NO119576B - - Google Patents

Download PDF

Info

Publication number
NO119576B
NO119576B NO166403A NO16640367A NO119576B NO 119576 B NO119576 B NO 119576B NO 166403 A NO166403 A NO 166403A NO 16640367 A NO16640367 A NO 16640367A NO 119576 B NO119576 B NO 119576B
Authority
NO
Norway
Prior art keywords
per cent
nickel
chromium
percent
alloy
Prior art date
Application number
NO166403A
Other languages
Norwegian (no)
Inventor
D Neri
Original Assignee
Snam Progetti
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snam Progetti filed Critical Snam Progetti
Publication of NO119576B publication Critical patent/NO119576B/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F15/00Compounds of thorium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/06Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a liquid medium
    • B01J2/08Gelation of a colloidal solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Glanulating (AREA)

Description

Legering for nikkel-krom-typen. Alloy for the nickel-chromium type.

Foreliggende oppfinnelse vedrører legeringer av nikkelkromtypen, spesielt skik-ket til anvendelse som elektrisk motstandsmateriale ved høye temperaturer. The present invention relates to alloys of the nickel-chromium type, particularly suitable for use as electrical resistance material at high temperatures.

Motstandsmateriale av ovennevnte type kan inndeles i tre hovedgrupper: Legeringer med meget lavt jerninnhold, hvor jern bare forekommer som forurensning,og et krominnhold av ca. 20 pst., den resterende del hovedsakelig nikkel. Legeringer med et jerninnhold av ca. 20 pst. og et krominnhold av ca. 15 pst., den resterende del hovedsakelig nikkel. Legeringer med et jerninnhold av ca. 45 pst. og et krominnhold av ca. 20 pst., den resterende del hovedsakelig nikkel. Resistance material of the above type can be divided into three main groups: Alloys with a very low iron content, where iron only occurs as contamination, and a chromium content of approx. 20 per cent, the remainder mainly nickel. Alloys with an iron content of approx. 20 percent and a chromium content of approx. 15 per cent, the remainder mainly nickel. Alloys with an iron content of approx. 45 percent and a chromium content of approx. 20 per cent, the remainder mainly nickel.

Den nedenfor beskrevne oppfinnelse er bestemt til å anvendes for samtlige av disse tre legeringstyper. The invention described below is intended to be used for all of these three alloy types.

I øyemed å forbedre motstandsmateriale av nikkelkromtypen er der tidligere tatt ut et stort antall patenter. Hensikten med disse patenter har vært, ved tilsetning av forskjellige elementer å forbedre legeringens levetid slik som denne måles etter den standard som er angitt i American Society for Testing Materials (A.S.T.M:) i Accelerated Life Test for Metallic Materials, B. 76—39. De tidligere uttatte patenter bygger delvis på tilsetningen av zirkon og på kombinasjonen av zirkon og andre elementer, som f. eks. kalsium, aluminium etc, delvis på tilsetning av sjeldne jordartmetaller, som også kan kombineres med andre elementer. Således omfatter det britiske patent nr. 451 601 bare tilsetningen av With a view to improving resistance material of the nickel-chromium type, a large number of patents have previously been taken out. The purpose of these patents has been, by the addition of various elements, to improve the lifetime of the alloy as measured by the standard set forth in the American Society for Testing Materials (A.S.T.M:) in Accelerated Life Test for Metallic Materials, B. 76-39. The previously issued patents are partly based on the addition of zircon and on the combination of zircon and other elements, such as e.g. calcium, aluminum etc, partly on the addition of rare earth metals, which can also be combined with other elements. Thus, British Patent No. 451,601 covers only the addition of

sjeldne jordartmetaller. Det britiske patent nr. 488 926 behandler tilsetningen av sjeld- rare earth metals. British Patent No. 488,926 deals with the addition of rare

ne jordartmetaller i kombinasjon med kalsium og det amerikanske patent nr. 2.687.956 tilsetninger av sjeldne jordartmetaller i kombinasjon med kalsium og aluminium. ne rare earth metals in combination with calcium and the US patent no. 2,687,956 additions of rare earth metals in combination with calcium and aluminum.

Ved oppfinnerens egne forsøk på å forbedre motstandslegeringer av nikkelkromtypen ved å tilsette sjeldne jordartmetaller, har det vist seg at denne tilsetning medfører at der dannes en tettere og mere vedhen-gende oksyd. Denne forbedring av oksydet medfører en betydelig forlengelse av leve-tiden, slik som den måles ifølge A.S.T.M. Søkeren har dog konstatert at legeringer av nikkelkromtypen med tilsetning av sjeldne jordartmetaller ved høye temperaturer viser en større tendens til å oksydere langs korngrensene enn legeringer uten denne tilsetning. Dette fenomen er mest utpreget for legeringer med lavt jerninnhold, men viser seg også ved legeringer med høyere jerninnhold. Det bør imidler-tid bemerkes at korngrenseoksydasjonen først inntrer i større utstrekning ved høy-ere temperaturer enn de som vanligvis anvendes ved levetids-prøvingen etter A.S. T.M. Således prøves de jernfri nikkelkrom-legeringer ved 1175°C, mens søkeren først ved temperaturer over 1200°C har iakttatt den sterkere tendens til korngrenseoksydasjonen. In the inventor's own attempts to improve resistance alloys of the nickel-chromium type by adding rare earth metals, it has been shown that this addition leads to the formation of a denser and more adherent oxide. This improvement of the oxide results in a significant extension of the life, as measured according to A.S.T.M. However, the applicant has established that alloys of the nickel-chromium type with the addition of rare earth metals at high temperatures show a greater tendency to oxidize along the grain boundaries than alloys without this addition. This phenomenon is most pronounced for alloys with a low iron content, but also appears in alloys with a higher iron content. It should, however, be noted that the grain boundary oxidation first occurs to a greater extent at higher temperatures than those usually used in the lifetime testing according to A.S. T.M. Thus, the iron-free nickel-chromium alloys are tested at 1175°C, while the applicant has only observed the stronger tendency towards grain boundary oxidation at temperatures above 1200°C.

Denne korngrenseoksydasjon medfører en nedsettelse av materialets anvendbar-het som motstandslegering, delvis på grunn av at oksydasjonen endrer legeringens elektriske motstand, delvis fordi korngrenseoksydasjonen medfører at ma-terialet vokser og endrer sine dimensjoner. Hvis det var mulig å nedsette tendensen This grain boundary oxidation causes a reduction in the material's applicability as a resistance alloy, partly because the oxidation changes the alloy's electrical resistance, partly because the grain boundary oxidation causes the material to grow and change its dimensions. If it were possible to reduce the tendency

til korngrenseoksydasjonen, ville man der- to the grain boundary oxidation, one would then

for i vesentlig grad kunne forberede kvali- to be able to significantly prepare quali-

teten, spesielt derved at den maksimale anvendelsestemperatur kunne forhøyes. teten, especially in that the maximum application temperature could be increased.

Ved forsøk har det vist seg at en til- In experiments, it has been shown that an additional

setning av bor er meget gunstig og vir- deposition of boron is very favorable and vir-

ker sterkt nedsettende, på tendensen til korngrenseoksydasjon. Da den tilsatte bor delvis forflyktiges og. delvis reagerer med andre bestanddeler i smeiten, må den til- strongly derogatory, on the tendency to grain boundary oxidation. As the employee lives partly as a fugitive and. partially reacts with other components in the melt, it must

satte bormengde være veséntlig. større enn den mengde som senere gjenfinnes i le- set amount of boron to be substantial. greater than the amount that is later found in le-

geringen. Det har vist-ség- at sélv om man etter tilsetningen av bor bare gjenfinner spor av dette element i den ferdige leger- the little one. It has been shown that even if, after the addition of boron, only traces of this element are found in the finished alloy

ing, har den dog medført en tydelig forbed- ing, it has, however, led to a clear improvement

ring av legeringens bestandighet mot korngrenseoksydasjon. Den mengde bor som gjenfinnes i den ferdige legering, må ring of the alloy's resistance to grain boundary oxidation. The amount of boron found in the finished alloy must

ikke være for stor, for da kan legeringens levetid nedsettes. Det anses således ikke for hensiktsmessig å ha et høyere slutt- not be too large, because then the service life of the alloy can be reduced. It is thus not considered appropriate to have a higher final

innhold av bor enn ca. 0.02 pst. content of boron than approx. 0.02 percent

Den til legeringen tilsette mengde av The amount of added to the alloy

sjeldne jordartmetaller kan være i form av «mischmetall», som har en omtrentlig sammensetning av 50—55 pst. cerium, 22— rare earth metals can be in the form of "mischmetall", which has an approximate composition of 50-55 per cent cerium, 22-

25 pst. lantan, 15—17 pst. neodyn og 8—10 25 percent lanthanum, 15-17 percent neodyne and 8-10

pst. av de øvrige sjeldne jordartmetaller. percent of the other rare earth metals.

Det er dog underforstått at også andre le- It is understood, however, that other le-

geringer av sjeldne jordartmetaller eller rene slik metaller kan anvendes, såvel som oksyder av samme metaller i forbindelse med ett eller annet reduksjonsmiddel, som overfører oksydene til metallisk form. traces of rare earth metals or pure such metals can be used, as well as oxides of the same metals in connection with one or another reducing agent, which transfers the oxides to metallic form.

Som ytterligere legeringselement er As additional alloying element is

der ifølge foreliggende oppfinnelse anvendt kisel i en mengde av 0,2—2 pst. where according to the present invention silicon is used in an amount of 0.2-2 per cent.

Ved fremstilling av motstandsleger- In the production of resistance drugs-

inger av nikkelkromtypen er det formåls- ings of the nickel-chromium type are the purpose

tjenelig å tilsette metaller for deoksyda- useful to add metals for deoxida-

sjon og avgassning av legeringen, som, f. tion and degassing of the alloy, which, e.g.

eks. mangan, aluminium, zirkon, magne- e.g. manganese, aluminum, zircon, magne-

sium og kalsium, samt metaller for kull-stoff-stabilisering, som f. eksrvanadin, ti- sium and calcium, as well as metals for carbon-substance stabilization, such as exrvanadin, ti-

tan, niob og tantal. Videre forekommer i almindelighet en viss mengde kobolt som forurensning i nikkelet. Uttrykket «rest nikkel», som skal anvendes i det følgende, tan, niobium and tantalum. Furthermore, in general, a certain amount of cobalt occurs as a contaminant in the nickel. The expression "residual nickel", which shall be used in the following,

innbefatter tilstedeværelsen av ovennevn- includes the presence of the above-

te metall hver for seg eller i kombinasjon i henhold av brøkdeler av 1 prosent. te metal separately or in combination according to fractions of 1 percent.

Følgende eksempel på legerings-sam-mensetninger ifølge foreliggende oppfin- The following example of alloy compositions according to the present invention

nelse kan anføres: nelse can be stated:

1) Krom 15—30 pst., kisel 0,2—2 pst., 1) Chromium 15-30 per cent, silicon 0.2-2 per cent,

sjeldne jordartmetaller 0,01—0,5 pst., bor spor—0,02 pst. og rest nikkel. rare earth metals 0.01-0.5 percent, trace boron—0.02 percent and the rest nickel.

2) Krom 10—25 pst., jern 15—30 pst., 2) Chromium 10-25 per cent, iron 15-30 per cent,

kisel 0,02—2 pst., sjeldne jordartmetaller silicon 0.02-2 per cent, rare earth metals

0,01—0,5 pst., bor spor—0,02 pst. og rest nikkel. 0.01—0.5 percent, boron traces—0.02 percent and the rest nickel.

3)'Krom 10—25 pst., jern 40—60 pst., 3) Chromium 10-25 per cent, iron 40-60 per cent,

kisel 0,2—2 pst., sjeldne jordartmetaller 0,01—0,5 pst., bor spor—0,02 pst. og rest nikkel. silicon 0.2-2 per cent, rare earth metals 0.01-0.5 per cent, trace boron - 0.02 per cent and the rest nickel.

For nærmere å klargjøre hva tilsetnin- In order to further clarify what the

gen av bor innebærer skal resultatet fra en prøving som er utført refereres. Det ma- gene of boron implies that the result from a test that has been carried out must be referenced. It must-

teriale som ble undersøkt, ble utvalset til 0,3 mm tykke og 10 mm brede bånd. Av disse bånd ble der tatt ut prøvestykker, 35 material that was examined was rolled into 0.3 mm thick and 10 mm wide strips. Samples were taken from these bands, 35

mm lange, som ble opphetet i elektrisk ovn til en temperatur av 1210°C. Prøven ble kjørt intermitterende 2h ved nevnte tem- mm long, which were heated in an electric furnace to a temperature of 1210°C. The test was run intermittently for 2 h at the mentioned temperature

peratur og fikk stå i iy2 h til avkjøling. temperature and allowed to stand for iy2 h to cool.

Hver tredje cykel ble utvalgt til lengere Every third bike was selected for longer

prøve, og prøvene ble holdt 15 y2 h ved den høye temperatur, hvoretter de fikk av- sample, and the samples were kept for 15 y2 h at the high temperature, after which they were allowed to

kjøles iy2 h. Den sammenlagte tid som prøvene var med høy temperatur, gikk opp til 425 h. Som et mål på korngrenseoksy- cooled iy2 h. The combined time that the samples were at high temperature was 425 h. As a measure of grain boundary oxy-

dasjonen kan man anvende forlengelsen som prøven oppnådde etter den- oven- dation, one can use the elongation that the sample achieved after the above-

nevnte behandling. said treatment.

Følgende resultater kan angis: The following results can be entered:

Legering I: Krom 19,5 pst., kisel 1,5 pst., Alloy I: Chromium 19.5 per cent, silicon 1.5 per cent,

cerium 0,07 pst. og rest nikkel. Forlengel- cerium 0.07 percent and the rest nickel. extend-

sen etter prøving 10,3 pst. late after testing 10.3 per cent.

Legering II: Krom 19,05 pst., kisel 1,5 Alloy II: Chromium 19.05 percent, silicon 1.5

pst., cerium 0,07 pst. bor 0.002 pst. og rest nikkel. Forlengelse etter prøvingen 2 pst. per cent, cerium 0.07 per cent boron 0.002 per cent and the rest nickel. Extension after the test 2 percent.

I begge disse legeringer anvendes alu- In both of these alloys, alu-

minium som de-oksydasjonsmiddel. minium as a de-oxidizing agent.

Claims (4)

1. Legering av nikkel-kromtypen med eller uten jern, bestående av 10—30 pst. krom, 0—60 pst. jern, 0,2—2 pst. silicium og 0,01—0,5 pst. sjeldne jordartsmetaller, samt et innhold av bor, karakterisert ved at legeringen i ferdig tilstand inneholder bor i form av spor eller inntil 0,02 pst. og resten nikkel.1. Alloy of the nickel-chromium type with or without iron, consisting of 10-30 per cent. chromium, 0-60 per cent iron, 0.2-2 per cent silicon and 0.01-0.5 per cent rare earth metals, as well as a content of boron, characterized in that the alloy in its finished state contains boron in the form of traces or up to 0.02 percent and the rest nickel. 2. Modifikasjon av den i påstand 1 an-gitte nikkel-kromlegering, bestående av 15 —30. pst. krom, 0,2—2 pst. silicium og 0,01 —-0,5 pst. sjeldne jordartsmetaller, samt et innhold av bor, karakterisert ved at legeringen i ferdig tilstand inneholder spor av bor eller inntil 0,02 pst. av dette grunnstoff og resten nikkel.2. Modification of the nickel-chromium alloy specified in claim 1, consisting of 15 -30. per cent chromium, 0.2-2 per cent silicon and 0.01--0.5 per cent rare earth metals, as well as a content of boron, characterized by the fact that the alloy in its finished state contains traces of boron or up to 0.02 per cent of this element and the rest nickel. 3. Modifikasjon av den i påstand 1 an-gitte nikkel-kromlegering, bestående av 10 —25 pst. krom, 15—30 pst. jern, 0,2—2 pst. silisium og 0,01—0,5 pst. sjeldne jordartsmetaller, sam et innhold av bor, karakterisert ved at legeringen i ferdig tilstand inneholder bor i form av spor eller inntil 0,02 pst. og resten nikkel.3. Modification of the nickel-chromium alloy specified in claim 1, consisting of 10-25 percent chromium, 15-30 percent iron, 0.2-2 percent silicon and 0.01-0.5 percent rare earth metals, together with a content of boron, characterized in that the alloy in its finished state contains boron in the form of traces or up to 0.02 percent and the rest nickel. 4. Modifikasjon av den i påstand 1 an-gitte nikkel-kromlegering, bestående av 10 —25 pst. krom, 40—60 pst. jern, 0,2—2 pst. silicium og 0,01—0,5 pst. sjeldne jordartsmetaller, samt et innhold av bor, karakterisert ved at legeringen i ferdig tilstand inneholder bor i form av spor eller inntil 0,02 pst. og resten nikkel.4. Modification of the nickel-chromium alloy specified in claim 1, consisting of 10-25% chromium, 40-60% iron, 0.2-2% silicon and 0.01-0.5% rare earth metals, as well as a content of boron, characterized by the alloy in its finished state contains boron in the form of traces or up to 0.02 percent and the rest nickel.
NO166403A 1966-01-18 1967-01-14 NO119576B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT109966 1966-01-18

Publications (1)

Publication Number Publication Date
NO119576B true NO119576B (en) 1970-06-01

Family

ID=11100346

Family Applications (1)

Application Number Title Priority Date Filing Date
NO166403A NO119576B (en) 1966-01-18 1967-01-14

Country Status (14)

Country Link
JP (1) JPS5113750B1 (en)
BE (1) BE692750A (en)
BG (1) BG15735A3 (en)
CH (1) CH536134A (en)
DE (1) DE1671051B1 (en)
DK (1) DK130438B (en)
ES (1) ES335028A1 (en)
FR (1) FR1507984A (en)
GB (1) GB1178680A (en)
LU (1) LU52813A1 (en)
NL (1) NL6700291A (en)
NO (1) NO119576B (en)
PL (1) PL72552B1 (en)
SE (1) SE315839B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2922686C2 (en) * 1979-06-02 1983-04-21 Kernforschungsanlage Jülich GmbH, 5170 Jülich Casting solution containing uranyl nitrate for the production of spherical nuclear fuel particles and process for their production

Also Published As

Publication number Publication date
DE1671051B1 (en) 1972-10-26
ES335028A1 (en) 1967-11-16
CH536134A (en) 1973-04-30
DK130438B (en) 1975-02-17
JPS5113750B1 (en) 1976-05-01
LU52813A1 (en) 1968-08-28
BE692750A (en) 1967-07-17
GB1178680A (en) 1970-01-21
NL6700291A (en) 1967-07-19
FR1507984A (en) 1967-12-29
BG15735A3 (en) 1976-04-29
DK130438C (en) 1975-07-21
PL72552B1 (en) 1974-08-30
SE315839B (en) 1969-10-06

Similar Documents

Publication Publication Date Title
US5154885A (en) Highly corrosion and/or oxidation-resistant protective coating containing rhenium
JP2599263B2 (en) Nickeloo iron aluminide alloy capable of high temperature processing
US3976436A (en) Metal of improved environmental resistance
JPH06102814B2 (en) Oxidation resistant titanium alloy
US3552950A (en) High temperature corrosion resistant fe-g-ni-mn alloy
US3627516A (en) Stainless iron-base alloy and its various applications
US3833358A (en) Refractory iron-base alloy resisting to high temperatures
US2868640A (en) Titanium alloys
US2798806A (en) Titanium alloy
NO119576B (en)
US3118763A (en) Cobalt base alloys
US2780545A (en) High-temperature alloy
US2857266A (en) High temperature resistant alloys
US1550508A (en) Alloy
ES478227A1 (en) Nickel-based high-temperature alloy containing platinum group metal
US2687954A (en) Alloy
USRE24243E (en) J x x xx
US2581420A (en) Alloys
US2864697A (en) Titanium-vanadium-aluminum alloys
US2575915A (en) Nickel base high-temperature alloy
US3188206A (en) Columbium alloy
USRE24242E (en) Alloys and electrical resistance
US2838394A (en) Nickel-chromium alloys containing rare earth metals and boron
US2805154A (en) Nickel-base alloy
US3615374A (en) Alloyed copper