NO118185B - - Google Patents

Download PDF

Info

Publication number
NO118185B
NO118185B NO163650A NO16365066A NO118185B NO 118185 B NO118185 B NO 118185B NO 163650 A NO163650 A NO 163650A NO 16365066 A NO16365066 A NO 16365066A NO 118185 B NO118185 B NO 118185B
Authority
NO
Norway
Prior art keywords
hot water
fibers
steam
water bath
bath
Prior art date
Application number
NO163650A
Other languages
Norwegian (no)
Inventor
H Keiler
P Weber
R Thomas
Original Assignee
Phrix Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phrix Werke Ag filed Critical Phrix Werke Ag
Publication of NO118185B publication Critical patent/NO118185B/no

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/223Stretching in a liquid bath
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/16Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

Fremgangsmåte og innretning til fremstilling av kunstfibre Method and device for the production of artificial fibres

av regenerert cellulose. of regenerated cellulose.

Anvendelse av formaldehyd til stabilisering av cellulosexantogensyre som fremkommer ved spinning av viskose i sure sinkfrie spinnebad ved metylolering er kjent. Ved å anvende høysubstituerte cellulosexantogenater med gamma-verdier på over 80 får man i henhold til dette prinsipp tråder som kan strekkes 300-500% i varme bad og oppviser meget høy bruddstyrke ved ekstremt lav strekning. Stabili-seringen av høysubstituert cellulosexantogenatsyre ved metylolering bevirker riktignok en forbedring av trådens strekkbarhet, men skaper en rekke vanskelige problemer ved regenereringen av cellulose: Cellulosens substitusjonsgrad etter strekking er vesent-lig høyere enn i fravær av formaldehyd. Hvis man ikke foretar noen vidtgående avspaltning av de resterende xantatgrupper, sålenge spinn-Kfr. kl. 29a-6/02 kabelen ennå befinner seg under strekk, så skjer regenereringen først etter overkutting av kabelen eller etter innspinning av den endeløse tråd i sentrifugen, dvs. i spenningsløs tilstand. Denne dekomponering av restxantatet i spenningsfri tilstand medfører en forminskning av den orientering av cellulosekrystallittene som tidligere skjedde under strekkingen, dvs. styrketap for fibrene og trådene. Videre har tråder med for høy restsubstitusjon en tendens til, ved dekomponering i spenningsfri tilstand, å sammenklebes til mangetrådige fiberknipper. The use of formaldehyde to stabilize cellulose xanthogenic acid which is produced by spinning viscose in acidic zinc-free spinning baths by methylolation is known. By using highly substituted cellulose xanthogenates with gamma values of over 80, according to this principle, threads are obtained that can be stretched 300-500% in hot baths and exhibit very high breaking strength at extremely low stretching. The stabilization of highly substituted cellulose xanthogenic acid by methylolation does indeed improve the thread's stretchability, but creates a number of difficult problems in the regeneration of cellulose: The cellulose's degree of substitution after stretching is significantly higher than in the absence of formaldehyde. If no extensive cleavage of the remaining xanthate groups is carried out, as long as spin-Kfr. at 29a-6/02 the cable is still under tension, then the regeneration only takes place after cutting the cable or after spinning the endless thread into the centrifuge, i.e. in a de-energized state. This decomposition of the residual xanthate in a tension-free state entails a reduction in the orientation of the cellulose crystallites that previously occurred during stretching, i.e. a loss of strength for the fibers and threads. Furthermore, strands with too high residual substitution tend, when decomposed in a stress-free state, to stick together into multi-stranded fiber bundles.

Man må derfor stille motstridende og vanskelig reali-serbare krav til strekkingsbadets virkning. På den ene side bør xantatets dekomponering forbli liten, for å muliggjøre en maksimal strekkbarhet av fiberkabelen, på den annen side skal xantatet etter strekkingen spaltes mest mulig sålenge spinnkabelen står under strekk. One must therefore make conflicting and difficult-to-realize requirements for the effect of the stretching bath. On the one hand, the decomposition of the xanthate should remain small, to enable maximum stretchability of the fiber cable, on the other hand, the xanthate should be split as much as possible after stretching as long as the spinning cable is under tension.

Oppfinnelsen vedrører altså en fremgangsmåte til fremstilling av kunstfibre av regenerert cellulose under anvendelse av et utfellingsbad inneholdende formaldehyd, idet fremgangsmåten erkarakterisert vedat de koagulerte fibre føres suksessivt gjennom vanndamp av 95 - 110°C og varmt vann av 7° - 95°c ved en strekning på 300 - 500% av opprinnelig lengde, og hvor fibrene føres fra dampsonen og umiddelbart over i varmtvannssonen. The invention therefore relates to a method for the production of artificial fibers from regenerated cellulose using a precipitation bath containing formaldehyde, the method being characterized by passing the coagulated fibers successively through steam of 95 - 110°C and hot water of 7° - 95°C in a stretch of 300 - 500% of the original length, and where the fibers are led from the steam zone and immediately into the hot water zone.

Innskytningen av en kort dampstrekning før det som strekningsmiddel vanlige varmtvanns-bad ved to-bads-prosesser, gir en gunstig rekkefølge av strekning og dekomponering av kabelen. Dampstrekning og varmtvannsbad går hensiktsmessig over i hverandre umiddelbart, slik at kabelens plastisitet bestemmer sonene med overveiende strekning og overveiende 'dekomponering. Denne trinnløse overgang mellom dampstrekning og varmtvannsbad er derfor å foretrekke fremfor et klart skille mellom strekningssone og dekomponerings- The introduction of a short stretch of steam before the usual hot water bath as a stretching agent in two-bath processes provides a favorable sequence of stretching and decomposition of the cable. Steam stretching and hot water bath expediently transition into each other immediately, so that the cable's plasticity determines the zones with predominantly stretching and predominantly 'decomposition. This stepless transition between steam stretching and hot water bath is therefore preferable to a clear separation between the stretching zone and the decomposition zone.

sone for kabelen ved innsjalting av et avtrekksorgan. zone for the cable when switching on an extraction device.

Fremgangsmåten i henhold til oppfinnelsen er spesielt gunstig i forbindelse med en i og for seg kjent spinneprosess hvorved trådene av umodnet viskose, med en cellulose-gehalt på The method according to the invention is particularly advantageous in connection with a spinning process known per se, whereby the threads of immature viscose, with a cellulose content of

4-7%, en alkalifaktor på 1,0-1,4 og en gammaverdi på over 70»koaguleres ved spinning i et kaldt tungmetallsalt-fritt spinnbad inneholdende 6O-9O g svovelsyre pr. liter, 1,5-15 g formaldehyd pr. liter og 100-150 g natriumsulfat pr. liter. Spesielt gunstige resul-tater får man når viskosen oppviser celluloseinnhold på 4>5_5»5%>4-7%, an alkali factor of 1.0-1.4 and a gamma value of over 70" is coagulated by spinning in a cold heavy metal salt-free spinning bath containing 60-90 g sulfuric acid per litre, 1.5-15 g formaldehyde per liter and 100-150 g of sodium sulphate per litres. Particularly favorable results are obtained when the viscose has a cellulose content of 4>5_5»5%>

en alkalifaktor på 1,25-1,35°S en gammaverdi på over 80, og spinn-badet har en temperatur på 23-27°C og inneholder 68-72 g svovelsyre an alkali factor of 1.25-1.35°S a gamma value of over 80, and the spin bath has a temperature of 23-27°C and contains 68-72 g of sulfuric acid

pr. liter, 10-13 g formaldehyd pr. liter og 13O-I4O g natriumsulfat pr. liter. per litre, 10-13 g formaldehyde per liter and 130-140 g of sodium sulphate per litres.

Virkemåten for fremgangsmåten i henhold til oppfinnelsen omfattende varmstrekking i damp og varmtvann samt dekomponering av xantogenatet fremgår av eksemplene fra de oppgitte analyseverdier for spinnkabelen etter at denne er behandlet i forskjellige streknings-midler før strekkingen. The operation of the method according to the invention, including hot stretching in steam and hot water as well as decomposition of the xanthogenate, can be seen from the examples from the given analysis values for the spinning cable after it has been treated in different stretching agents before stretching.

Før innløpet i damprøret (analyse D) inneholder spinnkabelen mye formaldehyd og mye svovelsyre, substitusjonsgraden er relativt høy. Etter gjennomgang gjennom damprøret (analyse 6) hvori kabelen opptar strekningen fullstendig, er formaldehydinnholdet og syreinnholdet ennå høyt og substitusjonsgraden er falt til 55% av opprinnelig verdi. Formaldehyd og syreinnhold stabiliserer den metylolerte cellulosexantogensyre under den fulle trådstrekning i damp som holder 99°C• Before entering the steam pipe (analysis D), the spinning cable contains a lot of formaldehyde and a lot of sulfuric acid, the degree of substitution is relatively high. After passing through the steam pipe (analysis 6) in which the cable completely occupies the stretch, the formaldehyde content and acid content are still high and the degree of substitution has fallen to 55% of the original value. Formaldehyde and acid content stabilize the methylolated cellulose xanthogenic acid during the full wire drawing in steam holding 99°C•

Hvis spinnkabelen etter denne dampbehandling fullstendig ■ nedbrytes i spenningsfri tilstand, minsker den tidligere høye orienteringstilstand av cellulosemolekylene, med medfølgende kvali-tetssenkning av de fremstilte fibre. If, after this steam treatment, the spinning cable is completely ■ broken down in a stress-free state, the previously high state of orientation of the cellulose molecules decreases, with an accompanying lowering of the quality of the fibers produced.

Annerledes forholder det seg ved strekning i et varmtvannsbad på 67°C inneholdende 3,9<g>/l H2S0^og 1,5 g/l CH20 uten forutgående innsjaltning av en dampstrekning (analyse B). Kabelens formaldehydinnhold nedsettes sterkt, syren vaskes i stor grad ut og dekomponeringen av den metylolerte cellulosexantogensyre går temmelig langt. Her bortfaller altså den stabiliserende innvirkning av formaldehyd og syre, idet den dekomponerende virkning er overveiende. Av denne grunn kan man ikke foreta den samme sterke strekning i varmtvannsbadet som ved kombinasjonen damp/varmtvann eller damp alene, idet dekomponeringen av den metylolerte cellulosexantogensyre forløper raskere enn i damprøret. Fiberkvaliteten blir lavere. The situation is different when stretching in a hot water bath at 67°C containing 3.9<g>/l H2S0^ and 1.5 g/l CH20 without prior application of a steam stretch (analysis B). The cable's formaldehyde content is greatly reduced, the acid is largely washed out and the decomposition of the methylolated cellulose xanthogenic acid goes quite far. Here, therefore, the stabilizing effect of formaldehyde and acid disappears, as the decomposing effect is predominant. For this reason, the same strong stretching cannot be carried out in the hot water bath as with the steam/hot water combination or steam alone, as the decomposition of the methylolated cellulose xanthogenic acid proceeds faster than in the steam tube. The fiber quality will be lower.

Ved anvendelse av den oppfinneriske kombinasjon av damprør og \armtvannsbad til strekning av spinnkabelen oppnås den mest fullstendige dekomponering av kabelen (analyse A). Fiberkvaliteten blir. bedre enn ved anvendelse av damprør alene eller varmtvannsbad alene. By using the inventive combination of a steam pipe and a water bath to stretch the spinning cable, the most complete decomposition of the cable is achieved (analysis A). The fiber quality becomes better than using a steam pipe alone or a hot water bath alone.

Ved strekning av spinnkabelen i damp drives videre kabelens hydrogensulfid-innhold i stor grad ut. Man unngår således uønskede vekselvirkninger mellom svovelvannstoff og formaldehyd til vannuoppløselige polymere av tioformaldehyd i varmtvannsbadet, hvorved spinnkabelens innhold av vannuoppløselige svovelforbindelser blir mindre enn ved anvendelse av bare varmtvannsbad. When stretching the spinning cable in steam, the cable's hydrogen sulphide content is further driven out to a large extent. Undesirable interactions between hydrogen sulphide and formaldehyde to form water-insoluble polymers of thioformaldehyde in the hot water bath are thus avoided, whereby the spinning cable's content of water-insoluble sulfur compounds is less than when using only a hot water bath.

Oppfinnelsen vedrører videre en innretning til ut-førelse av fremgangsmåten, idet innretningen erkarakterisert vedat det mellom en overvalse og et varmtvannsbad er anordnet et rør som er bestandig mot syre, formaldehyd og temperaturer på inntil 110°C, og med vanndamptilførsel, idet damprøret er plasert loddrett mellom overvalse og varmtvannsbad, og at damprørets nedre ende stikker ned i varmtvannsbadet, idet det i varmtvannsbadet er anordnét9t frittløpende omstyringsorgan for fibrene. The invention further relates to a device for carrying out the method, the device being characterized by the fact that between an overroller and a hot water bath, a pipe is arranged which is resistant to acid, formaldehyde and temperatures of up to 110°C, and with water steam supply, the steam pipe being placed vertically between the overroller and the hot water bath, and that the lower end of the steam pipe protrudes into the hot water bath, since in the hot water bath there is a free-running diverting device for the fibres.

Omstyringsorganet er ikke selvdrevet, slik at den strekning som er foretatt mellom avtrekksvalsen i spinnemaskinen og endeavtrekksorganet fordeles trinnvis på damp- og varmtvanns-strekningsområdet. Over 90% av kabelens totalstrekning foretas derved allerede i damprøret som tilføres lavtrykksdamp, og •varmt-vannsbadet virker i det vesentlige bare ytterligere dekomponerende på xantatgruppene i spinnkabelen. The reversing device is not self-propelled, so that the stretch made between the draw-off roller in the spinning machine and the end draw-off element is distributed step by step in the steam and hot water draw area. Over 90% of the cable's total length is thereby already made in the steam pipe which is supplied with low-pressure steam, and •the hot water bath essentially only further decomposes the xanthate groups in the spinning cable.

Det er på tegningen vist en egnet innretning for ut-førelse av foreliggende fremgangsmåte. Mellom avtrekksvalsen 2 i spinnemaskinen og varmtvannsbadet 5 er det på egnet måte anbragt et rør 3 forsynt med dampinnføring 4»gjennom hvilket rør spinnkabelen 1 føres. For å lette spinningen er damprøret anbragt loddrett mellom overvalse og varmtvannsbad, slik at kabelen kan føres uhindret gjennom damprøret. Etter gjennomløp gjennom damprøret føres kabelen om en ikke drevet vendevalse 6 i varmtvannsbadet, hvorfra det trekkes over endeavtrekksvalsen 7• The drawing shows a suitable device for carrying out the present method. Between the take-off roller 2 in the spinning machine and the hot water bath 5, a pipe 3 provided with a steam inlet 4" through which the spinning cable 1 is led is suitably placed. To facilitate spinning, the steam pipe is placed vertically between the overroller and the hot water bath, so that the cable can be passed unhindered through the steam pipe. After passing through the steam pipe, the cable is passed around a non-driven turning roller 6 in the hot water bath, from where it is pulled over the end extraction roller 7•

Eksempel. Example.

En viskose inneholdende 5»14% cellulose og 6,47% NaOH, fremstilt under anvendelse av 64,3% karbondisulfid, ble ved en gammaverdi på 88,0 og en viskositet på 113 sekunder (kulefallprøve) utspunnet gjennom en dyse med 36OO hull med diameter 60^u i et 24°C varmt vandig utfellingsbad som inneholdt pr. liter 73»2 S H2S0^, 129 g Na2S0^og 11,8 g formaldehyd. Trådenes neddykkings-lengde i badet var 12 cm. Den fremstilte kabel inneholdende 36OO enkeltfibre ble trukket ut av badet over en valse med en hastighet på 7 m/minutt og tilført overvalsen som dreiet seg med en periferihastighet på 13 m/minutt. Fra dette punkt ble kabelen ført gjennom et loddrett glassrør med tilførsel av lavtrykksdamp av 99°c»idet røret hadde 30 171111 innerdiameter og en lengde på 800 mm, hvis nedre ende stakk 20 mm ned i midtrennen i et varmtvannsbad inneholdende 3,9 g/l H2S04°g 1>5s/1 CH2°« Herved ble kabelen ført umiddelbart etter dampsonen og inn i det 87<0>varme vannbad, hvori det over en trådføring ble omvendt 90°°g forlot badet etter å ha passert 3000 m gjennom dette. Spinnkabelen ble ført til endeavtrekksorganet som dreiet seg med en hastighet på 34>3m/minutt periferihastighet. Kabelen ble derpå på vanlig måte oppkuttet i stabelfibre på 4-0 mm lengde, ikke avsvovlet, dekomponert i en syre som holdt 79° C°g 2 g/l l^SO^, bleket, avivert og tørket. Fibermassen var uten sammenklebede enkeltfibre. Man fremstilte nå fibre ved samme fremgangsmåte og betingelser, men uten damprør, idet man bare anvendte varmtvann av ovennevnte sammensetning og temperatur og strakk fibrene 350% i dette. Den fremstilte fibermasse var fri for sammenklebede fibre. A viscose containing 5.14% cellulose and 6.47% NaOH, prepared using 64.3% carbon disulphide, at a gamma value of 88.0 and a viscosity of 113 seconds (ball drop test) was spun through a 36OO hole die with diameter 60^u in a 24°C hot aqueous precipitation bath which contained pr. liter 73»2 S H2S0^, 129 g Na2S0^ and 11.8 g formaldehyde. The immersion length of the threads in the bath was 12 cm. The produced cable containing 3600 single fibers was drawn out of the bath over a roll at a speed of 7 m/minute and fed to the top roll which rotated at a peripheral speed of 13 m/minute. From this point the cable was passed through a vertical glass tube with a supply of low-pressure steam of 99°c, the tube having an inner diameter of 30 171111 and a length of 800 mm, the lower end of which protruded 20 mm into the center channel of a hot water bath containing 3.9 g/ l H2S04°g 1>5s/1 CH2°« In this way the cable was led immediately after the steam zone and into the 87<0>hot water bath, in which it was reversed over a wire guide 90°°g left the bath after passing 3000 m through this. The spinning cable was fed to the end extractor which rotated at a speed of 34>3m/minute peripheral speed. The cable was then cut in the usual way into staple fibers of 4-0 mm length, not desulphurised, decomposed in an acid holding 79° C°g 2 g/l l^SO^, bleached, aviated and dried. The fiber mass was without individual fibers stuck together. Fibers were now produced using the same method and conditions, but without a steam pipe, using only hot water of the above-mentioned composition and temperature and stretching the fibers 350% in this. The fiber mass produced was free of bonded fibers.

Under fortsatt samme fremgangsmåte og betingelser fremstilte man fibre bare i damprør uten påfølgende varmtvannsbad, Under still the same procedure and conditions, fibers were produced only in steam pipes without a subsequent hot water bath,

ved 390% strekning. Fibermassen inneholdt denne gang enkelt-kapillarer sammenklebet til hverandre. at 390% stretch. This time the fiber mass contained single capillaries glued together.

I følgende tabell I er oppført resultatet av analyser The following table I lists the results of analyses

av spinnkabler fremstilt i henhold til oppfinnelsen ved strekning i vanndamp og varmtvann. De tilsvarende analyse-verdier for spinnkabel bare strukket i varmtvann er betegnet med B og for spinnkabel bare strukket og behandlet i damp betegnet med C. For sammenligning er analyseresultater av spinnkabelen før strekkingen ført opp under D. of spinning cables produced according to the invention by stretching in steam and hot water. The corresponding analysis values for spinning cable only stretched in hot water are denoted by B and for spinning cable only stretched and treated in steam denoted by C. For comparison, analysis results of the spinning cable before stretching are listed under D.

I tabell II er egenskapene for de ferdigfremstilte fibre oppført. Resultatene under A betegner egenskapene for fibre fremstilt i henhold til oppfinnelsen, under B for fibre fremstilt bare i varmt vann og under C fibre fremstilt ved behandling i damp. Man vil se at fremgangsmåten i henhold til oppfinnelsen tilveie-bringer en tydelig forbedring av fibrenes tekstile karakteristika. Table II lists the properties of the finished fibers. The results under A denote the properties for fibers produced according to the invention, under B for fibers produced only in hot water and under C fibers produced by treatment in steam. It will be seen that the method according to the invention provides a clear improvement in the textile characteristics of the fibers.

Claims (2)

1. Fremgangsmåte til fremstilling av kunscfibre av regenerert cellulose under anvendelse av et utfellingsbad inneholdende formaldehyd,karakterisert vedat de koagulerte fibre føres suksessivt gjennom vanndamp av 95"H0°C og varmt vann av 70 - 95°C ved en strekning på 300 - 500% av opprinnelig lengde, og hvor fibrene føres fra dampsonen og umiddelbart over i varmtvannssonen.1. Process for the production of artificial fibers from regenerated cellulose using a precipitation bath containing formaldehyde, characterized in that the coagulated fibers are passed successively through water vapor of 95"H0°C and hot water of 70 - 95°C at a stretch of 300 - 500% of original length, and where the fibers are led from the steam zone and immediately into the hot water zone. 2. Fremgangsmåte som angitt i krav 1,karakterisert vedatfibrene SOm i og for seg kjent fremstilles ved koagulering av umodnet viskose med et celluloseinnhold på 4 - 7%>fortrinnsvis 4»5- 5>5%>en alkalifaktor på 1,0 - 1,4, fortrinnsvis 1,25 - 1,35°S en gammaverdi på over 70»fortrinnsvis på over 80, i et kaldt spinnbad som fortrinnsvis holder 25 - 27°C, er fri for tunge metallsalter, og inneholder 60 - 90 g pr. liter, fortrinnsvis 68 - 72 g/liter svovelsyre, 5 15 g/liter, fortrinnsvis 10 - 13 g/ liter formaldehyd og 100 - 150, fortrinnsvis 130 - 140 g natriumsulfat pr. liter.2. Process as stated in claim 1, characterized by the fact that the fibers SOm in and of themselves known are produced by coagulation of immature viscose with a cellulose content of 4 - 7% > preferably 4»5 - 5 > 5% > an alkali factor of 1.0 - 1 ,4, preferably 1.25 - 1.35°S a gamma value of over 70»preferably over 80, in a cold spinning bath that preferably maintains 25 - 27°C, is free of heavy metal salts, and contains 60 - 90 g per litre, preferably 68 - 72 g/litre sulfuric acid, 5 15 g/litre, preferably 10 - 13 g/litre formaldehyde and 100 - 150, preferably 130 - 140 g sodium sulphate per litres. 3» Innretning for utførelse av fremgangsmåten som angitt i et av kravene 1-2,karakterisert vedat det mellom en overvalse og et varmtvannsbad er anordnet et rør som er bestandig mot syre, formaldehyd og temperaturer på inntil 110°C, og med vann- damptilførsel, idet damprøret er plasert loddrett mellom overvalse og varmtvannsbad, og at damprørets nedre ende stikker ned i varmtvannsbadet, idet det i varmtvannsbadet er anordnet et frittløpende omstyringsorgan for fibrene.3" Device for carrying out the method as specified in one of claims 1-2, characterized in that between an overroller and a hot water bath there is arranged a pipe which is resistant to acid, formaldehyde and temperatures of up to 110°C, and with water- steam supply, as the steam pipe is positioned vertically between the overroller and the hot water bath, and that the lower end of the steam pipe protrudes into the hot water bath, as a free-running diverter for the fibers is arranged in the hot water bath.
NO163650A 1965-08-19 1966-06-25 NO118185B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEP0037483 1965-08-19

Publications (1)

Publication Number Publication Date
NO118185B true NO118185B (en) 1969-11-24

Family

ID=7375316

Family Applications (1)

Application Number Title Priority Date Filing Date
NO163650A NO118185B (en) 1965-08-19 1966-06-25

Country Status (12)

Country Link
US (2) US3458901A (en)
AT (1) AT285025B (en)
BE (1) BE685189A (en)
CH (1) CH460241A (en)
DE (1) DE1494725A1 (en)
ES (1) ES327920A1 (en)
FI (1) FI43620B (en)
FR (1) FR1487244A (en)
GB (1) GB1136412A (en)
NL (1) NL6609731A (en)
NO (1) NO118185B (en)
SE (1) SE319572B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817491B1 (en) * 1969-06-24 1973-05-30
US4575376A (en) * 1983-11-07 1986-03-11 International Playtex Method for increasing the absorbency of cellulosic fibers
IL135487A (en) * 2000-04-05 2005-07-25 Cupron Corp Antimicrobial and antiviral polymeric materials and a process for preparing the same
KR20140013078A (en) * 2004-11-07 2014-02-04 쿠프론 인코포레이티드 Copper containing materials for treating wounds, burns and other skin conditions
KR101254818B1 (en) 2004-11-09 2013-04-15 쿠프론 인코포레이티드 Methods and materials for skin care
US8741197B2 (en) * 2007-03-28 2014-06-03 Cupron Inc. Antimicrobial, antifungal and antiviral rayon fibers
CN109162001B (en) * 2018-11-16 2023-09-08 安徽碧深高纤有限公司 Conveying device for fiber spinning

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE432821A (en) * 1938-02-19
US2317152A (en) * 1940-04-29 1943-04-20 Manville Jenckes Corp Apparatus and method for the manufacture of artificial fibers
GB546979A (en) * 1941-02-06 1942-08-07 Courtaulds Ltd Improvements in and relating to the manufacture of threads, filaments and the like from viscose
US2488665A (en) * 1941-05-21 1949-11-22 Clementine H H Heim Hoedemaker Recovery of gases
US2692875A (en) * 1949-06-17 1954-10-26 Allied Chem & Dye Corp Methacrylonitrile-acrylonitrile copolymers and fibers thereof
US2666976A (en) * 1950-06-10 1954-01-26 Allied Chem & Dye Corp Synthetic bristle and process for its production
US2984889A (en) * 1957-03-12 1961-05-23 American Viscose Corp Regenerated cellulose filament having large and small denier sections
GB910994A (en) * 1960-02-23 1962-11-21 Kurashiki Rayon Kk Method of heat treatment of artificial filaments
BE602660A (en) * 1960-04-22
AT236029B (en) * 1961-10-12 1964-09-25 Glanzstoff Ag Process for the production of elastic threads from polyesters containing isocyanate end groups
US3109698A (en) * 1962-04-02 1963-11-05 Courtaulds North America Inc Method for making high tenacity regenerated cellulose staple fiber
BE638775A (en) * 1962-11-06
IE31637L (en) * 1967-11-06 1968-05-15 Chimiotex Regenerated cellulose filaments

Also Published As

Publication number Publication date
DE1494725A1 (en) 1969-09-25
BE685189A (en) 1967-01-16
ES327920A1 (en) 1967-04-01
FR1487244A (en) 1967-06-30
FI43620B (en) 1971-02-01
NL6609731A (en) 1967-02-20
GB1136412A (en) 1968-12-11
SE319572B (en) 1970-01-19
CH460241A (en) 1968-07-31
AT285025B (en) 1970-10-12
US3494995A (en) 1970-02-10
US3458901A (en) 1969-08-05

Similar Documents

Publication Publication Date Title
US2705184A (en) Process for the production of rayon products
GB743761A (en) Improvements in or relating to method of producing fibers, threads, yarns, tows and the like
US2340377A (en) Process of making artificial fibers
US5358679A (en) Manufacture of regenerated cellulosic fiber by zinc free viscose process
US2284028A (en) Dry spinning process
NO118185B (en)
EP4124681A1 (en) Method for producing regenerated cellulosic fibers
US2494468A (en) Method for the continuous production of synthetic fibers
US2004271A (en) Production of artificial filaments, threads, ribbons, films, and the like
DE1294590B (en) Process for the manufacture of threads or fibers from regenerated cellulose
US2078339A (en) Manufacture of artificial silk
US2114915A (en) Process of spinning rayon and the bath used
US2439039A (en) Process of producing medullated artificial filaments
US2347883A (en) Production of cellulosic structures
US2594496A (en) Method of making artificial fibers or threads from viscose
GB910878A (en) Production of regenerated cellulose materials
US2301003A (en) Method of producing rayon fibers or filaments
US2347884A (en) Method of producing cellulosic structures
US2515889A (en) Process for producing artificial filaments
Merrifield et al. Fiber from peanut protein: I. The production and properties of sarelon
US2224693A (en) Formation of threads and the like
US2946650A (en) Process for the manufacture of viscose rayon staple
KR100254906B1 (en) Process for preparing regenerated cellulose fiber
US3506754A (en) Process for manufacturing rayon having high degree of polymerization by the viscose process
AT201771B (en) Process for making crimped rayon from viscose