NO117148B - - Google Patents
Download PDFInfo
- Publication number
- NO117148B NO117148B NO16273066A NO16273066A NO117148B NO 117148 B NO117148 B NO 117148B NO 16273066 A NO16273066 A NO 16273066A NO 16273066 A NO16273066 A NO 16273066A NO 117148 B NO117148 B NO 117148B
- Authority
- NO
- Norway
- Prior art keywords
- jacket
- plate
- mantle
- heat
- partition
- Prior art date
Links
- 238000005192 partition Methods 0.000 claims description 24
- 238000002485 combustion reaction Methods 0.000 claims description 14
- 239000000567 combustion gas Substances 0.000 claims description 10
- 238000007689 inspection Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000010408 sweeping Methods 0.000 claims description 2
- 241000446313 Lamella Species 0.000 claims 1
- 239000007789 gas Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 244000144987 brood Species 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/52—Polythioethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/64—Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
- C08G18/6476—Bituminous materials, e.g. asphalt, coal tar, pitch; derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L95/00—Compositions of bituminous materials, e.g. asphalt, tar, pitch
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Civil Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Air Supply (AREA)
Description
Anordning ved varmluftkjeler. Device for hot air boilers.
Foreliggende oppfinnelse går ut på en ny anordning ved slike varmluftkjeler ved hvilke luft, som drives frem ved hjelp av en vifte bringes til å passere gjennom en varmeutveksler for opptagning av varme, hvilken varmeutveksler utgjøres av en korrugert platemantel, som er omgitt av en koaksial, varmeisolert yttermantel, hvorunder platemantelens korrugeringer strekker seg hovedsakelig langs platemantelens hele lengde og hovedsakelig parallelt med dens lengdeakse, slik at platemantelens indre flate bestrykes av forbrenningsgassene og dens ytre flate av den luft som skal oppvarmes. The present invention is based on a new device for such hot air boilers in which air, which is propelled forward by means of a fan, is made to pass through a heat exchanger for absorbing heat, which heat exchanger consists of a corrugated plate jacket, which is surrounded by a coaxial, heat-insulated outer jacket, under which the corrugations of the plate jacket extend mainly along the entire length of the plate jacket and mainly parallel to its longitudinal axis, so that the inner surface of the plate jacket is coated by the combustion gases and its outer surface by the air to be heated.
Oppfinnelsens nye anordning karakte-riseres først og fremst ved en mot platemantelens lengdeakse vinkelrett skillevegg, som oppdeler plantemantelen i et forbrenningskammer og et aksialt mot dette anordnet varmeutvekslingsrom, og hvis ytre dimensjoner hovedsakelig stemmer overens med platemantelens indre diameter, hvorved forbrennihgsgassene tvinges til under hastighetsøkning og derpå følgende hastighetssenkning å passere gjennom de mellom platemantelen og skilleveggen dannede åpninger. Ved en varmluftkj ele ifølge oppfinnelsen oppnås gode varmeoverførings-egenskaper ved hjelp av en konstruksjon, som er enklere og billigere enn de tidligere kjente og som.også har mindre dimensjoner og dermed krever mindre plass og så-ledes reduserer de med stor plass forbunne omkostninger. Hensiktsmessig er varmeut-vekslingsrommet i den ende som vender fra forbrenningskammeret lukket ved hjelp av en med skorstein forsynt endevegg, hvorunder der inne i mantelen i liten avstand fra endeveggen er anordnet en mot man-telaksens lengdeakse vinkelrett skillevegg, hvis ytre dimensjoner hovedsakelig stemmer overens med den korrugerte mantels indre dimensjoner, i det øyemed å tvinge forbrenningsgassene til å strømme langs platemantelens indre overflate langs stør-ste delen av mantelens lengde. Skilleveggen eller skilleveggene er fortrinsvis festet i platemantelen for å muliggjøre uttagning ved feiing eller inspeksjon og for å lette uttagningen av skilleveggene gjennom en i mantelen anordnet, lukkbar lukeåpning, er skilleveggene hensiktsmessig delt i seksjoner. The new device of the invention is primarily characterized by a dividing wall perpendicular to the longitudinal axis of the plate mantle, which divides the plant mantle into a combustion chamber and a heat exchange space arranged axially to this, and whose outer dimensions mainly correspond to the inner diameter of the plate mantle, whereby the combustion gases are forced to increase speed and then the following speed reduction to pass through the openings formed between the plate jacket and the partition wall. With a hot air boiler according to the invention, good heat transfer properties are achieved by means of a construction which is simpler and cheaper than the previously known ones and which also has smaller dimensions and thus requires less space and thus reduces the costs associated with large spaces. Appropriately, the heat exchange space at the end facing the combustion chamber is closed by means of an end wall equipped with a chimney, under which inside the mantle at a small distance from the end wall there is arranged a dividing wall perpendicular to the longitudinal axis of the mantle, the outer dimensions of which mainly correspond to the inner dimensions of the corrugated mantle, in order to force the combustion gases to flow along the plate mantle's inner surface along most of the mantle's length. The partition or partitions are preferably fixed in the plate casing to enable removal during sweeping or inspection and to facilitate the removal of the partitions through a closable hatch opening arranged in the casing, the partitions are suitably divided into sections.
Den korrugerte mantel utgjør et virk-somt middel for å tilveiebringe de ønskede varmeoverføringsegenskaper. Ytterligere forbedring av varmeoverføringsegenskape-ne oppnås gjennom skilleveggen mellom forbrenningskammeret og varmeutveks-lingsrommet derved at denne vegg dels konsentrerer forbrenningsgass-strømmen til den korrugerte overflate, dels frem-bringer turbulens, som også er verdifull for foreliggende formål. Varmeoverføringsev-nen forbedres sluttelig også ved den skillevegg som befinner seg ved skorstensuttaket, hvilken skillevegg hindrer at gassene tar en gjenvei gjennom det fra et varmeut-vekslingssynspunkt mindre verdifulle sen-trale parti i yarmeutvekslingsrommet til skorsteinen, hvilket naturligvis har mindre tverrsnittsareal enn den korrugerte mantel. The corrugated jacket is an effective means of providing the desired heat transfer properties. Further improvement of the heat transfer properties is achieved through the partition wall between the combustion chamber and the heat exchange space whereby this wall partly concentrates the combustion gas flow to the corrugated surface, partly produces turbulence, which is also valuable for the present purpose. Finally, the heat transfer capability is also improved by the partition wall located at the chimney outlet, which partition wall prevents the gases from taking a detour through the less valuable from a heat exchange point of view central part in the arm exchange space of the chimney, which naturally has a smaller cross-sectional area than the corrugated mantle .
Utførte forsøk har vist at på grunn av den høye temperatur som hersker i for-: brenningskammeret kan en betydelig, del av den i dette utviklede varme utnyttes i form av strålevarme som rettes mot for- Tests carried out have shown that due to the high temperature that prevails in the combustion chamber, a significant part of the heat developed in this can be utilized in the form of radiant heat which is directed towards the
,brehningskammerets kjøite platemantel. , the breeching chamber's rigid plate mantle.
Da imidlertid varmeoverføringen fra plate- Then, however, the heat transfer from plate-
mantelens utside til den luft som strømmer ut langs denne er begrenset ved den i for- the outside of the mantle until the air that flows out along it is limited by the front
hold til platemantelens innside forholdsvis lave overflatekoeffisient, forsynes den pla- keep to the inside of the sheet jacket relatively low surface coefficient, the plate is supplied
temanteldel som danner forbrenningskam- mantle part that forms the combustion chamber
meret hensiktsmessig med på korrugerin- more appropriate with corrugation
genes bunn anbragte, radielt utadrettede, base of genes placed, radially outward,
lameller som øker varmeo<y>erflaten. På slats that increase the heating surface. On
denne måte bringes produktet av over-flatekoeffisienten og overflaten av plate- in this way, the product of the surface area coefficient and the surface area of the plate
mantelens utside i bedre overensstemmelse med produktet av samme størrelser på pla- the outside of the mantle in better agreement with the product of the same sizes on the pla-
temantelens innside, hvorved det blir mulig å forbedre den totale varmepverføring fra forbrenningskammeret til den langs plate- the inside of the mantle, whereby it becomes possible to improve the total heat transfer from the combustion chamber to the along plate
mantelens ytterside strømmende luft. the outside of the mantle flowing air.
Herav følger at forbrenningskammerets og It follows that the combustion chamber and
dermed varmluftkjelens dimensjoner ytter- thus the dimensions of the hot air boiler
ligere kan minskes ved uforandret varme- more can be reduced by unchanged heat-
avgivning og samtidig oppnås en tempe- emission and at the same time a tempe-
ra turutj evning som betraktelig minsker de termiske påkjenninger i platemantelen. ra tour equalization which considerably reduces the thermal stresses in the sheet jacket.
Oppfinnelsen og dens karakteristiske The invention and its characteristic
trekk skal forklares nærmere i det føl- features must be explained in more detail in the following
gende i forbindelse med beskrivelsen av en på den vedlagte tegning illustrert utførel- in connection with the description of an embodiment illustrated in the attached drawing
sesform. På tegningen viser fig. 1 varmluft- view form. In the drawing, fig. 1 hot air
kjelen i lengdesnitt, og fig. 2 er et tverr- the boiler in longitudinal section, and fig. 2 is a cross-
snitt etter linjen II—II på fig. 1. section along the line II—II in fig. 1.
Varmluftkjelen er i eksemplet utført The hot air boiler is implemented in the example
med vertikal akse og hviler på støtter 1, with vertical axis and resting on supports 1,
samt oppviser en varmeisolert yttermantel 2. Inne i mantelen 2 og konsentrisk med denne er der anbragt en indre mantel 3, be- and has a heat-insulated outer jacket 2. Inside the jacket 2 and concentrically with it, an inner jacket 3 is arranged, be-
stående av korrugert platemetall, hvis kor- standing of corrugated sheet metal, if cor-
rugeringer strekker seg ut langs mantelens hele lengde parallelt med mantelens leng- brood rings extend along the entire length of the mantle parallel to the length of the mantle
deakse. Platemantelens 3 utvendige dimen- deax. The 3 outer dimensions of the sheet jacket
sjon er så meget mindre enn yttermante- tion is so much less than external man-
lens 2 indre dimensjon, at der mellom dis- lens 2 inner dimension, that there between dis-
se to mantler dannes en ringformet gjen-nomstrømningskanal 4 for den luft som skal oppvarmes ved hjelp av kjelen. Denne luft blåses inn i kanalen 4 ved hjelp av en vifte 5, som er anbragt under varmluftkje- see two mantles, an annular through-flow channel 4 is formed for the air to be heated by means of the boiler. This air is blown into the channel 4 by means of a fan 5, which is placed under the hot air
len. I opphetet tilstand avgår luften fra kanalen 4 gjennom et antall i yttermante- len. In a heated state, the air departs from channel 4 through a number of
lens 2 øvre ende anordnede, rundt denne mantels periferi fordelte og med ledeskin- lens 2 upper end arranged, distributed around the periphery of this mantle and with guide skins
ner 6 forsynte utblåsningsåpninger 7. ner 6 supplied exhaust openings 7.
Ved varmluftkjelens nedre parti er der At the lower part of the hot air boiler is there
anbragt en oljebrenner 8, som skyter inn i mantelens 3 indre og gjennom hvilken en oljeluftblanding kan sprøytes inn i kjelens nedre del som er utformet som forbren- placed an oil burner 8, which shoots into the interior of the mantle 3 and through which an oil-air mixture can be injected into the lower part of the boiler, which is designed as a combustion
ningskammer 9, hvor oljeluftblandingen forbrennes. Kammerets 9 nedre ende og dermed også mantelens 3 nedre ende lukkes combustion chamber 9, where the oil-air mixture is combusted. The lower end of the chamber 9 and thus also the lower end of the mantle 3 are closed
av en strålebeskytter 10 som utgjøres av en stump metallplate-konus. Oppad avgrenses forbrenningskammeret 9 av en vinkelrett mot kjelens lengdeakse anordnet skille- of a radiation shield 10 which consists of a blunt metal plate cone. The combustion chamber 9 is bounded upwards by a partition arranged perpendicular to the longitudinal axis of the boiler.
vegg 11, hvis ytre dimensjoner hovedsa- wall 11, whose outer dimensions mainly
kelig stemmer overens med mantelens 3 kelly corresponds to the mantle's 3
indre dimensjoner. Herved kommer forbrenningsgassene til under hastighetsøk- internal dimensions. In this way, the combustion gases come to during speed increase
ning og derpå følgende hastighetssenkning å passere gjennom mellomrommene mel- ing and then the following reduction in speed to pass through the spaces be-
lom skilleveggen 1 og mantelens 3 korru- lom the partition 1 and the mantle 3 corru-
geringer, hvorved mantelen opphetes og igjen overfører varme til den langs dens utside strømmende luft. Mantelens 3 øvre ende lukkes med en med skorstein 12 for- rings, whereby the mantle is heated and in turn transfers heat to the air flowing along its outside. The upper end of the mantel 3 is closed with a chimney 12 for
synt endevegg 13. I liten avstand fra denne endevegg 13 er der inne i mantelen 3 an- visible end wall 13. At a small distance from this end wall 13, there is inside the mantle 3 an
bragt ytterligere en mot kjelens lengdeakse vinkelrett skillevegg 14, hvis ytre dimensjo- brought another partition wall 14 perpendicular to the longitudinal axis of the boiler, whose outer dimensions
ner hovedsakelig stemmer overens med mantelens 3 indre dimensjoner. Også ved denne skillevegg 14 bringes forbrennings- ner mainly corresponds to the mantle's 3 inner dimensions. Also at this partition 14, combustion
gassene til å strømme gjennom mellom- the gases to flow through inter-
rommene mellom skilleveggen og mante- the spaces between the partition and mantle-
lens 3 korrugeringer. Følgevirkningen blir at forbrenningsgassene tvinges til langs størstedelen av mantelens 3 utstrekning, lens 3 corrugations. The consequence is that the combustion gases are forced along most of the extent of the mantle 3,
mellom de to skillevegger 11 og 14 å strøm- between the two partitions 11 and 14 to
me langs mantelens 3 indre overflate og opphete denne, slik at effektiv varmeover- me along the inner surface of the mantle 3 and heat this, so that effective heat transfer
føring finner sted gjennom mantelen 3 fra forbrenningsgassene til luften på mante- conduction takes place through the mantle 3 from the combustion gases to the air on the mantle
lens 3 utside. I samsvar med denne virke- lens 3 outside. In accordance with this work-
måte betegnes her det mellom skilleveg- manner is denoted here between the crossroads
gene 11 og 14 beliggende rom 15 som varmeutvekslingsrom. En viss varmeoverføring finner dog naturligvis sted gjennom det parti av mantelen 3 som ligger nedenfor skilleveggen 11. De i rommet 16 mellom en- genes 11 and 14 located in room 15 as a heat exchange room. A certain amount of heat transfer naturally takes place through the part of the mantle 3 which lies below the partition wall 11. Those in the space 16 between a
deveggen 13 og skilleveggen 14 innstrøm- the dew wall 13 and the partition wall 14 inflow
mende gasser ledes bort gjennom skor- harmful gases are led away through the
steinen 12. the stone 12.
Skilleveggene 11 og 14 er løsbart festet The partitions 11 and 14 are releasably attached
i mantelen 3 slik at de kan uttas gjennom en inspeksjonsluke 17, f. eks. for å feies. in the mantle 3 so that they can be removed through an inspection hatch 17, e.g. to be swept.
For å lette uttagningen er skilleveggene 11 To facilitate removal, the partitions are 11
og 14 dels i seksjoner, se fig. 2. and 14 partly in sections, see fig. 2.
Claims (5)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEF45916A DE1301582B (en) | 1965-04-27 | 1965-04-27 | Process for the production of molded bodies, coatings and bonds by reacting tar with polyurethanes |
Publications (1)
Publication Number | Publication Date |
---|---|
NO117148B true NO117148B (en) | 1969-07-07 |
Family
ID=7100751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO16273066A NO117148B (en) | 1965-04-27 | 1966-04-25 |
Country Status (9)
Country | Link |
---|---|
AT (1) | AT262613B (en) |
BE (1) | BE679996A (en) |
CH (1) | CH469771A (en) |
DE (1) | DE1301582B (en) |
DK (1) | DK118044B (en) |
GB (1) | GB1081276A (en) |
NL (1) | NL6605659A (en) |
NO (1) | NO117148B (en) |
SE (1) | SE319011B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101039877B1 (en) * | 2011-02-17 | 2011-06-09 | 동아화학 주식회사 | A polyurethane biodegradable plastic using phosphorus pentoxide |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1207008A (en) * | 1957-06-10 | 1960-02-12 | Us Rubber Co | Compositions for joints and coatings |
-
1965
- 1965-04-27 DE DEF45916A patent/DE1301582B/en active Pending
-
1966
- 1966-03-18 CH CH390866A patent/CH469771A/en unknown
- 1966-03-22 AT AT269966A patent/AT262613B/en active
- 1966-04-21 GB GB1757766A patent/GB1081276A/en not_active Expired
- 1966-04-25 BE BE679996D patent/BE679996A/xx unknown
- 1966-04-25 NO NO16273066A patent/NO117148B/no unknown
- 1966-04-26 DK DK212766A patent/DK118044B/en unknown
- 1966-04-26 SE SE565266A patent/SE319011B/xx unknown
- 1966-04-27 NL NL6605659A patent/NL6605659A/xx unknown
Also Published As
Publication number | Publication date |
---|---|
DE1301582B (en) | 1969-08-21 |
CH469771A (en) | 1969-03-15 |
AT262613B (en) | 1968-06-25 |
NL6605659A (en) | 1966-10-28 |
BE679996A (en) | 1966-10-03 |
GB1081276A (en) | 1967-08-31 |
SE319011B (en) | 1969-12-22 |
DK118044B (en) | 1970-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2620787A (en) | Forced air flow unit air-heating furnace | |
US2843108A (en) | Forced-draft unit heater having outside combustion air source | |
US2041312A (en) | Annealing apparatus | |
US4192260A (en) | Air preheating means at a vertical steam or hot water boiler | |
US1536220A (en) | jouclard | |
NO117148B (en) | ||
CA1177715A (en) | Room-heating stove | |
US1346952A (en) | Water-heater | |
US2637314A (en) | Forced downward air flow air | |
US2175832A (en) | Heating apparatus | |
US2374707A (en) | Furnace | |
US1699443A (en) | Combustion apparatus | |
US2604935A (en) | Gas furnace | |
US217723A (en) | Improvement in hot-air furnaces | |
GB1338912A (en) | Space heaters | |
US2422959A (en) | Downdraft magazine heatek | |
US998800A (en) | Stove. | |
RU2698343C2 (en) | Portable oven | |
US1765201A (en) | Heater | |
SU549650A1 (en) | Mobile heat generator | |
US2386437A (en) | Heater unit for air circulating heaters | |
US658696A (en) | Continuous-combustion stove. | |
US1751581A (en) | Heating device | |
US1332371A (en) | Auxiliary heater | |
US798809A (en) | Air-heating drum. |