NO119135B - - Google Patents

Download PDF

Info

Publication number
NO119135B
NO119135B NO16361766A NO16361766A NO119135B NO 119135 B NO119135 B NO 119135B NO 16361766 A NO16361766 A NO 16361766A NO 16361766 A NO16361766 A NO 16361766A NO 119135 B NO119135 B NO 119135B
Authority
NO
Norway
Prior art keywords
respirator
spring
disc
piston
pump
Prior art date
Application number
NO16361766A
Other languages
Norwegian (no)
Inventor
T Leijon
Original Assignee
T Leijon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Leijon filed Critical T Leijon
Publication of NO119135B publication Critical patent/NO119135B/no

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/34Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with bucket-arms, i.e. a pair of arms, e.g. manufacturing processes, form, geometry, material of bucket-arms directly pivoted on the frames of tractors or self-propelled machines
    • E02F3/345Buckets emptying side-ways
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/40Dippers; Buckets ; Grab devices, e.g. manufacturing processes for buckets, form, geometry or material of buckets
    • E02F3/401Buckets or forks comprising, for example, shock absorbers, supports or load striking scrapers to prevent overload

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Shovels (AREA)
  • Chain Conveyers (AREA)
  • External Artificial Organs (AREA)
  • Earth Drilling (AREA)
  • Load-Engaging Elements For Cranes (AREA)

Description

Respirator. Respirator.

Nærværende oppfinnelse vedrører en respiratoranordning av den type hvor trykkimpulsene tilveiebringes ved hjelp av en over en eksenteranordning drevet, luftpumpe. Slike respiratorpumper må i kraft av sin funksjonering ha et unødvendig stort volum for å oppnå den riktige trykk-kurve for tilveiebringelse av pasientens inn- og utåndingsfunksjoner. Slike respiratorpumper har tidligere vært drevet ved f. eks. en motor som over en krumtapp eller en eksenter har beveget stemplet frem og tilbake i regelmessig takt, dvs. at innåndingsslaget og utåndingsslaget har vært av tilnærmet lik lengde. Dette har imidlertid vist seg lite heldig for pasientens åndedrett, idet en innåndingstid som er lik omtrent halvparten av utåndings-tiden har vist seg gunstigere. The present invention relates to a respirator device of the type where the pressure impulses are provided by means of an air pump driven over an eccentric device. By virtue of their functioning, such ventilator pumps must have an unnecessarily large volume in order to achieve the correct pressure curve for providing the patient's inhalation and exhalation functions. Such ventilator pumps have previously been operated by e.g. an engine which, over a crankshaft or an eccentric, has moved the piston back and forth at a regular rate, i.e. the inhalation stroke and exhalation stroke have been of approximately the same length. However, this has proved to be unlucky for the patient's breathing, as an inhalation time equal to approximately half of the exhalation time has proved more favorable.

Ved tidligere slike kjente respirator-anordninger har der i tilkoblingsledningen til selve respiratorskjoldet e. 1. vært anordnet åpninger for utjevning av trykket under pumpens funksjonering. Derved blir imidlertid luftforbruket meget stort og an-ordningens dimensjonering blir plasskre-vende. In previously known respirator devices of this type, there have been openings in the connecting line to the respirator shield itself e. 1. to equalize the pressure during the pump's operation. Thereby, however, the air consumption becomes very large and the dimensioning of the device becomes space-consuming.

Det er oppfinnelsens hensikt å tilveie-bringe en respiratoranordning hvorved oppnåes en gunstigere forløpende trykk-kurve for inn- og utånding, samtidig som anordningen kan gjøres med betydelig mindre dimensjoner enn de tidligere kjente slike. It is the purpose of the invention to provide a respirator device whereby a more favorable continuous pressure curve for inhalation and exhalation is achieved, while at the same time the device can be made with significantly smaller dimensions than the previously known ones.

Til bedre forståelse av oppfinnelsen skal denne beskrives nærmere under hen-visning til tegningen, hvor For a better understanding of the invention, it will be described in more detail with reference to the drawing, where

fig. 1 skjematisk viser drivorganene for respiratoranordningen ifølge oppfinnelsen, og fig. 1 schematically shows the drive members for the respirator device according to the invention, and

fig. 2 viser en kurve til bedre forståelse av denne. fig. 2 shows a curve for a better understanding of this.

Respiratorpumpen består av en i den ene ende åpen sylinder 1, i hvilken et stem-pel 2 med tetningskant 3 kan beveges frem og tilbake ved hjelp av en stempelstang 4. Bevegelsen skjer ved hjelp av en hjerteskive 5 som roterer om en motordrevet aksel 6, idet bevegelsen til stempelstangen 4 skjer over kamfølgeren 7. The respirator pump consists of a cylinder 1 open at one end, in which a piston 2 with a sealing edge 3 can be moved back and forth by means of a piston rod 4. The movement takes place by means of a heart disk 5 which rotates about a motor-driven shaft 6, as the movement of the piston rod 4 takes place over the cam follower 7.

Konturlinjen for hjerteskiven er slik tilpasset at skivens rotasjon gir to konstante stempelhastigheter, en for inn- og en for utånding, samtidig som stempel-hastigheten ikke avtar (øker) i nærheten av topp- eller bunnstilling. Dette sammen med de senere nevnte ventiler muliggjør det trykkdiagram som er vist helt opptruk-ket i fig. 2. The contour line for the heart disc is adapted in such a way that the rotation of the disc gives two constant piston speeds, one for inhalation and one for exhalation, while the piston speed does not decrease (increase) near the top or bottom position. This, together with the valves mentioned later, enables the pressure diagram which is shown completely drawn in fig. 2.

Ved tidligere kjente anordninger skjed-de trykkfallet, eventuelt -stigningen, etter et noe krummere forløp, f. eks. slik som antydet med strekede linjer i fig. 2, mens det er ønskelig med en steilt forløpende kurve, spesielt for trykkstigningen etter innåndingsperioden, slik som vist helt opp-trukket i fig. 2. In the case of previously known devices, the pressure drop, or possibly the rise, took place after a somewhat more curved course, e.g. as indicated by dashed lines in fig. 2, while a steeply running curve is desirable, especially for the pressure rise after the inhalation period, as shown fully drawn up in fig. 2.

Den stilling som anordningen i fig. 1 inntar svarer omtrent til punktet x på den helt opptrukne kurve i fig. 2, idet pumpe-stemplet nesten har nådd ytterstillingen, dvs. innåndingsperioden er praktisk talt avsluttet. Et hensiktsmessig undertrykk er ca. 25 gram pr. cm2 med en åndedrettsfre-kvens på ca. 20 pr. minutt. The position in which the device in fig. 1 takes approximately the point x on the fully drawn curve in fig. 2, as the pump piston has almost reached the extreme position, i.e. the inhalation period has practically ended. An appropriate negative pressure is approx. 25 grams per cm2 with a respiratory frequency of approx. 20 per minute.

I tilkoblingsledningen 9 til respiratorskjoldet e. 1. (ikke vist) er der anbrakt to klappventiler henholdsvis 10 og 11, som er fjærbelastet 12, 13. Fjærbelastningen er slik tilpasset at ventilen først åpner etter et visst under- resp. overtrykk og for inn-sugningsventilens 11 vedkommende er denne fjærkraft 13 regulerbar, f. eks. ved stillskruen 14. Under innåndingsslaget, altså den under O-linjen liggende del av kurven på fig. 2, vil derfor undertrykket raskt øke fra 0 til ca. 25 gram pr. cm-', på hvilket tidspunkt ventilen 11 åpner seg og slipper luft inn fra atmosfæren. Undertrykket vil ikke stige ytterligere og man får da en stort sett rektangulært forlø-pende kurve, slik som antydet i fig. 2. Under pumpens tilbakegående slag, dvs. utåndingsslaget, behøves der et forholdsvis lite overtrykk, idet utåndingen for pasien-ten vanligvis skjer ved at brystet synker sammen uten anvendelse av noe nevnever-dig press av luften i respiratorskjoldet, altså under et forløp som det i fig. 2 viste. In the connection line 9 to the respirator shield e. 1. (not shown) there are two flap valves 10 and 11 respectively, which are spring-loaded 12, 13. The spring load is adapted so that the valve only opens after a certain under- or excess pressure and for the intake valve 11, this spring force 13 is adjustable, e.g. at the adjusting screw 14. During the inhalation stroke, i.e. the part of the curve below the O line in fig. 2, the negative pressure will therefore quickly increase from 0 to approx. 25 grams per cm-', at which point the valve 11 opens and lets in air from the atmosphere. The negative pressure will not rise further and you then get a largely rectangular continuous curve, as indicated in fig. 2. During the return stroke of the pump, i.e. the exhalation stroke, a relatively small excess pressure is required, as exhalation for the patient usually occurs by the chest collapsing without the application of any significant pressure of the air in the respirator shield, i.e. during a process such as in fig. 2 showed.

For bedre å utjevne belastningen på motoren som driver akselen 6 kan med fordel kamfølgeren 7 være forbundet med hjerteskiven 5 ved hjelp av en fjæranord-ning 8 festet eksentrisk til skiven 5 i for-hold til rotasjonsakselen 6, f. eks. til tap-pen 15. Ved denne anordning vil den i fjæren oppmagasinerte spenning under til-bakeføringen bidra til at kamfølgeren 7 ligger til stadighet mot hjerteskivens 5 kontur, hvorved kraftforbruket utjevnes under skivens rotasjon, hvilket igjen vil si at anordningen ifølge oppfinnelsen kan drives med en betydelig svakere motor enn om ikke denne fjærforbindelse forelå. Fjæranordningen 8 har også den fordel at maksimal forlengelse er meget mindre enn om fjæren hadde vært fast montert i den ene ende av stempelstangen. Om, ønskes kan stempelpumpen som anvendes for respiratoren erstattes med et hulstempel som arbeider med væskelåstetning hvorved friksjon og andre forstyrrende krefter for anordningen elimineres. To better equalize the load on the motor that drives the shaft 6, the cam follower 7 can advantageously be connected to the heart disk 5 by means of a spring device 8 attached eccentrically to the disk 5 in relation to the rotation shaft 6, e.g. to the pin 15. With this device, the tension stored in the spring during the return will contribute to the cam follower 7 constantly lying against the contour of the heart disc 5, whereby the power consumption is equalized during the rotation of the disc, which again means that the device according to the invention can be operated with a significantly weaker engine than if this spring connection were not present. The spring device 8 also has the advantage that the maximum extension is much less than if the spring had been permanently mounted at one end of the piston rod. If desired, the piston pump used for the respirator can be replaced with a hollow piston that works with a liquid lock seal, whereby friction and other disturbing forces for the device are eliminated.

Claims (3)

1. Respirator hvor trykkimpulsene tilveiebringes ved hjelp av en over en eksenteranordning drevet luftpumpe, omfatten-de en med stempelstangen i luftpumpen forbundet kamfølger der samvirker med en eksentrisk lagret hjerteskive, karakterisert ved åt dennes konturlinje er slik utformet at skivens rotasjon gir konstante stempelhastigheter for såvel inn- som utåndingsslaget for luftpumpen, hvorhos der i for-bindelsen (9) mellom pumpen (1) og re-spiratororganet, f. eks. brystskjoldet, er anordnet luftinntaks- (10) og luftutløps-ventiler (11) i form av fjærbelastede klappventiler e. 1., idet fjærkraften for i allefall inntaksventilen (10) er regulerbar (14), hvorved oppnåes ønsket trykkurve for respiratoren.1. Respirator where the pressure impulses are provided by means of an air pump driven over an eccentric device, comprising a cam follower connected to the piston rod in the air pump which cooperates with an eccentrically stored heart disc, characterized by its contour line is designed in such a way that the rotation of the disc provides constant piston speeds for both including the exhalation stroke for the air pump, where in the connection (9) between the pump (1) and the respirator, e.g. chest shield, air intake (10) and air outlet valves (11) are arranged in the form of spring-loaded flap valves e. 1., as the spring force for at least the intake valve (10) is adjustable (14), whereby the desired pressure curve for the respirator is achieved. 2. Respirator som angitt i påstand 1, hvor kamfølgeren for stadig anlegg mot hjerteskiven er fjærbelastet, karakterisert ved at denne fjærbelastning skjer ved en fjærforbindelse (8) mellom kamfølgeren (7) og en på skiven (5) eksentrisk i for-hold til dennes rotasjonssentrum (6) drei-bar lagret tapp (15).2. Respirator as specified in claim 1, where the comb follower is spring-loaded for constant contact with the heart disc, characterized in that this spring loading occurs by a spring connection (8) between the comb follower (7) and one on the disc (5) eccentric in relation to this center of rotation (6) rotatable bearing pin (15). 3. Modifikasjon av anordning som angitt i noen av de foregående påstander, karakterisert ved at der som stempelpumpe anvendes et med væskelåstetning arbei-dende hulstempel.3. Modification of a device as indicated in some of the preceding claims, characterized in that a hollow piston working with a liquid lock seal is used as a piston pump.
NO16361766A 1965-06-24 1966-06-23 NO119135B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE845265A SE314029B (en) 1965-06-24 1965-06-24

Publications (1)

Publication Number Publication Date
NO119135B true NO119135B (en) 1970-03-23

Family

ID=20274109

Family Applications (1)

Application Number Title Priority Date Filing Date
NO16361766A NO119135B (en) 1965-06-24 1966-06-23

Country Status (11)

Country Link
JP (1) JPS4933980Y1 (en)
AT (1) AT287600B (en)
BE (1) BE683037A (en)
CH (1) CH490580A (en)
DE (2) DE1634865A1 (en)
DK (1) DK112088B (en)
FI (1) FI47216C (en)
GB (2) GB1146307A (en)
NL (1) NL6608336A (en)
NO (1) NO119135B (en)
SE (1) SE314029B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4238896A (en) * 1979-08-24 1980-12-16 Caterpillar Tractor Co. Cutting edge assembly for a loader bucket
DE102004015489B3 (en) * 2004-03-26 2005-05-25 Kurz, Andreas, Dipl.-Ing. Shovel-tilting device used for attaching to an excavator, shovel dozer, etc. comprises a shovel pivotably mounted on a shovel support via three different pivot axes so that the shovel can be tilted forward, to the right and to the left

Also Published As

Publication number Publication date
DE1634866A1 (en) 1971-03-11
SE314029B (en) 1969-08-25
GB1146308A (en) 1969-03-26
NL6608336A (en) 1966-12-27
FI47216C (en) 1973-10-10
GB1146307A (en) 1969-03-26
FI47216B (en) 1973-07-02
CH490580A (en) 1970-05-15
AT287600B (en) 1971-01-25
DK112088B (en) 1968-11-04
DE1634865A1 (en) 1971-02-04
BE683037A (en) 1966-12-01
JPS4933980Y1 (en) 1974-09-13

Similar Documents

Publication Publication Date Title
GB1391069A (en) Pumping device for promoting a patients breathing
ES398006A1 (en) Pump and method of driving same
NO119135B (en)
GB1373043A (en) Drive for a workpiece supply mechanism
GB1046990A (en) Improvements in and relating to hydraulic pumps and motors
GB1262137A (en) Improvements in or relating to compressor control devices
US1984171A (en) Compressor unloader
GB1147238A (en) Gas compressing apparatus
US2271022A (en) Pump
DE473434C (en) Two-stroke internal combustion engine
US1097878A (en) Air-compressor.
GB480768A (en) Improvements in or relating to variable compression engines
US2574751A (en) Engine for producing reciprocatory motion having substantially constant velocity except during reversals
US687070A (en) Valve-gearing.
US1345973A (en) Air-compressor
US3152556A (en) Rotary pumps
US237359A (en) John f
US1972751A (en) Control for compressors
JPS61215466A (en) Variable capacity piston pump
GB602767A (en) Improvements relating to unloading means to facilitate starting air and gas compressors
GB488762A (en) Improvements in and relating to two-stroke-cycle internalcombustion engines
GB566928A (en) Improvements in or relating to reciprocating pumps
SU1497397A1 (en) Positive displacement drive
SU666396A1 (en) Piston-type expansion machine
GB616746A (en) Improvements in or relating to reciprocating pumps