JPH10291054A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPH10291054A
JPH10291054A JP10328197A JP10328197A JPH10291054A JP H10291054 A JPH10291054 A JP H10291054A JP 10328197 A JP10328197 A JP 10328197A JP 10328197 A JP10328197 A JP 10328197A JP H10291054 A JPH10291054 A JP H10291054A
Authority
JP
Japan
Prior art keywords
mold
casting
pressure gas
flow path
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10328197A
Other languages
Japanese (ja)
Inventor
Ikuo Sawada
郁夫 沢田
Kensuke Okazawa
健介 岡澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10328197A priority Critical patent/JPH10291054A/en
Publication of JPH10291054A publication Critical patent/JPH10291054A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate an air-gap developed between a mold and cast slab (solidified shell) with the solidified shrinkage and the transformation shrinkage in a continuous casting of a metal, to increase the solidified shell thickness by improving the cooling speed between the mold and the cast slab and to improve the productivity and the product quality of the continuous casting by reducing bulging and breakout. SOLUTION: In the mold for continuously casting the metal, slits 6 for jetting high pressure gas, having the shape of arc-state or projecting curve-state to the outer side at the lower part of the gas spouting hole 6 on the whole periphery or at least on the wide surfaces at the lower part of the mold 1, or the shape inclining the angle of the gas spouting hole 6 in the cast advancing direction to the inner wall surfaces of the mold or the both constitutions. Further, desirably, the curvature radius of the arc part is made to three or more times of the jetting hole thickness and the angle of the gas jetting hole is made to <=60 deg. to constitute the gas spouting hole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳型−鋳片間の冷
却性または潤滑性に優れる鋼等の金属の連続鋳造用鋳型
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for continuous casting of metal such as steel, which is excellent in mold-to-slab cooling or lubricating properties.

【0002】[0002]

【従来の技術】従来の固定鋳型を用いる鋼の連続鋳造方
法においては、図2に示すような構成で鋳造を行う。鋳
型上部で潤滑用のパウダー4を介して水冷鋳型1と接触
した溶鋼2は凝固を開始し、成長しながら鋳造方向へ引
き抜かれていく。通常は鋳型1−鋳片3間の焼き付きを
防止するために鋳型振動を伴いながら潤滑用パウダー4
を鋳型−鋳片間へ供給する。
2. Description of the Related Art In a conventional continuous casting method of steel using a fixed mold, casting is performed with a structure as shown in FIG. The molten steel 2 in contact with the water-cooled mold 1 via the lubricating powder 4 at the upper part of the mold starts to solidify and is drawn out in the casting direction while growing. Normally, lubricating powder 4 is applied while vibrating the mold to prevent seizure between mold 1 and slab 3.
Is supplied between the mold and the slab.

【0003】凝固成長しつつある凝固シェル3は凝固収
縮やδ−γ変態による収縮により鋳型−鋳片間にエアギ
ャップ8を生じる。このエアギャップ8が存在するため
に鋳型内下部での冷却速度が減少して凝固シェルの成長
を妨げる一因となっている。鋳型広面および狭面にて生
成するエアギャップを完全に無くすれば鋳型通過後の凝
固シェルを厚くでき、バルジングによる欠陥やブレーク
アウトを低減することが可能となる。
[0003] The solidified shell 3 undergoing solidification and growth forms an air gap 8 between the mold and the slab due to solidification shrinkage and shrinkage due to δ-γ transformation. The presence of the air gap 8 reduces the cooling rate in the lower part of the mold, which is one of the factors that hinders the growth of the solidified shell. If the air gap generated on the wide surface and the narrow surface of the mold is completely eliminated, the solidified shell after passing through the mold can be thickened, and defects and breakout due to bulging can be reduced.

【0004】このエアギャップを無くする方法として鋳
型狭面または広面に下方程狭くなるテーパを付ける方法
や、機械的に広面または狭面を押しつける方法などが用
いられているが、いずれの方法においても全鋼種にわた
って完全にエアギャップを無くすることは不可能であ
る。また、後者の方法においては機械的な機構がコスト
高となる。
As a method of eliminating the air gap, a method of tapering the narrow or wide surface of the mold so as to become narrower downward or a method of mechanically pressing the wide or narrow surface is used. It is not possible to completely eliminate air gaps across all steel grades. In the latter method, a mechanical mechanism is expensive.

【0005】また、本発明では鋳型−鋳片間に高圧ガス
を吹き込むとともに後述のコアンダ効果を利用して鋳造
方向に流れるガス流れを形成しエアギャップを制御する
ことを特徴とするが、従来のガス吹き込み方法(特公昭
57−124555号公報)ではこれが不可能であっ
た。その理由は、図3に示すように溶鋼2には重力方向
に静水圧9(P+ρgh; P:静圧,ρ:密度,g:
重力加速度,h:溶鋼深さ)の分布が生じ、吹き込まれ
たガス5は静水圧9の高い方から低い方へと流れる結
果、鋳造方向とは逆方向に流れを形成するためである。
つまり、吹き込まれたガス5は初期凝固部分を乱してし
まうため安定な形状の鋳片を得ることが困難になってし
まう。
The present invention is characterized in that a high-pressure gas is blown between a mold and a slab and a gas flow flowing in a casting direction is formed by utilizing a Coanda effect described later to control an air gap. This was not possible with the gas blowing method (Japanese Patent Publication No. 57-124555). The reason is that, as shown in FIG. 3, the molten steel 2 has a hydrostatic pressure 9 (P + ρgh; P: static pressure, ρ: density, g:
This is because a distribution of gravity acceleration (h: molten steel depth) is generated, and the blown gas 5 flows from a higher hydrostatic pressure 9 to a lower hydrostatic pressure 9, thereby forming a flow in a direction opposite to the casting direction.
That is, the blown gas 5 disturbs the initially solidified portion, which makes it difficult to obtain a slab having a stable shape.

【0006】次に、コアンダ効果について述べる。コア
ンダ効果は流体が所定の条件で壁に沿って流れる原理で
あり、吹き出し角度を曲げて壁に沿う流れを形成する目
的で空調機、ガスタービンエンジン等に広く利用されて
いる。このコアンダ効果を誘発するためには、1)吹き
出し口形状が二次元的なスリット口であること、2)流
れを真曲げたい方向の吹き出し口部分に吹き出し口厚み
の少なくとも3倍以上の円弧半径を持つ円弧部を付け
る、3)吹き出し角度を曲げたい方向に傾斜させる、等
の条件を確保すると良い(参考文献:三菱重工技報 Vo
l.26,No.3(1989)p206)。
Next, the Coanda effect will be described. The Coanda effect is a principle that a fluid flows along a wall under predetermined conditions, and is widely used in air conditioners, gas turbine engines, and the like for the purpose of forming a flow along a wall by bending a blowing angle. In order to induce the Coanda effect, 1) the shape of the outlet is a two-dimensional slit, and 2) the radius of the arc at least three times the thickness of the outlet at the outlet in the direction in which the flow is to be truly bent. It is good to secure the conditions such as 3) tilting the blowout angle in the direction to be bent, etc. (Reference: Mitsubishi Heavy Industries Technical Report Vo)
l.26, No.3 (1989) p206).

【0007】壁埋め込みエアコン等のビルトインエアコ
ンの設計においては、逆にコアンダ効果による壁付着噴
流が生じて暖房効率を悪くしないように、上記コアンダ
効果を誘発しない条件にて、調整空気を室内に吹き出す
工夫が施されている[参考文献:三菱重工技報 Vol.26,
No.3(1989)p206]。また、光ファイバーの通線技術とし
てコアンダスパイラルノズルを用い、供給空気をノズル
の片方の開口部に強制的に流し、他方の開口部から光フ
ァイバーを供給する方法があるが、この方法も上記コア
ンダ効果をうまく利用したものである(参考文献:ター
ボ機械、第22巻第4号,56,(1994))。
In the design of a built-in air conditioner such as a wall-mounted air conditioner, on the other hand, conditioned air is blown into a room under conditions that do not induce the above-mentioned Coanda effect so as to prevent a wall-adhering jet due to the Coanda effect from deteriorating the heating efficiency. [Ref: Mitsubishi Heavy Industries Technical Report Vol.26,
No. 3 (1989) p206]. In addition, there is a method of using a Coanda spiral nozzle as an optical fiber wiring technology, forcing supply air to flow through one opening of the nozzle, and supplying the optical fiber from the other opening, and this method also has the above-mentioned Coanda effect. It has been successfully used (Reference: Turbomachinery, Vol. 22, No. 4, 56, (1994)).

【0008】[0008]

【発明が解決しようとする課題】本発明はこのような問
題を解決するために発明されたものであり、コアンダ効
果を用いて鋳造方向に向かうガス流れを形成し鋳型−鋳
片間を減圧にしてエアギャップを無くし、高速鋳造に適
した連続鋳造用鋳型を安価にて提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and uses the Coanda effect to form a gas flow in the casting direction to reduce the pressure between the mold and the slab. To provide a continuous casting mold suitable for high-speed casting at a low cost.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の、本願発明の要旨とするところは、金属の連続鋳造用
鋳型において、鋳型下部全周、または少なくとも広面に
水平に切られた高圧ガス吹き出し用スリットを設け、該
スリットに至る高圧ガスの流路の形状を、コアンダ効果
を生じせしめる構成とし、該スリットから吹き出される
高圧ガスによるコアンダ効果により、鋳片を鋳型内壁に
吸い寄せ、鋳型−鋳片間に生じるエアギャップを無く
し、鋳型による抜熱能力を高め、高速鋳造を可能とする
ものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the gist of the present invention is to provide a continuous casting mold for a metal, in which a high-pressure gas cut horizontally over the entire lower part of the mold or at least over a wide surface. A slit for blowing is provided, and the shape of the flow path of the high-pressure gas reaching the slit is configured to generate a Coanda effect. This eliminates the air gap generated between the slabs, enhances the heat removal capability of the mold, and enables high-speed casting.

【0010】コアンダ効果を有効に生じさせるための構
成として、スリットに至る高圧ガスの流路の形状を、ス
リット近傍で鋳造進行方向の形状が円弧状あるいは外に
凸の湾曲状とし、さらにその曲率半径を、高圧ガス流路
の幅の幅の3倍以上とすることを特徴とする。
As a configuration for effectively generating the Coanda effect, the shape of the flow path of the high-pressure gas reaching the slit is such that the shape in the casting progress direction near the slit is an arc shape or an outwardly convex curved shape. The radius is at least three times the width of the high-pressure gas flow path.

【0011】また、別の構成として、スリットに至る高
圧ガスの流路が、鋳造進行方向に向かって傾斜してお
り、さらにその鋳造方向に向かって傾斜した角度が60
度以下であることを特徴とする。
Further, as another configuration, the flow path of the high-pressure gas reaching the slit is inclined toward the casting direction, and the angle inclined toward the casting direction is 60 degrees.
Degrees or less.

【0012】さらに別の構成として、上記2つを組み合
わせた構成、すなわちスリットに至る高圧ガスの流路
が、鋳造進行方向に向かって傾斜しており、さらにその
鋳造方向に向かって傾斜した角度が60度以下であり、
かつ該流路のスリット近傍の鋳造進行方向の形状が円弧
状あるいは外に凸の湾曲状とし、さらにその曲率半径
を、高圧ガス流路の幅の3倍以上とすることを特徴とす
る。
As still another configuration, a configuration combining the above two, that is, the flow path of the high-pressure gas reaching the slit is inclined toward the casting progress direction, and the angle inclined toward the casting direction is further reduced. Less than 60 degrees,
In addition, the shape of the flow path in the vicinity of the slit in the casting direction is a circular arc or an outwardly convex curve, and the radius of curvature is set to be three times or more the width of the high-pressure gas flow path.

【0013】[0013]

【発明の実施の形態】本発明を適用する金属は、鋼、ア
ルミニウム、チタンなどであるが、特に鋼の連続鋳造に
適用することが好ましいものである。本発明の固定鋳型
を用い、連続鋳造においてエアギャップを制御する方法
を図面に基づいて説明する。本発明では、図1に示すよ
うに、鋳型下部内面にて鋳型1−鋳片3間に高圧ガス5
を吹き込み、該ガス5が鋳造進行方向に流れる結果、そ
の背後の空間を減圧または真空にする現象を利用するも
のである。ここで、鋳型下部内面とは、鋳造進行方向の
出口に近い鋳型内面部分を示し、鋳型下端から20cm以
下に水平に切られたスリットを設け、そこから吹き出さ
れる高圧ガスのコアンダ効果を利用するものである。下
端からの距離は、メニスカスからスリットまでの距離
が、有効冷却長となるため短いほどよいが、吹き出し高
圧ガス流路、鋳型冷却水との取り合い等で制約を受ける
場合もある。従来の鋳型をそのままにして、高圧ガス吹
き出し用スリットを有する短い鋳型を、従来鋳型の下に
設置する形態も可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The metal to which the present invention is applied is steel, aluminum, titanium or the like, but it is particularly preferable to apply it to continuous casting of steel. A method for controlling an air gap in continuous casting using the fixed mold of the present invention will be described with reference to the drawings. In the present invention, as shown in FIG.
Is blown, and the gas 5 flows in the casting direction, so that the space behind the gas 5 is reduced or evacuated. Here, the inner surface of the lower part of the mold refers to the inner surface of the mold near the exit in the direction of casting, and a slit cut horizontally at 20 cm or less from the lower end of the mold is provided, and the Coanda effect of the high-pressure gas blown out therefrom is used. Things. The distance from the lower end is preferably shorter as the distance from the meniscus to the slit becomes the effective cooling length, but may be limited by the blowing high-pressure gas flow path, the interaction with the mold cooling water, and the like. It is also possible to adopt a mode in which a short mold having a slit for blowing out high-pressure gas is placed below the conventional mold while the conventional mold is kept as it is.

【0014】まず、適正なガス流れの形成方法について
述べる。図3は、通常のノズル(ガス吹き出し角度が鋳
型内面に対して90度のストレートスリットノズル)で
鋳型1−鋳片3にガス5を吹き込んだ場合の挙動を示
す。溶鋼側には静水圧9の分布があり鉛直下方程静水圧
が高くなっており、鋳型内の薄い凝固シェルにも同様の
静水圧がかかっている。そこに、上述のスリットでガス
5を吹き込んだ場合、ガスは静水圧の高い方から低い方
への流れる性質を持っているため、鋳造進行方向とは逆
方向に流れてしまう結果となる。そのため、ガスは初期
凝固部において凝固シェルを乱すとともに溶鋼と直接接
触してしまうために、操業が不可能となる。
First, a method for forming an appropriate gas flow will be described. FIG. 3 shows the behavior when the gas 5 is blown into the mold 1-cast piece 3 with a normal nozzle (a straight slit nozzle having a gas blowing angle of 90 degrees with respect to the inner surface of the mold). The distribution of the hydrostatic pressure 9 is on the molten steel side, and the hydrostatic pressure is higher vertically downward, and the same hydrostatic pressure is applied to the thin solidified shell in the mold. When the gas 5 is blown through the slit, the gas has a property of flowing from a higher hydrostatic pressure to a lower hydrostatic pressure, and thus flows in a direction opposite to the casting direction. For this reason, the gas disturbs the solidified shell in the initial solidification part and comes into direct contact with the molten steel, so that the operation becomes impossible.

【0015】本発明では、このような欠点を補いガスを
鋳造進行方向に向かう適正な流れとするために、図4、
図5あるいは図6に示すように、スリット6に独自の形
状加工を加えるものである。
In the present invention, in order to make up for such a drawback and to make the gas flow properly in the casting direction, FIG.
As shown in FIG. 5 or FIG. 6, a unique shape processing is added to the slit 6.

【0016】図4は請求項1〜2に述べる本発明を示す
鋳型内面に垂直な鉛直断面図である。鋳型下部内面の全
周、または少なくとも広面11に水平に切られた高圧ガ
ス吹き出し用スリット6を有する。鋳型下部全周に設け
たスリット6とは、図5(a)に示すように鋳型内面の
二つの広面11と二つの狭面12に周状につながるよう
に水平に切られたスリット6を示す。また、広面のみに
設けたスリットとは、図5(b)に示すように鋳型内面
の二つの広面11のみに水平に切られたスリット6を示
す。このスリット6につながる高圧ガスの流路のスリッ
ト近傍で鋳造進行方向側の形状を、好ましくは高圧ガス
の流路10の幅(図4,6,7中のdを示す)の3倍以
上の曲率半径Rを持つ円弧状あるいは外に凸の湾曲形状
とすることによりコアンダ効果を誘発して、静水圧分布
にもかかわらずガスを鋳造進行方向に流すように構成す
るものである。この場合には、コアンダ効果が起こりや
すくするために、ガス吹き出し速度U、ガス流路の幅
d、ガスの動粘性係数νとして、レイノルズ数Re(=
Ud/ν)を2000以上とするのが好ましい。また、
外に凸の湾曲形状として曲率半径が上記条件を満足する
範囲において曲率半径を徐々に変化させるなめらかな曲
面や、曲面を多面体近似した平面の集合体としても良
い。
FIG. 4 is a vertical sectional view perpendicular to the inner surface of the mold according to the present invention. It has a slit 6 for blowing out high-pressure gas which is cut horizontally on at least the entire circumference of the inner surface of the lower part of the mold or at least on the wide surface 11. As shown in FIG. 5 (a), the slit 6 provided on the entire periphery of the lower part of the mold refers to a slit 6 which is horizontally cut so as to be connected to two wide surfaces 11 and two narrow surfaces 12 of the inner surface of the mold in a circumferential manner. . In addition, the slit provided only on the wide surface refers to the slit 6 cut horizontally only on the two wide surfaces 11 on the inner surface of the mold as shown in FIG. The shape of the high-pressure gas flow path connected to the slit 6 in the vicinity of the slit in the casting direction is preferably three times or more the width of the high-pressure gas flow path 10 (d in FIGS. 4, 6, and 7). By forming an arc shape having a radius of curvature R or an outwardly convex curved shape, a Coanda effect is induced, and gas is caused to flow in the casting direction in spite of the hydrostatic pressure distribution. In this case, in order to make the Coanda effect more likely to occur, the Reynolds number Re (=
Ud / ν) is preferably 2000 or more. Also,
It may be a smooth curved surface whose curvature radius is gradually changed as long as the radius of curvature satisfies the above condition as an outwardly convex curved shape, or a set of flat surfaces obtained by approximating the curved surface to a polyhedron.

【0017】次に、図6は請求項3〜4に述べる本発明
を示す鋳型内面に垂直な鉛直断面図であり、スリット6
につながる高圧ガスの流路10を鋳型内面に対して鋳造
進行方向に60度以下に傾斜させることで、鋳造方向に
向かうガス流れを形成するものである。尚、傾斜角度は
図6に示すθを示すものとする。この場合には、請求項
1〜2に記載する条件を併用しない場合には、流路の傾
斜角度を30度以下にし、レイノルズ数Reを2000
以上とするのが好ましい。
FIG. 6 is a vertical sectional view perpendicular to the inner surface of the mold according to the third and fourth aspects of the present invention.
The high pressure gas flow path 10 leading to the casting is inclined at an angle of 60 degrees or less in the casting direction with respect to the inner surface of the mold, thereby forming a gas flow in the casting direction. Note that the inclination angle indicates θ shown in FIG. In this case, when the conditions described in claims 1 and 2 are not used together, the inclination angle of the flow path is set to 30 degrees or less, and the Reynolds number Re is set to 2000.
It is preferable to make the above.

【0018】図7は請求項5〜6に述べる本発明を示す
図であり、上記の二手法を加え合わせたものである。次
に、高圧ガス5の供給圧力について述べる。図7に示す
ようにスリット位置と鋳型下端部との距離をL(cm)と
すると、エアギャップが完全に無くなった場合に作用す
るスリット−鋳型下端部間の静水圧差は、(L/14
8)(atm )となるので、ガスの供給圧力としてはガス
流路系の総圧力損失に(L/148)(atm )を加えた
圧力以上である必要がある。
FIG. 7 is a diagram showing the present invention described in claims 5 and 6, which is a combination of the above two methods. Next, the supply pressure of the high-pressure gas 5 will be described. As shown in FIG. 7, when the distance between the slit position and the lower end of the mold is L (cm), the hydrostatic pressure difference between the slit and the lower end of the mold acting when the air gap completely disappears is (L / 14).
8) (atm), the gas supply pressure must be equal to or higher than the sum of (L / 148) (atm) to the total pressure loss of the gas flow path system.

【0019】以上のような条件にて、鋳型下部内面から
高圧ガスをコアンダ効果が生じるように鋳片3に吹き付
けて鋳造進行方向に流れるガス流れを形成し、鋳型1−
鋳片3間に真空または減圧箇所を形成することにより、
鋳片3を鋳型側に吸引し鋳型1に密着させることによ
り、エアギャップを無くする、またはエアギャップ厚み
を制御することが可能となる。
Under the above conditions, a high-pressure gas is blown from the inner surface of the lower part of the mold to the slab 3 so as to generate the Coanda effect, thereby forming a gas flow flowing in the casting direction.
By forming a vacuum or decompression point between the slabs 3,
By sucking the slab 3 toward the mold and bringing it into close contact with the mold 1, it is possible to eliminate the air gap or to control the air gap thickness.

【0020】本発明のエアギャップ制御手段では、固定
鋳型に高価な機械的機構を付加することなく、吹き込み
ガスのコアンダ効果を利用して安価に減圧を形成してエ
アギャップを制御し、連鋳操業で問題となるバルジング
による製品欠陥やブレークアウトによる生産性低下を低
減するものである。
In the air gap control means of the present invention, the air gap is controlled at low cost by using the Coanda effect of the blown gas to control the air gap without adding an expensive mechanical mechanism to the fixed mold. It is intended to reduce product defects due to bulging and reduction in productivity due to breakout, which are problems in operation.

【0021】[0021]

【実施例】請求項6に記載される本発明の実施例を表1
に示す。
Embodiment 1 An embodiment of the present invention described in claim 6 is shown in Table 1.
Shown in

【表1】 [Table 1]

【0022】以下、表1の操業条件で鋼の連続鋳造を実
施した。まず、エアギャップが無くなったか否かを判定
するために、鋳造後の鋳型内面の傷の付き具合を観察し
た。その結果、従来操業ではメニスカス近傍を除いて鋳
型中部から下部にかけて鋳片3と鋳型1が接触した形跡
と見られる傷が観察されず、エアギャップ8の存在を示
していた(図2参照)。一方、本発明方法および装置を
用いた鋳造後の鋳型内面にはメニスカスから鋳型下部に
わたって全域に傷が観察された。これより、本発明にお
いてエアギャップを無くすることができたと推察され
る。
Hereinafter, continuous casting of steel was performed under the operating conditions shown in Table 1. First, in order to determine whether or not the air gap disappeared, the degree of scratches on the inner surface of the mold after casting was observed. As a result, in the conventional operation, no scratch was observed from the middle to the lower part of the mold except for the vicinity of the meniscus, which was a trace of the contact between the slab 3 and the mold 1, indicating the presence of the air gap 8 (see FIG. 2). On the other hand, scratches were observed on the inner surface of the mold after casting using the method and apparatus of the present invention from the meniscus to the lower portion of the mold. This suggests that the air gap could be eliminated in the present invention.

【0023】次に、鋳型下のロール間の鋳片に生起され
るバルジング量を計測した。従来操業と本発明に基づく
操業の比較を表2に示す。従来鋳型による鋳造と比較し
本発明鋳型による鋳造では、鋳型下部でのバルジング量
が1/2〜1/3程度に減少しており、本発明の有効性
が確認された。
Next, the amount of bulging generated in the slab between the rolls under the mold was measured. Table 2 shows a comparison between the conventional operation and the operation based on the present invention. In the casting using the mold of the present invention as compared with the casting using the conventional mold, the bulging amount at the lower part of the mold was reduced to about 2〜 to 3, and the effectiveness of the present invention was confirmed.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】以上説明したように、本発明による連続
鋳造用鋳型によれば、鋼の連続鋳造鋳型において低コス
トな加工を加えることで鋳造鋼種に応じたエアギャップ
制御が可能となり、鋳片欠陥やブレークアウトの低減が
できる。
As described above, according to the continuous casting mold of the present invention, the air gap can be controlled in accordance with the type of cast steel by performing low-cost processing in the continuous casting mold of steel. Defects and breakouts can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を用いたエアギャップ制御の概略図を示
す。
FIG. 1 shows a schematic diagram of air gap control using the present invention.

【図2】従来鋳造で生じるエアギャップの概略図を示
す。
FIG. 2 shows a schematic view of an air gap generated by conventional casting.

【図3】従来ノズルで空気を吹き込んだ場合の概略図を
示す。
FIG. 3 is a schematic view showing a case where air is blown by a conventional nozzle.

【図4】本発明第一の鋳型の鋳型内面に垂直な鉛直断面
の模式的図を示す。
FIG. 4 is a schematic view of a vertical section perpendicular to the inner surface of the mold of the first mold of the present invention.

【図5】本発明の鋳型内面高圧ガス吹き出し用スリット
が切られている様子を模式的に示した図。(a)は全
面、(b)は広面のみにスリットを有する。
FIG. 5 is a diagram schematically showing a state in which a slit for blowing out high-pressure gas from the inner surface of the mold of the present invention is cut. (A) has slits on the entire surface, and (b) has slits only on the wide surface.

【図6】本発明第二の鋳型の鋳型内面に垂直な鉛直断面
の模式的図を示す。
FIG. 6 is a schematic view of a vertical section perpendicular to the inner surface of the mold of the second mold of the present invention.

【図7】本発明第二の鋳型の鋳型内面に垂直な鉛直断面
の模式的図を示す。
FIG. 7 shows a schematic view of a vertical cross section perpendicular to the inner surface of the mold of the second mold of the present invention.

【符号の説明】 1 鋳型 2 溶鋼 3 鋳片(または凝固シェル) 4 パウダー 5 ガス 6 ガス吐出スリット 7 エアポケット 8 エアギャップ 9 溶鋼静水圧 10 高圧ガス流路 11 鋳型広面 12 鋳型狭面[Description of Signs] 1 mold 2 molten steel 3 cast piece (or solidified shell) 4 powder 5 gas 6 gas discharge slit 7 air pocket 8 air gap 9 molten steel hydrostatic pressure 10 high pressure gas flow path 11 mold wide surface 12 mold narrow surface

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年10月21日[Submission date] October 21, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】[0021]

【実施例】請求項6に記載される本発明の実施例を表1
に示す。
Embodiment 1 An embodiment of the present invention described in claim 6 is shown in Table 1.
Shown in

【表1】 [Table 1]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属の連続鋳造用鋳型において、鋳型下
部全周、または少なくとも広面に水平に切られた高圧ガ
ス吹き出し用スリットを有し、該スリットに至る高圧ガ
スの流路の鋳型内面に垂直な鉛直断面の形状で、流路の
スリット近傍で鋳造進行方向の形状が円弧状あるいは外
に凸の湾曲状であることを特徴とする金属の連続鋳造用
鋳型。
1. A mold for continuous casting of metal, comprising a high-pressure gas blowing slit cut horizontally over at least the entire lower part of the mold, or at least over a wide surface, and perpendicular to the inner surface of the high-pressure gas flow path leading to the slit. A casting mold for continuous casting of metal, which has a vertical cross-sectional shape and a shape in the direction of casting in the vicinity of a slit of a flow path is an arc shape or a curved shape protruding outward.
【請求項2】 前記高圧ガス流路のスリット近傍で鋳造
進行方向の形状が円弧状あるいは外に凸の湾曲状の部分
の曲率半径が、高圧ガスの流路の幅の3倍以上であるこ
とを特徴とする請求項1記載の金属の連続鋳造用鋳型。
2. The curvature radius of a curved portion having a circular arc shape or an outwardly projecting shape in the vicinity of the slit of the high-pressure gas flow path in the casting direction is at least three times the width of the high-pressure gas flow path. The mold for continuous casting of metal according to claim 1, wherein:
【請求項3】 金属の連続鋳造用鋳型において、鋳型下
部全周、または少なくとも広面に水平に切られた高圧ガ
ス吹き出し用スリットを有し、該スリットに至る高圧ガ
スの流路が、鋳造進行方向に向かって傾斜していること
を特徴とする金属の連続鋳造用鋳型。
3. A casting mold for continuous casting of metal, comprising a slit for blowing high-pressure gas, which is horizontally cut at least on the entire periphery of the lower portion of the casting mold or at least over a wide surface, and a flow path of the high-pressure gas reaching the slit is directed in a casting direction. A mold for continuous casting of metal, characterized by being inclined toward.
【請求項4】 前記高圧ガスの流路の、鋳造進行方向に
向かって傾斜した角度が60度以下であることを特徴と
する請求項3記載の金属の連続鋳造用鋳型。
4. The mold for continuous casting of metal according to claim 3, wherein an angle of the flow path of the high-pressure gas inclined toward a casting direction is 60 degrees or less.
【請求項5】 金属の連続鋳造用鋳型において、鋳型下
部全周、または少なくとも広面に水平に切られた高圧ガ
ス吹き出し用スリットを有し、該スリットに至る高圧ガ
スの流路が鋳造進行方向に向かって傾斜しており、かつ
該流路のスリット近傍で鋳造進行方向の形状が円弧状あ
るいは外に凸の湾曲状であることを特徴とする金属の連
続鋳造用鋳型。
5. A mold for continuous casting of metal, comprising a high-pressure gas blowing slit cut horizontally over at least the entire periphery of the lower portion of the mold or at least over a wide surface, and a flow path of the high-pressure gas reaching the slit is formed in the casting direction. A casting mold for continuous casting of metal, wherein the casting mold is inclined toward the flow path and has a shape of a circular arc or an outwardly convex curved shape in the vicinity of a slit of the flow path.
【請求項6】 前記高圧ガスの流路の、鋳造進行方向に
向かって傾斜した角度が60度以下であり、かつ該流路
のスリット近傍で鋳造進行方向の形状が円弧状あるいは
外に凸の湾曲状の部分の曲率半径が、高圧ガスの流路の
幅の3倍以上であることを特徴とする請求項5記載の金
属の連続鋳造用鋳型。
6. The flow path of the high-pressure gas, wherein an angle of the flow path of the high-pressure gas inclined toward the casting direction is not more than 60 degrees, and the shape of the high-pressure gas in the casting direction near the slit of the flow path is arc-shaped or convex outward. The mold for continuous casting of metal according to claim 5, wherein the radius of curvature of the curved portion is at least three times the width of the flow path of the high-pressure gas.
JP10328197A 1997-04-21 1997-04-21 Mold for continuous casting Withdrawn JPH10291054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10328197A JPH10291054A (en) 1997-04-21 1997-04-21 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10328197A JPH10291054A (en) 1997-04-21 1997-04-21 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH10291054A true JPH10291054A (en) 1998-11-04

Family

ID=14349960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10328197A Withdrawn JPH10291054A (en) 1997-04-21 1997-04-21 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH10291054A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013821A1 (en) * 1998-09-03 2000-03-16 Nippon Steel Corporation Continuous casting method and casting mold for continuous casting
CN104368777A (en) * 2014-12-11 2015-02-25 西南铝业(集团)有限责任公司 Automatic lubricating square ingot crystallizing device
KR20210081044A (en) * 2019-12-23 2021-07-01 주식회사 포스코 Predicting apparatus and method for manufacturing cast slab
AT526023A1 (en) * 2016-04-28 2023-08-15 Mk Techno Consulting Corp Steel continuous casting plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013821A1 (en) * 1998-09-03 2000-03-16 Nippon Steel Corporation Continuous casting method and casting mold for continuous casting
CN104368777A (en) * 2014-12-11 2015-02-25 西南铝业(集团)有限责任公司 Automatic lubricating square ingot crystallizing device
AT526023A1 (en) * 2016-04-28 2023-08-15 Mk Techno Consulting Corp Steel continuous casting plant
AT526023B1 (en) * 2016-04-28 2023-11-15 Mk Techno Consulting Corp Continuous steel casting plant
KR20210081044A (en) * 2019-12-23 2021-07-01 주식회사 포스코 Predicting apparatus and method for manufacturing cast slab

Similar Documents

Publication Publication Date Title
US4479528A (en) Strip casting apparatus
JPH10291054A (en) Mold for continuous casting
JP3090188B2 (en) Cooling drum for thin cast slab casting
JP3526705B2 (en) Continuous casting method for high carbon steel
JP3089608B2 (en) Continuous casting method of beam blank
WO2000013821A1 (en) Continuous casting method and casting mold for continuous casting
KR20000053199A (en) Improved unit of equipments for the high-speed continuous casting of good quality thin steel slabs
JPH10511314A (en) Bottom of reverse casting tank
AU711139B2 (en) Method and device for guiding strands in a continuous casting installation
JP2868174B2 (en) Continuous casting method for stainless steel
JPH05200499A (en) Method of metal casting
JPH08510170A (en) Improved mold for continuous casting of steel, especially for thin wall slabs
EP0040069B1 (en) Strip casting apparatus
JPH11147161A (en) Continuous casting method and mold for continuous casting
SU1014638A1 (en) Mould with open exterior cooling
JP7273301B2 (en) Scum weir, twin-roll continuous casting apparatus, and method for producing thin cast slab
JP2710946B2 (en) Continuous ribbon casting machine
JPS6163343A (en) Horizontal and continuous casting method
GB2140720A (en) Feeding molten metal through a nozzle to a casting mould
JP2016131983A (en) Continuous casting method for molten steel
JPH0475751A (en) Horizontal continuous casting method and nozzle for horizontal continuous casting apparatus
RU2009005C1 (en) Method of producing sheet slab from aluminium and its alloys
JPH044953A (en) Twin roll type strip continuous casting method
JPH09225593A (en) Mold for continuously casting square billet
JPS62148060A (en) Thin slab continuous casting equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706