要部断面拡大模式側面図である。
 図3中、5aはスプレーノズル5から噴射される冷却水、8aは鋳型2の銅板部3aの外周側から内周側に向かって下方に傾斜したスプレーガード8の傾斜面、9は高圧ガス噴出部7a(7b)を構成する板状部材、9bは板状部材9の内部に長手方向に沿って溝状に形成され通気路9b’を介して複数の噴出口9aと連通する高圧ガス噴出部7a(7b)の流路、9cは流路9bのカバー部、9eはエアーギャップである。
 本実施の形態では、最上段のスプレーノズル5を水平より3度~8度、好ましくは5度程度下向きに傾けて設置し、噴射される冷却水5aの中心線(噴射方向)が高圧ガス噴出部7a(7b)のスプレーガード8の傾斜面8aと、最上段のサポートローラー6の上面との隙間の中央部を通過するようにした。これにより、スプレーガード8やサポートローラー6に妨げられることなくスプレーノズル5から噴射される冷却水5aで鋳片20を確実に冷却することができると共に、冷却水5aやその高温蒸気が鋳片20の表面と鋳型2の内表面との間のエアーギャップ9eに侵入することを確実に防止できる。
 尚、本実施の形態では、噴出口9aは直径5mm程度の円形状に形成したが、高さ3mm×幅6mm程度のスリット状に形成してもよい。噴出口9aから噴射する高圧ガスの噴射圧力や噴射量は、冷却水5aの噴射量、噴射圧力、高温蒸気の発生量等に応じて、これらがエアーギャップ9eに侵入することを防止できる範囲で、適宜、選択することができる。
Next, the details of the high-pressure gas ejection portion in the steel continuous casting apparatus of Embodiment 1 will be described.
FIG. 3 is an enlarged schematic sectional side view of a main part of a high-pressure gas ejection part in the continuous casting apparatus for steel according to the first embodiment.
In FIG. 3, 5a is cooling water sprayed from the spray nozzle 5, 8a is an inclined surface of the spray guard 8 inclined downward from the outer peripheral side to the inner peripheral side of the copper plate portion 3a of the mold 2, and 9 is a high-pressure gas jet A plate-like member that constitutes the portion 7a (7b), 9b is a high-pressure gas ejection portion that is formed in a groove shape along the longitudinal direction inside the plate-like member 9 and communicates with the plurality of ejection ports 9a through the air passage 9b ′ 7a (7b), 9c is a cover part of the channel 9b, and 9e is an air gap.
In the present embodiment, the uppermost spray nozzle 5 is installed to be inclined downward by 3 to 8 degrees, preferably about 5 degrees from the horizontal, and the center line (injection direction) of the injected cooling water 5a is the high-pressure gas ejection. It passes through the central part of the gap between the inclined surface 8a of the spray guard 8 of the part 7a (7b) and the upper surface of the uppermost support roller 6. Accordingly, the slab 20 can be reliably cooled by the cooling water 5a sprayed from the spray nozzle 5 without being obstructed by the spray guard 8 and the support roller 6, and the cooling water 5a and its high-temperature steam can be cooled. Intrusion into the air gap 9e between the surface of the mold 2 and the inner surface of the mold 2 can be reliably prevented.
In the present embodiment, the spout 9a is formed in a circular shape having a diameter of about 5 mm, but may be formed in a slit shape having a height of about 3 mm and a width of about 6 mm. The injection pressure and the injection amount of the high-pressure gas injected from the injection port 9a are within a range in which they can be prevented from entering the air gap 9e according to the injection amount of the cooling water 5a, the injection pressure, the generation amount of high-temperature steam, etc. Can be appropriately selected.
 図3において、スプレーガード8の傾斜面8aの傾斜角度αは、水平面に対して10度に形成した。スプレーガード8の傾斜面8aの傾斜角度αが、10度より小さくなるにつれ、スプレーノズル5から噴射される冷却水5aがスプレーガード8で案内され難くなり、冷却水5aの一部が鋳片20の表面と鋳型2の内表面との隙間に侵入し易くなって、腐蝕・摩耗の低減効果が減少する傾向があることがわかったためである。尚、この傾斜角度αがあまり大きくなると、冷却水5aがスプレーガード8で妨げられ易くなり、鋳型2の出口2aから引抜かれる鋳片20に対して十分な冷却水5aが供給され難くなって、スプレーノズル5による冷却効果が低下する傾向がある。よって、鋳型2の下端面とサポートローラー6との間の設置スペースに応じて、最上段のスプレーノズル5の位置及び角度(冷却水5aの噴射方向)を選定すると共に、冷却水5aによる冷却を妨げない範囲で傾斜角度αを設定する必要があるが、傾斜角度αの上限は30度~40度程度が好ましい。
 板状部材9にスプレーガード8と噴出口9a及び流路9bを一体に形成することにより、スプレーガード8と、噴出口9aから噴出される高圧ガスで、スプレーノズル5から噴射される冷却水5a及びその高温蒸気が鋳片20の表面と鋳型2の内表面との間のエアーギャップ9eに侵入することを効果的に防ぐことができる。
In FIG. 3, the inclination angle α of the inclined surface 8a of the spray guard 8 is 10 degrees with respect to the horizontal plane. As the inclination angle α of the inclined surface 8a of the spray guard 8 becomes smaller than 10 degrees, the cooling water 5a ejected from the spray nozzle 5 becomes difficult to be guided by the spray guard 8, and a part of the cooling water 5a is cast into the slab 20. This is because it has been found that the effect of reducing corrosion and wear tends to be reduced due to easy entry into the gap between the surface of the mold 2 and the inner surface of the mold 2. When the inclination angle α is too large, the cooling water 5a is easily blocked by the spray guard 8, and it becomes difficult to supply sufficient cooling water 5a to the slab 20 drawn from the outlet 2a of the mold 2. There exists a tendency for the cooling effect by the spray nozzle 5 to fall. Therefore, according to the installation space between the lower end surface of the mold 2 and the support roller 6, the position and angle of the uppermost spray nozzle 5 (injection direction of the cooling water 5a) are selected, and cooling with the cooling water 5a is performed. Although it is necessary to set the inclination angle α within a range not hindering, the upper limit of the inclination angle α is preferably about 30 to 40 degrees.
By forming the spray guard 8, the jet outlet 9 a and the flow passage 9 b integrally on the plate-like member 9, the coolant 5 a jetted from the spray nozzle 5 with the high pressure gas jetted from the spray guard 8 and the jet outlet 9 a. In addition, the high temperature steam can be effectively prevented from entering the air gap 9e between the surface of the slab 20 and the inner surface of the mold 2.
 本実施の形態では、鋳型2の長辺部に対して高圧ガス噴出部7aを2つに分割して配設したが、高圧ガス噴出部7aの長手方向寸法及び分割数は適宜、選択することができ、鋳型2の長辺部の長さに応じて、必要な数の高圧ガス噴出部7aを設置することができる。
 また、高圧ガス噴出部7aの噴出口9aの数や配置間隔は鋳型2の長辺部及び短辺部の長さに応じて、適宜、選択することができる。特に鋳型2の長辺部に対しては、図2に示したように、各々のスプレーノズル5の位置に合わせて噴出口9aを配置することにより、各々のスプレーノズル5から噴射される冷却水やその高温蒸気が、鋳片20の表面と鋳型2の内表面との間のエアーギャップに侵入することを確実に防止して、鋳型2の内表面を全周にわたって腐蝕・摩耗から保護できる。
 図2において、各々の高圧ガス噴出部7a,7bには内部の流路9b(図3参照)と連通する供給管9dが形成され、高圧ガス供給源(図示せず)と接続される。高圧ガス供給源から供給される高圧の空気或いは窒素その他の不活性ガスは供給管9dから流路9bを通って複数の噴出口9aに分配され噴出される。尚、供給管9dの数や配置等は適宜、選択することができる。複数に分割された高圧ガス噴出部7a,7bに対し、共通の高圧ガス供給源から高圧ガスを供給することにより、高圧ガス噴出部7a,7bの各々の噴出口9aから同時に所定の圧力で必要量の高圧ガスを確実に噴出させることができ、動作の安定性、確実性に優れる。
In the present embodiment, the high pressure gas ejection part 7a is divided into two parts with respect to the long side part of the mold 2, but the longitudinal dimension and the number of divisions of the high pressure gas ejection part 7a should be selected as appropriate. In accordance with the length of the long side portion of the mold 2, a necessary number of high-pressure gas ejection portions 7a can be installed.
Further, the number and arrangement interval of the ejection ports 9a of the high pressure gas ejection part 7a can be appropriately selected according to the lengths of the long side part and the short side part of the mold 2. In particular, for the long side portion of the mold 2, as shown in FIG. 2, the cooling water sprayed from each spray nozzle 5 is provided by arranging the jet outlet 9 a in accordance with the position of each spray nozzle 5. In addition, it is possible to reliably prevent the high temperature steam from entering the air gap between the surface of the slab 20 and the inner surface of the mold 2, and protect the inner surface of the mold 2 from corrosion and wear over the entire circumference.
In FIG. 2, a supply pipe 9d communicating with an internal flow path 9b (see FIG. 3) is formed in each of the high pressure gas ejection portions 7a and 7b, and is connected to a high pressure gas supply source (not shown). High-pressure air or nitrogen or other inert gas supplied from the high-pressure gas supply source is distributed and ejected from the supply pipe 9d to the plurality of jet outlets 9a through the flow path 9b. The number and arrangement of the supply pipes 9d can be selected as appropriate. By supplying high pressure gas from a common high pressure gas supply source to the plurality of divided high pressure gas ejection portions 7a and 7b, it is necessary at a predetermined pressure simultaneously from the respective outlets 9a of the high pressure gas ejection portions 7a and 7b. An amount of high-pressure gas can be reliably ejected, and operation stability and reliability are excellent.
 以上のように、本発明の実施の形態1における鋼の連続鋳造装置は構成されているので、以下のような作用が得られる。
(1)鋳型の下端側周縁に配設された噴出口から鋳型の内周側の短辺部及び長辺部に向かって高圧ガスを噴出する高圧ガス噴出部を備えるので、鋳片の凝固シェルと鋳型の内表面との間に生成されるエアーギャップに対し、高圧ガス噴出部の噴出口から高圧ガスを噴出することにより、鋳片を冷却するためにスプレーノズルから噴射される冷却水・水ミストやその高温蒸気がエアーギャップに侵入することを効果的に防ぐことができる。これにより、水に含まれる硫酸、塩酸等を含む高温蒸気が鋳型の内周側のエアーギャップに侵入することやモールド内において、モールドパウダー中のフッ素が冷却水と反応してフッ化水素等の強腐食性液体や高温ガスが発生することを防止して、鋳型の表面処理層の腐蝕・摩耗を防ぐことができ、鋳型の長寿命性に優れる。
(2)複数の噴出口を有する高圧ガス噴出部を鋳型の下端側周縁に配設するだけの簡単な構成なので、既存の鋳型を有効に利用することができ、省資源性、分解及び組立の作業性に優れる。
(3)複数の噴出口を有する高圧ガス噴出部を別部材で形成して鋳型の下端側周縁に配設することができるので、もし高圧ガス噴出部に破損や不具合等が発生した場合には、高圧ガス噴出部のみを鋳型から容易に取外して修理や交換を行うことができ、鋳型を長期間にわたって使い続けることができ、省資源性、メンテナンス性、取扱い性に優れる。
(4)鋳型が、銅板部と、各々の銅板部の外側に配設されたバックプレートと、を有し、高圧ガス噴出部が、鋳型のバックプレートの下端面に固定されることにより、スペースが限定されたこの部位に高圧ガス噴出部の設置が可能であり、着脱作業が容易で組立て及び分解の作業性、メンテナンス性に優れる。
(5)高圧ガス噴出部が、鋳型の各々の短辺部及び長辺部のバックプレートの下端面に分割されて配設されることにより、鋳型の各辺に対して各々の高圧ガス噴出部から高圧ガスを噴出させることができ、スラブの幅変更操業にも対応可能であり、鋳型の下端側の内表面の必要な部分に対して、冷却水やその高温蒸気から確実に保護することができ、表面処理層の腐蝕・摩耗防止に優れる。
(6)高圧ガス噴出部の噴出口が、鋳型のコーナー部に加え、鋳型の下方外側に配設される各々のスプレーノズルの直上に配置されることにより、各々のスプレーノズルから噴射される冷却水・水ミストやその高温蒸気が、鋳片の表面と鋳型の内表面とのエアーギャップに侵入することを効果的に防止して、鋳型の内表面を全周にわたって腐蝕・摩耗から保護することができ、鋳型の長寿命性に優れる。
(7)高圧ガス噴出部が、板状部材で形成され、板状部材の長手方向と平行に形成された流路と、板状部材の端面に穿設され流路と連通する噴出口と、板状部材の下面に形成され最上段のスプレーノズルから噴射される冷却水や水ミストを水平方向より下方に案内する傾斜面を有するスプレーガードと、を有するので、スプレーノズルから噴射される冷却水が、鋳片の表面と鋳型の内表面とのエアーギャップに侵入することをスプレーガードで効果的に防ぐことができ、鋳型の内表面に発生する腐蝕・摩耗を大幅に低減することができる。
(8)高圧ガス噴出部を構成する板状部材の下面にスプレーガードが形成されることにより、鋳型の下端と最上段のサポートローラーとの間の限られた空間を有効に利用して、スプレーガード機能を備えた高圧ガス噴出部を容易に取付けることができ、省スペース性及び腐蝕・摩耗低減の確実性に優れる。
(9)高圧ガス噴出部にスプレーガードが一体に形成されているので、部品点数を削減することができ、分解及び組立の作業性を向上させることができる。
As described above, since the steel continuous casting apparatus according to Embodiment 1 of the present invention is configured, the following operation is obtained.
(1) A solidified shell of a slab since it includes a high-pressure gas jetting part that jets high-pressure gas from a jet nozzle disposed on the lower edge of the mold toward the short side and long side on the inner circumference of the mold. Cooling water / water injected from the spray nozzle to cool the slab by injecting high-pressure gas from the outlet of the high-pressure gas injection section against the air gap generated between the mold and the inner surface of the mold It is possible to effectively prevent mist and its high temperature steam from entering the air gap. As a result, high-temperature steam containing sulfuric acid, hydrochloric acid, etc. contained in the water enters the air gap on the inner peripheral side of the mold, and fluorine in the mold powder reacts with the cooling water in the mold, such as hydrogen fluoride. The generation of strong corrosive liquid and high temperature gas can be prevented, and the surface treatment layer of the mold can be prevented from being corroded and worn, and the mold has a long life.
(2) Since the high-pressure gas jetting portion having a plurality of jetting ports is simply configured to be disposed on the lower edge of the lower end of the mold, the existing mold can be used effectively, saving resources, disassembling and assembling. Excellent workability.
(3) Since the high pressure gas jetting portion having a plurality of jetting ports can be formed as a separate member and disposed on the lower end side periphery of the mold, if the high pressure gas jetting portion is damaged or malfunctioned, The high-pressure gas ejection part can be easily removed from the mold for repair or replacement, and the mold can be used for a long period of time, resulting in excellent resource saving, maintenance and handling.
(4) The mold has a copper plate portion and a back plate disposed outside each copper plate portion, and the high-pressure gas ejection portion is fixed to the lower end surface of the back plate of the mold, thereby providing a space. The high-pressure gas jet part can be installed at this part where the pressure is limited, the attachment / detachment work is easy, and the workability and maintenance of assembly and disassembly are excellent.
(5) The high-pressure gas ejection part is divided into the short side part of each mold and the lower end surface of the back plate of the long side part, so that each high-pressure gas ejection part with respect to each side of the mold. High-pressure gas can be ejected from the slab, and it is possible to handle slab width changing operations, and it is possible to reliably protect the required part of the inner surface on the lower end side of the mold from cooling water and its high-temperature steam. It is excellent in preventing corrosion and abrasion of the surface treatment layer.
(6) Cooling sprayed from each spray nozzle by disposing the jet outlet of the high-pressure gas ejection section directly above each spray nozzle disposed on the lower outer side of the mold in addition to the corner portion of the mold. Effectively prevent water / water mist and its high temperature steam from entering the air gap between the surface of the slab and the inner surface of the mold, and protect the inner surface of the mold from corrosion and wear. And has a long mold life.
(7) The high-pressure gas ejection portion is formed of a plate-like member and is formed in parallel with the longitudinal direction of the plate-like member, and a jet port that is formed in an end surface of the plate-like member and communicates with the flow passage. A cooling guard that is formed on the lower surface of the plate-like member and sprayed from the uppermost spray nozzle and a spray guard having an inclined surface that guides the water mist downward from the horizontal direction. However, the spray guard can effectively prevent the air gap between the surface of the slab and the inner surface of the mold from entering, and the corrosion and wear generated on the inner surface of the mold can be greatly reduced.
(8) By forming a spray guard on the lower surface of the plate-like member constituting the high-pressure gas ejection part, the limited space between the lower end of the mold and the uppermost support roller can be effectively used to spray A high-pressure gas ejection part with a guard function can be easily installed, and it excels in space saving and reliability of corrosion and wear reduction.
(9) Since the spray guard is formed integrally with the high-pressure gas ejection part, the number of parts can be reduced, and the workability of disassembly and assembly can be improved.
 (実施の形態2)
 本発明の実施の形態2における鋼の連続鋳造装置について、以下図面を参照しながら説明する。尚、実施の形態1と同様のものには同一の符号を付して説明を省略する。
 図4は実施の形態2の鋼の連続鋳造装置の高圧ガス噴出部を示す要部模式平面図である。
 図4において、実施の形態2における鋼の連続鋳造装置1Aはブルーム鋳造用であり、実施の形態1と異なるのは、高圧ガス噴出部7cが、鋳型2の長辺部及び短辺部に分割されて配設されている点である。尚、図4では固定ボルト10は省略した。
 図4において、各々の供給管9dは図示しない高圧ガス供給源と接続され、高圧ガス供給源から供給される空気或いは窒素その他の不活性ガスは供給管9dから板状部材9の内部の流路を通って複数の噴出口9aに分配され噴出される。尚、鋳型2のコーナー部以外に形成される噴出口9aの数や配置は鋳型2の寸法等に応じて、適宜、選択することができる。また、供給管9dの数や配置等も適宜、選択することができる。このように鋳型2の各辺に分割されて配設される高圧ガス噴出部7cはビームブランク鋳造にも適用することができる。
 以上のように、本発明の実施の形態2における鋼の連続鋳造装置は構成されているので、実施の形態1の(1)乃至(9)と同様の作用が得られる。
(Embodiment 2)
A steel continuous casting apparatus according to Embodiment 2 of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1, and description is abbreviate | omitted.
FIG. 4 is a schematic plan view of an essential part showing a high-pressure gas ejection portion of the continuous casting apparatus for steel according to the second embodiment.
In FIG. 4, the continuous casting apparatus 1A for steel in the second embodiment is for bloom casting. The difference from the first embodiment is that the high-pressure gas ejection portion 7c is divided into a long side portion and a short side portion of the mold 2. It is a point arranged. In FIG. 4, the fixing bolt 10 is omitted.
In FIG. 4, each supply pipe 9 d is connected to a high-pressure gas supply source (not shown), and air or nitrogen or other inert gas supplied from the high-pressure gas supply source passes through the flow path inside the plate-like member 9 from the supply pipe 9 d. It is distributed and ejected to a plurality of jet outlets 9a. It should be noted that the number and arrangement of the ejection ports 9a formed at portions other than the corners of the mold 2 can be appropriately selected according to the dimensions of the mold 2. Further, the number and arrangement of the supply pipes 9d can be appropriately selected. As described above, the high-pressure gas jetting portion 7c that is divided and arranged on each side of the mold 2 can also be applied to beam blank casting.
As described above, since the steel continuous casting apparatus according to the second embodiment of the present invention is configured, the same operations as (1) to (9) of the first embodiment can be obtained.
 (実施の形態3)
 本発明の実施の形態3における鋼の連続鋳造装置について、以下図面を参照しながら説明する。尚、実施の形態1又は2と同様のものには同一の符号を付して説明を省略する。
 図5は実施の形態3の鋼の連続鋳造装置の高圧ガス噴出部を示す要部模式平面図である。
 図5において、実施の形態3における鋼の連続鋳造装置1Bの高圧ガス噴出部7dは、高速のスラブ鋳造の場合に採用され、実施の形態2と異なるのは、高圧ガス噴出部7dの板状部材9が略コ字型に形成されて鋳型2の短辺部の一対のバックプレート4bの下端面に分割されて配設されている点である。尚、図5では固定ボルト10は省略した。
 噴出口9aは鋳型2のコーナー部に対応する位置と、短辺部中央のスプレーノズルの直上に対応する位置に合わせて各々の板状部材9に5箇所ずつ形成されている。これにより、鋳型2の内周側の短辺部及び長辺部のコーナー部から少なくとも250mmの範囲と、短辺部のスプレーノズルの直上位置に向かって高圧ガスを噴出することができる。
(Embodiment 3)
A steel continuous casting apparatus according to Embodiment 3 of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1 or 2, and description is abbreviate | omitted.
FIG. 5 is a schematic plan view of an essential part showing a high-pressure gas ejection part of the continuous casting apparatus for steel according to the third embodiment.
In FIG. 5, the high-pressure gas ejection part 7d of the steel continuous casting apparatus 1B in the third embodiment is employed in the case of high-speed slab casting, and the difference from the second embodiment is the plate shape of the high-pressure gas ejection part 7d. The member 9 is formed in a substantially U-shape and is divided and disposed on the lower end surfaces of the pair of back plates 4b on the short side portion of the mold 2. In FIG. 5, the fixing bolt 10 is omitted.
The ejection ports 9a are formed at five locations on each plate-like member 9 in accordance with the position corresponding to the corner portion of the mold 2 and the position corresponding to the position immediately above the spray nozzle at the center of the short side portion. Thereby, the high pressure gas can be ejected from the short side portion and the long side corner portion on the inner peripheral side of the mold 2 to a range of at least 250 mm and a position directly above the spray nozzle of the short side portion.
 以上のように、本発明の実施の形態3における鋼の連続鋳造装置は構成されているので、実施の形態1の(1)乃至(4),(6)乃至(8)と同様の作用に加え、以下のような作用が得られる。
(1)高圧ガス噴出部が、鋳型の一対の短辺部のバックプレートの下端面に分割されて配設されることにより、鋳型の短辺部を可動式にし、幅の異なる鋳片を製造する場合でも、短辺部のバックプレートと共に高圧ガス噴出部を移動させ、鋳型の内周側のコーナー部から短辺部及び長辺部に向かって確実に高圧ガスを噴出することができ、汎用性及び腐蝕・摩耗防止の確実性に優れる。
As described above, since the steel continuous casting apparatus according to the third embodiment of the present invention is configured, the same operations as in the first embodiment (1) to (4) and (6) to (8) are performed. In addition, the following effects can be obtained.
(1) The high-pressure gas ejection part is divided and disposed on the lower end surface of the back plate of the pair of short sides of the mold, thereby making the short side of the mold movable and producing slabs having different widths. Even when the high-pressure gas ejection part is moved together with the back plate of the short side part, the high-pressure gas can be reliably ejected from the corner part on the inner peripheral side of the mold toward the short side part and the long side part. Excellent reliability and corrosion / wear prevention.
 以下、本発明を実施例により具体的に説明する。尚、本発明はこれらの実施例に限定されるものではない。
(比較例1)
 従来の鋼の連続鋳造装置(高圧ガス噴出部及びスプレーガード無し)では、最上段のスプレーノズルの冷却水の噴射方向を水平方向とし、通常の操業を行っている。(当初は最上段のスプレーノズルの冷却水の噴射方向は、モールド直下の冷却を重視し、モールド直下を目指し、上方向5~7度であった。しかし時折、鋳造初期にモールド上部に蒸気が吹き上がることがあり、また低速鋳造のためモールド直下の冷却にそれほどこだわる必要もないことから、水平方向に変更した。)
 このときの操業条件としては、引抜速度は低速鋳造域の0.9~1.2m/min、スプレーノズルの水圧は5~8kg/cm2、水量は5~20L/min/ノズルである。操業途中、モールドの状況を目視でチェックしながら使用した。
 表面皮膜は、Co-Niメッキを使用していたが、その後、溶射皮膜に替えた。いずれの場合も800~900チャージ(chs)で腐食・摩耗により使用限界となり、モールド寿命となっていた。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
(Comparative Example 1)
In a conventional continuous casting apparatus for steel (without a high-pressure gas ejection section and a spray guard), the cooling water spraying direction of the uppermost spray nozzle is set to the horizontal direction and normal operation is performed. (Initially, the spraying direction of the cooling water of the uppermost spray nozzle was 5-7 degrees upward, with an emphasis on cooling directly under the mold, aiming directly under the mold. (Because it sometimes blows up and it is not necessary to be particular about cooling right under the mold because of low speed casting, it was changed to the horizontal direction.)
As operating conditions at this time, the drawing speed is 0.9 to 1.2 m / min in the low speed casting region, the water pressure of the spray nozzle is 5 to 8 kg / cm 2 , and the amount of water is 5 to 20 L / min / nozzle. During the operation, the mold was used while visually checking the condition of the mold.
The surface coating used Co—Ni plating, but was subsequently replaced with a thermal spray coating. In either case, the service life was limited to 800 to 900 charges (chs) due to corrosion and wear, and the mold life was reached.
(実施例1)
 従来の鋼の連続鋳造装置のモールド下端と第1段目のサポートローラーの間に高圧ガス噴射部無しのスプレーガードを取り付けた以外は比較例1と同様にして実験を行った(参考;図1、図2、図3)。
 使用途中、オンラインおよび型替え時に目視で詳細観察を続けながら実験を続行した。
3回の試験で1,000~1,300チャージのモールド寿命であった。モールド寿命の決定条件はいずれも腐食・摩耗による使用限界であった。特に(比較例1)の腐食・摩耗と異なるのが、その発生位置と形態である。(比較例1)では4箇所のコーナー部近傍の短辺及び長辺に発生する腐食・摩耗がその使用限界を決めていたが、この(実施例1)ではいずれもコーナー近傍を中心に、最上段部のスプレーノズルの直上に半円状の腐食・摩耗が顕著に認められた。
Example 1
An experiment was conducted in the same manner as in Comparative Example 1 except that a spray guard without a high-pressure gas injection part was attached between the lower end of the mold of the conventional continuous casting apparatus for steel and the first-stage support roller (reference: FIG. 1). FIG. 2 and FIG. 3).
During the use, the experiment was continued while observing the details on-line and visually at the time of mold change.
The mold life was 1,000 to 1,300 charges in three tests. The conditions for determining the mold life were all the use limits due to corrosion and wear. In particular, what differs from the corrosion and wear of (Comparative Example 1) is the generation position and form. In (Comparative Example 1), the corrosion and wear that occurred on the short and long sides near the four corners determined the limits of use, but in this (Example 1), all were centered around the corner. Semi-circular corrosion and wear were remarkably observed just above the upper spray nozzle.
 以上のことから、スプレーガードを取り付けることにより、スプレー水が直接モールドのエアーギャップに侵入することは阻止できた(正しくは、スプレー水により発生する大量の水蒸気の影響が緩和されたと解される。)。その結果、モールド下端での腐食・摩耗のレベルが低減し、モールド寿命が50%程度改善した。
 しかし、最上段のスプレーノズルの直上に発生する半円形状の腐食・摩耗現象は、スプレーガードのみでは水蒸気の侵入を緩和することはできても、完全に防止することはできないことを如実に示している。
 但し、最上段のスプレーノズルの直上に高圧ガスを噴射することにより、水蒸気が(?)分散・希釈されることは明らかであり、スプレーノズルの噴出口の形状と噴射量の最適化を図ることにより、半円形状の腐食・摩耗は大幅に低減されるものと考えられる。
 その結果、モールド寿命の期待値としては、現在使用されている皮膜で1,500~1,800chs/campaignが見込まれる。
 尚、この腐食の低減により、従来皮膜の寿命延長のみならず、特に従来耐腐食性に劣るため適用できなかった多くの耐摩耗性および耐機械的衝撃性に強い溶射皮膜の活用が可能となり、更なる寿命延長とコストダウンに貢献することが期待される。
From the above, it was possible to prevent the spray water from directly entering the air gap of the mold by attaching the spray guard (correctly, it is understood that the influence of a large amount of water vapor generated by the spray water was alleviated. ). As a result, the level of corrosion and wear at the lower end of the mold was reduced, and the mold life was improved by about 50%.
However, the semicircular corrosion and wear phenomenon that occurs just above the top spray nozzle clearly shows that even if the spray guard alone can mitigate the intrusion of water vapor, it cannot be completely prevented. ing.
However, it is clear that by spraying high-pressure gas directly above the uppermost spray nozzle, water vapor is (?) Dispersed and diluted, and the spray nozzle outlet shape and injection amount should be optimized. Therefore, it is considered that the semicircular corrosion / wear is greatly reduced.
As a result, the expected life of the mold is expected to be 1,500 to 1,800 chs / campaign in the currently used film.
In addition, by reducing this corrosion, it becomes possible not only to extend the life of the conventional coating, but also to use many thermal spray coatings that are not applicable due to inferior corrosion resistance in particular, and that are resistant to mechanical impact and mechanical shock, It is expected to contribute to further life extension and cost reduction.
 本発明は、既存の鋳型を有効に利用して、スプレーガードで高圧蒸気の上昇を防ぐと共に、高圧ガス噴出部を追加することで高温蒸気のエアーギャップへの侵入を防止して鋳型の下端側内周面に発生する腐食・摩耗を効果的に防ぐことができ、生産性を向上させることができる。また、鋳型の幅変更にも容易に対応することができ、汎用性、長寿命性に優れ、破損や不具合等が発生した場合には、高圧ガス噴出部のみを修理若しくは交換して鋳型を使い続けることができ、省資源性、メンテナンス性、取扱い性、分解及び組立の作業性に優れる鋼の連続鋳造装置の提供を行うことができ、鋳型の長寿命化を図ることができる。 The present invention effectively utilizes the existing mold, prevents the high-pressure steam from rising by the spray guard, and prevents the high-temperature steam from entering the air gap by adding a high-pressure gas jetting portion, thereby lowering the lower end side of the mold. Corrosion and wear generated on the inner peripheral surface can be effectively prevented, and productivity can be improved. In addition, it can easily cope with changes in the width of the mold, has excellent versatility and long life, and if damage or malfunction occurs, repair or replace only the high-pressure gas ejection section and use the mold. It is possible to provide a continuous casting apparatus of steel that is excellent in resource saving, maintenance, handling, disassembly and assembly workability, and can extend the life of the mold.
 1,1A,1B 鋼の連続鋳造装置
 2 鋳型
 2a 出口
 3a,3b 銅板部
 4a,4b バックプレート
 5 スプレーノズル
 6 サポートローラー
 7a,7b,7c,7d 高圧ガス噴出部
 8 スプレーガード
 8a 傾斜面
 9 板状部材
 9a 噴出口
 9b 流路
 9b’ 通気路
 9c カバー部
 9d 供給管
 9e エアーギャップ
 10 固定ボルト
 20 鋳片
1,1A, 1B Steel continuous casting device 2 Mold 2a Outlet 3a, 3b Copper plate part 4a, 4b Back plate 5 Spray nozzle 6 Support roller 7a, 7b, 7c, 7d High pressure gas ejection part 8 Spray guard 8a Inclined surface 9 Plate shape Member 9a Spout 9b Flow path 9b 'Ventilation path 9c Cover part 9d Supply pipe 9e Air gap 10 Fixing bolt 20 Slab

Claims (6)

  1.  各一対の短辺部及び長辺部を有する鋳型と、前記鋳型の下方外側に配設され前記鋳型からサポートローラーにより支持されながら連続して引抜かれる鋳片に水を噴射する複数のスプレーノズルと、を備えた鋼の連続鋳造装置であって、
    前記鋳型の下端側周縁に配設された噴出口から前記鋳型の内周側の短辺部及び長辺部に向かって高圧ガスを噴出する高圧ガス噴出部を備えたことを特徴とする鋼の連続鋳造装置。
    A mold having a pair of short sides and a long side, and a plurality of spray nozzles that are disposed on the lower outside of the mold and spray water on the slab continuously drawn from the mold while being supported by a support roller. A continuous casting apparatus for steel,
    A steel having a high-pressure gas jetting portion for jetting high-pressure gas from a jet port disposed at a lower end side periphery of the mold toward a short side portion and a long side portion on an inner circumference side of the mold. Continuous casting equipment.
  2.  前記鋳型が、銅板部と、各々の前記銅板部の外側に配設されたバックプレートと、を有し、前記高圧ガス噴出部が、前記鋳型の前記バックプレートの下端面に固定されたことを特徴とする請求項1に記載の鋼の連続鋳造装置。 The mold includes a copper plate portion and a back plate disposed outside each copper plate portion, and the high-pressure gas ejection portion is fixed to a lower end surface of the back plate of the mold. The continuous casting apparatus for steel according to claim 1.
  3.  前記高圧ガス噴出部が、前記鋳型の各々の前記短辺部及び前記長辺部の前記バックプレートの下端面に分割されて配設されたことを特徴とする請求項2に記載の鋼の連続鋳造装置。 3. The continuous steel according to claim 2, wherein the high-pressure gas ejection portion is divided and disposed on the lower side surface of the back plate of each of the short side portion and the long side portion of the mold. Casting equipment.
  4.  前記高圧ガス噴出部が、前記鋳型の一対の前記短辺部の前記バックプレートの下端面に分割されて配設されたことを特徴とする請求項2に記載の鋼の連続鋳造装置。 3. The continuous casting apparatus for steel according to claim 2, wherein the high-pressure gas jetting part is divided into a lower end surface of the back plate of the pair of short sides of the mold.
  5.  前記高圧ガス噴出部の前記噴出口が、前記鋳型のコーナー部に加え、前記鋳型の下方外側に配設される各々の前記スプレーノズルの直上に配置されたことを特徴とする請求項1乃至4の内いずれか1項に記載の鋼の連続鋳造装置。 5. The jet port of the high-pressure gas jet section is disposed directly above each spray nozzle disposed on the lower outer side of the mold in addition to the corner portion of the mold. The continuous casting apparatus for steel according to any one of the above.
  6.  前記高圧ガス噴出部が、板状部材で形成され、前記板状部材の内部に長手方向と平行に形成された流路と、前記板状部材の端面に穿設され前記流路と連通する前記噴出口と、前記板状部材の下面に形成され最上段の前記スプレーノズルから噴射される冷却水を水平方向より下方に案内する傾斜面を有するスプレーガードと、を備えたことを特徴とする請求項1乃至5の内いずれか1項に記載の鋼の連続鋳造装置。 The high-pressure gas ejection part is formed of a plate-like member, and a flow path formed in the plate-like member in parallel with the longitudinal direction, and the end face of the plate-like member is formed in communication with the flow path. And a spray guard having an inclined surface that is formed on a lower surface of the plate-like member and guides cooling water sprayed from the uppermost spray nozzle downward from a horizontal direction. Item 6. The continuous casting apparatus for steel according to any one of Items 1 to 5.
PCT/JP2017/000014 2016-04-28 2017-01-04 Continuous casting device for steel WO2017187665A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ATA9085/2017A AT526023B1 (en) 2016-04-28 2017-01-04 Continuous steel casting plant
JP2018514106A JP6570738B2 (en) 2016-04-28 2017-01-04 Steel vertical continuous casting equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-092000 2016-04-28
JP2016092000 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017187665A1 true WO2017187665A1 (en) 2017-11-02

Family

ID=60161425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000014 WO2017187665A1 (en) 2016-04-28 2017-01-04 Continuous casting device for steel

Country Status (3)

Country Link
JP (1) JP6570738B2 (en)
AT (1) AT526023B1 (en)
WO (1) WO2017187665A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110802205A (en) * 2019-12-06 2020-02-18 马鞍山钢铁股份有限公司 Control method and device for austenite grain size of continuous casting slab and product
JP2020066018A (en) * 2018-10-23 2020-04-30 日本製鉄株式会社 Mold for continuous casting and method for steel continuous casting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147757A (en) * 1983-02-10 1984-08-24 Mishima Kosan Co Ltd Continuous casting device
JPS62110846A (en) * 1985-11-09 1987-05-21 Ishikawajima Harima Heavy Ind Co Ltd Supporting device for ingot outlet of moving mold type continuous casting machine
JPH05177306A (en) * 1991-12-26 1993-07-20 Nippon Steel Corp Continuous casting method
JP2003094153A (en) * 2001-09-21 2003-04-02 Nisshin Steel Co Ltd Continuous casting method and equipment therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1508931A1 (en) * 1966-08-20 1970-03-05 Benteler Geb Paderwerk Device for cooling and supporting the cast strand in continuous casting plants for heavy metals or their alloys, especially steel
JPH04266460A (en) * 1991-02-19 1992-09-22 Nippon Steel Corp Secondary cooling method in twin roll type strip continuous casting
JPH10291054A (en) * 1997-04-21 1998-11-04 Nippon Steel Corp Mold for continuous casting
JP3674786B2 (en) * 2003-10-01 2005-07-20 株式会社サトーセン Continuous casting mold
JP2007160346A (en) * 2005-12-13 2007-06-28 Mishima Kosan Co Ltd Casting mold for continuous casting
JP5453329B2 (en) * 2011-01-28 2014-03-26 三島光産株式会社 Continuous casting mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147757A (en) * 1983-02-10 1984-08-24 Mishima Kosan Co Ltd Continuous casting device
JPS62110846A (en) * 1985-11-09 1987-05-21 Ishikawajima Harima Heavy Ind Co Ltd Supporting device for ingot outlet of moving mold type continuous casting machine
JPH05177306A (en) * 1991-12-26 1993-07-20 Nippon Steel Corp Continuous casting method
JP2003094153A (en) * 2001-09-21 2003-04-02 Nisshin Steel Co Ltd Continuous casting method and equipment therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066018A (en) * 2018-10-23 2020-04-30 日本製鉄株式会社 Mold for continuous casting and method for steel continuous casting
JP7135717B2 (en) 2018-10-23 2022-09-13 日本製鉄株式会社 Continuous casting mold and steel continuous casting method
CN110802205A (en) * 2019-12-06 2020-02-18 马鞍山钢铁股份有限公司 Control method and device for austenite grain size of continuous casting slab and product
CN110802205B (en) * 2019-12-06 2022-04-26 马鞍山钢铁股份有限公司 Control method and device for austenite grain size of continuous casting slab and product

Also Published As

Publication number Publication date
AT526023A1 (en) 2023-08-15
JPWO2017187665A1 (en) 2018-09-06
JP6570738B2 (en) 2019-09-11
AT526023B1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2017187665A1 (en) Continuous casting device for steel
JP4774887B2 (en) Steel sheet cooling equipment and manufacturing method
KR101639904B1 (en) Apparatus for cooling of coated strip
JP2014050874A (en) Secondary cooling method for continuous casting
JP4321325B2 (en) Secondary cooling method for continuous cast slabs
JP2010082637A (en) Secondary cooling method in continuous casting
JP5565368B2 (en) Wiping apparatus and hot dipping apparatus using the same
JP2018015781A (en) Secondary cooling method and secondary cooling device of continuous casting
JP6630157B2 (en) Immersion nozzle
JP5402678B2 (en) Steel continuous casting method
JP4882406B2 (en) Cooling grid equipment for continuous casting machine and method for producing continuous cast slab
KR101267340B1 (en) Device for preventing crack of strand in continuous casting process and method therefor
KR101790003B1 (en) Temperature detecting apparatus, casting apparatus and casting method of using it
JP4437046B2 (en) Descaling method of slab in continuous casting
US9573172B2 (en) Gas wiping method and gas wiping apparatus
JP5443203B2 (en) Continuous casting method using a cooling method for rolls arranged in an air cooling zone
Hackl et al. Innovative Flow Control Refractory Products for the Continuous Casting Process
JP4760303B2 (en) Secondary cooling method for continuous cast slabs
JP2007245213A (en) Method of and device for pulverizing molten steel outflowing due to breakout in continuous casting
JP5459851B2 (en) Long nozzle
JP2006095545A (en) Apparatus and method for cooling metallic material
KR101036316B1 (en) Lance for blowing-in microstructural particle
KR101982215B1 (en) Splash preventing apparatus for continuous casting and splash preventing method for continuous casting using the same
JP6350199B2 (en) Slab support apparatus and slab support method for continuous casting
KR101998970B1 (en) Continuous casting apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514106

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A 9085/2017

Country of ref document: AT

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788955

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17788955

Country of ref document: EP

Kind code of ref document: A1